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THE ACTION OF THE MAPPING CLASS GROUP

ON CURVES IN SURFACES

par Robert C. Penner

In this paper, we will discuss the solution to a problem originally

suggested by Max Dehn in 1922 [Dl] and more recently posed by William
Thurston in [T3, problem number 20]. The problem is to compute the

action of homeomorphisms of a surface on one-manifolds embedded in the

surface. This computation has several applications to Riemann surface theory,

dynamics of surface automorphisms, and low-dimensional topology. To give

a precise statement to this problem requires a concise way to specify both

homeomorphisms of surfaces and one-submanifolds of surfaces; we will
discuss this background material.

This paper is a survey of some of the results in my thesis [P] ; I would
like to thank Dave Gabai for introducing me to some of this material and

for sharing with me his initial work and insights on the main problem.
Thanks also to James Munkres for his suggestions and encouragement.

Let Fg denote the gf-holed torus and let H g
denote the topological

group of orientation-preserving homeomorphisms of Fg (with the compact-
open topology). The mapping class group of Fg, which we will denote

MC{Fg), is defined to be the group H g
modulo isotopy. By definition,

this is the same as the group of path components of the space H g

Moreover, Nielsen [N] shows that MC(Fg) may be identified with the group
of (orientation-preserving) outer automorphisms of the fundamental group
of Fg. The mapping class groups are central objects of study in Riemann
surface theory as well as in two- and three-dimensional topology. For
instance, a useful technique is cutting and regluing a three-manifold along
an embedded surface. The homeomorphism type of the resulting three-
manifold depends only on the isotopy class of the gluing map.

I do not know who first studied the groups MC(Fg), but they have,
been actively researched since the beginning of this century. M. Dehn [D2]
was the first to give a finite set of generators for MC(Fg) of a certain
geometrical type which are now called Dehn twists. If c is a simple closed
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curve embedded in Fg, then the right and left Dehn twists along c, denoted

t*1 : Fg - Fg, are defined as follows: cut Fg along c, twist once around to
the right or left and reglue. Thus, if c and d are as shown in Figure 1,

then the curves i^ld are as pictured. The direction (right or left) of a

Dehn twist is independent of an orientation on c and depends only on the

orientation of the surface Fg.

Figure 1

In 1938, Dehn [D2] described a finite collection of Dehn twist generators
for MC(Fg), and in 1964-66, R. Lickorish [L] independently refined Dehn's

original set to a more useful collection of 3g — 1 curves along which to
perform Dehn twists. For later use, we will record Lickorish's result as a

theorem.

Theorem [Lickorish]. For g ^ 2, MC(Fg) is generated by tfie Dehn

twists along the curves pictured in Figure 2.

Using the result of Nielsen stated earlier, it is easy to see that MC{Fx) is

isomorphic to 5/2(Z), generated by the Dehn twists along the curves c

and d pictured in Figure 1. For a closed surface of genus two, J. Birman
and M. Hilden [BH] have given a complete set of relations amongst the

Lickorish generators. For closed surfaces of arbitrary genus, A. Hatcher and

W. Thurston [HT] have given an algorithm for constructing a complete

set of relations for MC{Fg), but their results are quite complicated. More
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recently, B. Wajnryb [W] has carried through the beautiful techniques
introduced in [HT] and given a presentation for MC(Fg\ g ^ 2.

There is a great deal more known about structural properties of the

groups MC(Fg) (see [B]), but this introduction to generators and relations
should suffice for our present purposes.

We will explicitly compute a certain action of the groups MC(Fg) :

the natural action of H
g on (non-oriented) curves embedded in Fg descends

to an action of MC(Fg) on isotopy classes of curves in Fg. Thus, given
[())] e MC(Fg) and an isotopy class [c] of curves on Fg, we will compute
the isotopy class [c()(c)]. We require some concise way to describe an

isotopy class of curves in Fg. In fact, we will describe a one-to-one

correspondence between such isotopy classes and a subset of ZN, for some

big N. Such a one-to-one correspondence will be termed a parametrization.
In 1922, Dehn [Dl] described such a parametrization in a Breslau

lecture. This work was not published and remained generally unknown. In
1976, W. Thurston [T2] independently rediscovered and generalized Dehn's

parametrization. We call this parametrization the Dehn-Thurston
parametrization and will presently describe it.

