Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 30 (1984)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: IDÉAUX DE GERMES D'OPÉRATEURS DIFFÉRENTIELS À UNE

VARIABLE

Autor: Briançon, J. / Maisonobe, Ph.

Kapitel: II. Idéaux à singularité régulière

DOI: https://doi.org/10.5169/seals-53819

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

II. IDÉAUX À SINGULARITÉ RÉGULIÈRE

Définissons une nouvelle filtration de \mathcal{D} : si $P = \sum_{\substack{l \leq d \\ k \geq 0}} a_{k,l} x^k D^l$, où $a_{k,l} \in \mathbb{C}$,

est un élément non nul de D,

le poids de P est l'entier $p(P) \in \mathbb{Z}$:

$$p(P) = \inf\{k - l \mid a_{k,l} \neq 0\},\$$

la forme initiale de P est:

$$in(P) = \sum_{k-l=p(P)} a_{k,l} x^k D^l.$$

Remarquons que d'après B. Malgrange $[M_1]$ et $[M_3]$, -p(P) est l'indice de l'opérateur formel $P: \mathbb{C}[x] \to \mathbb{C}[