Though we are primarily interested in curves embedded in g-holed tori Fg,
more generally we will be led to consider a one-manifold c properly
embedded in an oriented surface F perhaps with boundary. We choose once
and for all an arc, called a window, in each boundary component of F.

We require that dc is contained in the windows, that no closed component
of c bound a disc in F, and that no arc component of c can be isotoped
into dF. Define a multiple arc in F to be an isotopy (fixing the boundary
pointwise except in the windows) class of such one-submanifolds, and denote
the collection of multiple arcs in F by SP'(F). The Dehn-Thurston theorem

gives a parametrization of SF'(F), provided the Euler characteristic of F is

negative. Exposé 4 of [FLP] contains a proof of the result we describe below.

We will first consider 6P'(F) for a particularly simple surface F. A

pair of pants P is a disc-minus-two-discs with the boundary components
denoted dt and the windows wt,i 1,2,3, as indicated in Figure 3a.

Let Ai be a fixed neighborhood of dt in P, and consider the nine examples

of one-manifolds lij9 0 < i ^ j < 3, illustrated in Figure 4. We assume that

l0j a Aj, j 1, 2, 3. In case \_c] e SP'(P) is represented by a connected one-

manifold, one can show that c is isotopic to one of the models ltj.
Moreover, if c is represented by an arc properly embedded in P, then c is

isotopic (fixing dP pointwise) to an arc c' which agrees with some ltj, i ^ 0,

on P\(UkAk) and twists to the right or left some number of times in each

of Af and Aj.
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One may thus parametrize connected [c] e £f'(P) as follows. Let mt

denote the number of times c (or d) intersects i 1, 2, 3. Furthermore,

define integers ti9 i 1, 2, 3, by taking | tt | to be the number of times d

twists in At with the sign of tt positive if c' twists to the right in Af

and negative if d twists to the left in Af. Moreover, if c is isotopic to

loj so that rrij 0, then we choose to call the twisting positive. Thus, the

examples in Figure 3b have parameter values t3 1, tx t2 m1 m2

m3 0 and m1 m2 t2 1, L — 2, m3 t3 0.

This gives a parametrization of connected [c] g Sd'(P) by a six-tuple

(m;) x (ti) e (Z+)3 x Z3 of integers. To extend this to a parametrization of

arbitrary (possibly disconnected) [c] g SP\P\ one simply lets {cn} denote the

components of c and defines mf([c]) and t£([c]) 2n^([cJ),
Notice that if and c2 are components of c and / 0 ^ m£([c2]) for

some i 1, 2, 3, then ^([cj) and ^([c2]) have the same sign since c1 and

c2 are disjointly embedded. Similarly, if some component of c is isotopic
to l0j, j 1, 2, 3, then m7([c]) 0.

For disconnected [c] g 6P\P), the parameters mf([c]) and ff([c]) have the

following geometrical interpretation. We say d is an e-translate of lu if
there is a neighborhood of ltj identified with the unit normal bundle

hj x [ — 1, 1] so that à corresponds to x e. Given [c] g 6P\P\ we choose c'

representing [c] so that c' agrees with a collection of s-translates of the

lij on P\(UkAk). m^c]) is simply the number of times d intersects di9

and tj([c]) is the total twisting of d in Af. Notice that for any [c]
g .9M(P), Zfm^[c]) is even since representatives of [c] are properly embedded.

To parametrize [c] g 6P'(Fg), g ^ 2, we choose a decomposition, called a

pants decomposition, of Fg into pairs of pants: we choose a collection of
curves with windows {(Xi? i^)} so that each component of Fg\u{Ki} is the
interior of a pair of pants. (For Euler characteristic reasons, there are
3g — 3 pants curves Kt in a pants decomposition of Fg.) Some examples of
pants decompositions of F2 are shown in Figure 5. Note that we do not
require the closure of a component of'Ffl\u{Xj to be a pair of pants;
see Figures 5b and c.

Let T, be an annular neighborhood of Kt, and identify once and for
all each component of Fg\u{Interior At) with the pair of pants P. Given
some [c] g 6d'{Fg\ we compute the corresponding parameter values as
follows. Isotope c so that it intersects each Kt a minimal number of times,
and let mt- be this intersection number. Now isotope c so that it intersects Kt
in the window ut (if at all) and so that (relative to our identifications) it
coincides with e-translates of lu in each component of Fg\u{Interior At} ; let
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tt be the number of times c twists in the annulus At with the conventions

as before. The (6g — 6)-tuple of integers (m^) x (tf) g (Z+)3g~3 x Z3g~3 is the

Dehn-Thurston parameter value for [c].

Theorem [Dehn-Thurston]. £f'(Fg) is parametrized by a subset of
(.Z + )3g~3 x Z3g~3. A point (mi) x (^) g (Z+)3f/_3 x Z3g~3 corresponds to

a multiple arc if and only if the following conditions are satisfied.

a) If mt 0 f/ien tt ^ 0.

b) If Kj, und Kk are pants curves that bound an embedded pair
of pants in Fg, t/zen mt + mj + mk is euen.

c) // X; is a pants curve that bounds an embedded torus-minus-a-disc,
in i^, t/zen mf is ei>en.

Restriction a) is simply a choice of convention as before, restriction b) has

been discussed previously, and restriction c) is similar.

We illustrate how one draws a representative of [c] e &"(F2) from its

Dehn-Thurston parameter values in the following example.

Example 1 : Consider the pants decomposition on F2 as indicated in
Figure 5a. The parameter value (3, 1, 2) x (2, — 1, 0) represents the multiple
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curve in Figure 6. In an annular neighborhood of Kl9 the curve

corresponding to (3, 1,2) x (2, -1,0) twists twice to the right with three

components, in an annular neighborhood of K2 twists once to the left with

one component, and in a neighborhood of K3 there is no twisting with

two components. One draws models in each annulus and connects them

up uniquely using s-translates of the arcs lu.

In this example, we give the parameter values for a connected multiple
arc. There is no known algorithm for deciding if a given parameter value

corresponds to a connected multiple arc. This is a hard combinatorial problem
in general.

We are now in a position to give a precise statement to our main

problem.

Problem: Compute the natural action of lickorisKs generators for
MC(Fg) on the Dehn-Thurston parameter values for Sf'(Fg).

Before we describe how to attack this problem, let me indicate the nature
of the results obtained. Regard our parameter space (Z+)3g~3 x Z3g'3 as

a subset of R6g~6 in the natural way. Given [(()] g MC(Fg), there corresponds
a finite decomposition Kw of R69'6 by cones based at the origin, and [4>]
acts like an invertible integral matrix on the parameter values in each

cone of Km. Following Thurston [Tl], we will call such an action on
&"{Fg) piecewise-integral-linear (or PIL) transformation.

Theorem. The action of MC(Fg) on <SP'(Fg) admits a faithful representation

as a group of PIL transformations.

In fact, the representation is faithful in the strong sense that there are
2g + 1 multiple arcs so that [4>] 1 e MC(Fg) if and only if [cj>] fixes each
multiple arc in the collection. This immediately gives the following corollary.

Figure 6
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Corollary. There is a practical algorithm for solving the word problem
in Lickorish's generators for MC(Fg).

Given a word w in Lickorish's generators, one simply considers the
action of w on our collection of 2# + 1 multiple arcs, and [w] 1

e MC(Fg) if and only if w fixes each multiple arc in our collection.
We prove the theorem and corollary by actually writing down formulas

that describe the action of Lickorish's generators as in the problem, noting
the PIL character and checking faithfulness. For convenience, we now
restrict attention to the case of genus two. In this case, we choose the

pants decomposition in Figure 5a. Three of the Lickorish generating curves
(see Figure 2) are curves in this pants decomposition in this case, and we
first investigaté the action of Dehn twists along these on the Dehn-Thurston
parametrization for multiple arcs*

Example 2 : We compute the action on the curve (3, 1,2) x (2, — 1, 0)

in example 1 of the Dehn twist along the pants curve K3 in Figure 5a.

The result of this Dehn twist is shown in Figure 7. This curve has

coordinates (3, 1,2) x (2, —1,2) and differs from (3, 1,2) x (2, —1,0) only
in an annular neighborhood of K3.

This example is typical, and a Dehn twist on the pants curve Kt
acts on the Dehn-Thurston parametrization as the linear map

xl1 : (m1,m3s_3) x (t1)m,

(m1,m3g-3)x (t

This fact was noted by Dehn.

However, the action of Dehn twists along the other two curves in the

Lickorish generating set are not nearly so simple. To tackle the problem
of computing them, we note that these curves are curves in the pants
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decomposition indicated in Figure 5c. If we had a way of computing
the Dehn-Thurston parameter values relative to the pants decomposition
in Figure 5c from the parameter values relative to the pants decomposition
in Figure 5a and vice-versa, then we would be able to compute the action

of each of the Lickorish generators relative to the original pants
decomposition in Figure 5a. This is in fact what we do. The philosophy comes

from linear algebra: if a transformation (a Dehn twist) is hard to compute,
change basis (pants decomposition).

We pass from Figure 5a to Figure 5c by means of two elementary

transformations, which we now describe. The first one takes us from the pants
decomposition in Figure 5a to the one in Figure 5b. It may also be

described as the transformation pictured in Figure 8b ; cutting along the rightmost

and left-most curves in Figures 5a and 5b gives us the surface

pictured in Figure 8b. The second transformation takes us from the pants
decomposition in Figure 5b to the one in Figure 5c. It may also be described

by two applications of the transformation pictured in Figure 8a; cutting
along the nullhomologous curves in Figures 5b and 5c gives us two copies
of the surface pictured in Figure 8a.

Figure 8
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We will call the transformations pictured in Figure 8a and 8b the first
and second elementary transformations, respectively. Thus, the computation
of the action of MC(F2) on the collection of multiple curves in F2 is

reduced to the computation of the two elementary transformations. In fact,
the same procedure works for surfaces of arbitrary genus; there exists a

(finite) collection of pants decomposition of Fg, all related by sequences
of elementary transformations, so that each of the Lickorish generating
curves is a pants curve in at least one of the pants decompositions. Our
problem reduces in general to the computation of the two elementary
transformations. In fact, somewhat more is true. [HT] show that any two
pants decompositions on Fg are related by sequences of our elementary
transformations, but we will not need this stronger result.

The first elementary transformation is relatively easy and can be done by
actually isotoping representatives of multiple arcs about on the torus-minus-
a-disc. The second elementary transformation requires more work. The

techniques we develop for the second elementary transformation also apply
to the first elementary transformation, and we concentrate on the second

elementary transformation for now.
The basic idea of the computation is to lift to an appropriate covering

space. This on the one hand simplifies visualizing curves on surfaces and

on the other introduces some complications. Let S2 denote the sphere-
minus-four-discs. We will define a regular planar cover n2 : S2 -> S2 below. If
M g &"(S2) is a multiple arc, we orient the components of c arbitrarily
and choose some lift c of c to S2. We will isotope c about in S2

to some c and define c to be the projection of c by n2. The isotopy
in S2 is chosen in such a way that c looks locally like the appropriate
Dehn-Thurston model. We cannot guarantee that this isotopy is n2-
equivariant, so c is not necessarily embedded. Note, however, that c is at
least homotopic to the embedding c. All our computations will take place

in the total space S2 because we gain a facility in picturing isotopies of
curves. However, to get around the problem that c is not in general
embedded requires a great deal of hard combinatorial work which we will
suppress in this exposition. One is required to consider one-manifolds
immersed in surfaces.

The cover n2 : S2 - S2 can be described as follows. Let A2 be the

group generated by rotations-by-7c about the integral points Z2 in R2. The

action of A2 on R2\Z2 describes a cover of the four-times punctured sphere

by R2\Z2. Let N be a small, 7c2-invariant, diamond-shaped open neighborhood

of Z2 in R2, as indicated in Figure 9a. The action of A2 on R2\N
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gives a cover of S2 by R2\N, denoted S2. Cutting S2 along the arcs

ax,..., a4 in S2 indicated in Figure 9b decomposes S2 into two octagons,
labeled / and b in Figure 9b. The lifts to S2 of these octagons give a

tiling of S2; if we are careful in the choice of the arcs ai9 then we can

guarantee that the associated tiling is regular. This regular tiling of S2

by octagons is indicated in Figure 9c; the corresponding tiling of the plane
by squares and octagons is a popular architectural motif and can be seen,

for instance, in the Park Street Subway Station in Boston. We number the

boundary components of S2 as indicated in Figure 9b; we put a number
inside each component C of ÔN to indicate the boundary component of S2

twice covered by dC, asundicated in Figure 9c.

o o <>

O 0 <>

o o

O O <J> <0 o

Figure 9

Example 3: In this example, we compute the action on the curv
(3,1, 2) x (2, -1, 0) in example 1 of a right twist along the curve K2 ii
Figure 5b. At each stage of the computation, we illustrate the curve on F2
the associated multiple arc on S2 and the lift to S2. In Figure 10a, w
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illustrate the curve (3, 1, 2) x (2, —1, 0), and in Figure 10b, we illustrate the

isotopic curve with coordinates (3, 6, 2) x (1, 0, 0) for the choice of pants

decomposition in Figure 5b. In Figure 10c, we illustrate the curve (3, 6, 2)

x (1, 6, 0), which is the image of (3, 6, 2) x (1, 0, 0) under the Dehn twist

along the pants curve K2 in Figure 5b. In Figure 10d, we illustrate the

curve with coordinates (3, 13, 2) x (4, —7, 2) relative to the first pants

decomposition and isotopic to (3, 6, 2) x (1, 6, 0). This example indicates some

typical phenomena of the second elementary transformation.

We have introduced this example for several reasons. It indicates the

general technique of lifting our computation to the total space S2 and

shows the facility gained in visualizing the second elementary transformation

as an isotopy in S2. The example also shows that our computation has

content, for even this relatively simple case of the action of a single Dehn

twist on a connected multiple arc is reasonably complicated. Finally, in any
specific example such as this, it is easy to guarantee that our curves are

embedded in S2 at each stage of the computation; however, to prove that

our techniques work in general requires a lot more work.
We will introduce a bit of notation and then give the formulas for the

elementary transformations ; in fact, we will introduce a new parametrization
for multiple arcs. Given a pants decomposition as before, we will keep track
of the Dehn-Thurston twisting parameters exactly as before. However, instead
of keeping track of the Dehn-Thurston intersection numbers, we will record
the number of arcs in each embedded pair of pants that are e-translates of
the various arcs /0- in Figure 5. It is obvious how one can pass back
and forth between the Dehn-Thurston parameter values and our new
parameter values.

In the surface S2 with the horizontal pants decomposition shown in
Figure 8b, top, we will denote the number of arcs parallel to the various
kj- 1 ^ i ^ j < 3, by 1

tj in the top pair of pants and by k0- in the bottom
pair of pants. Similarly, for the vertical pants decomposition shown in
Figure 8h, bottom, we will denote the number of arcs parallel to the various
hi by IF in the left-most pair of pants, and by kF in the right-most pair
of pants. The twisting numbers will be denoted by t{ for the horizontal
pants decomposition, and by t\ for the vertical pants decomposition, with
the pants curves numbered as in Figure 8. Let A denote the infimum,
V the supremum, and let K kn + and L lu + t1.
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Theorem. The second elementary transformation is given by the following
formulas.

k ii k22 + I33 + (L-k13) V 0 + (-L-l12) V 0

k 22 (L A1X1 A (k13 —112 — L)) V 0

^33 — L Aklx A(l12 — k13 + L)) V 0

^23 (k13Al12A(k13-L)A(l12 + L)) V 0

k 12 -2k22 - k23 + k13 + k23 + 2k33

k 13 — 2k33 — k23 + 112 + 123 + 2122

I'll k33 + 122 + (K-113) V 0 + (-K-k12) V 0

1
22 (K Akli A(l13 —k12 —K)) V 0

I33 A1X1 A(k12 —113 + K)) V 0

^23 (l13Ak12A(l13-K)A(K + k12)) V 0

1
12 ~~ 2122 — 123 + ll3 + I2.3 + 2133

1
13 — 2133 — 123 + k12 -f k23 + 2k22

^ 2 I33 + (0l3 — 1
23 ~2122) A (K + 133 —122)) V 0 + t2

*3 — k33 + ((L-bk33 —k22) V — (li2 — k23 — 2k33)) AO + t
-I33 + ((^ + 1'33-1'22)V — (ki2 — 123 — 2133)) A 0 + U

t*5 ^33 + ((k 13 — k 23 — 2k 22) A (L + k 33 — k 22)) V 0 + t5

11 k22 + 122 + k33 + 133 — (1 11 Fk'n +(t'2 — t2) + (t 5 —15))

+ sgn(L + X + l33 — l22 + k33 — k22) (t 1 H-133 + k33)

sgn(O) is defined by the following formula.

!"b
1? 112 — 2k 33 — k23 7^ 0

— 1, else

The inverse transformation, from primed to unprimed variables, can be

computed by using a symmetry of the surface S2

For completeness, we include the formulas that describe the first elementary

transformation. The unprimed variables 1
ij9 tx, t2 describe the parameter

values relative to the meridinal pants decomposition of the torus-minus-
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a-disc, (Figure 8a, top) and the primed variables lij91\, t'2 describe the

parameter values relative to the longitudinal pants decomposition (Figure 8a,

bottom), r denotes the value of 112 I13 -

Theorem. The first elementary transformation is given by the following

formulas.

l'ii (r-\tl\) V 0

r' — T12 113 (r —lu) "F In

1« - (Itil-(r-l'n))
12 m t2 + In + ((r — 11 i) A tx) V 0

t\ — sgn(ti)(l23 + (r-l'n))

In these formulas, sgn(O) —1. The inverse transformation can easily be

solved for algebraically.
These theorems give explicit formulas for the action of Lickorish's

generators of MC(Fg) on &"{Fg) as described previously. The PIL character

of the action is directly implied by these theorems. Unfortunately, the

formulas are rather cumbersome, insofar as several of the Lickorish generators
act as linear maps conjugated by compositions of the elementary
transformations.

One's first reaction to the complexity of the situation is panic, and

an appropriate response is to write a computer code to perform the algebra
of the computations. The formulas of the elementary transformations are

particularly amenable to computerization, since they are essentially sums of
infs and sups of linear maps. The notable exception to this is the sign
that appears in the expression for the twisting number t1 in either
transformation.

A FORTRAN code has been written to compute the action of MC(Fg)
on the collection of multiple arcs as described in this paper. Roughly a
million cases of the computation have been run, checking that a
transformation followed by its inverse yields the identity in each case (as one
would hope!). In a computation of this magnitude, there is a potential
for algebraic mistakes, and the code was originally written to check that all
the components of the computation were working properly; at this point,
I am quite confident that the formulas above are error-free. Moreover,
many trends predicted by Thurston's theory of surface automorphisms
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[T1?T2,FLP] are exhibited by experimenting with this code, so it is

instructive to play with.
I should remark that though we have restricted attention to the action

of MC(Fg) on closed multiple arcs in Fg, the computations in this paper
apply more generally to any surface of negative Euler characteristic. The
surface may be bounded, non-compact, or even non-orientable, provided we

require that multiple arcs be two-sidfcd.

As a final remark, let me mention that Thurston introduced a space

^^(F) of "projective measured foliations" on F which is dentral to his

treatment of surface automorphisms. (See [FLP].) FPFF{F) forms a boundary
for a compactification of the Teichmuller space &~(F) of F, and the (discrete)
set £F'(F) which we treat here embeds in a natural way as a dense subset

of the (connected) space &!F{F). The compactification of &~{F) by 0>3F{F)
is natural in the sense that the usual action of MC(F) on &~(F) extends

continuously to the natural action of MC(F) on 0>&(F). (See [K].) Thurston
generalized Dehn's parametrization of Sf'{F) to a parametrization of &3F{F),
and the formulas given in this paper apply to this setting to give the

action of MC(F) on Thurston's parametrization of £PtF(F). Thus, the formulas
derived here in fact describe the action of MC{F) on Thurston's boundary
for ^(F). There are other formulations of the theory using "measured geodesic

laminations" and "measured train tracks" (See [HP].) together with appropriate

parametrizations, and our computations also apply to these settings.
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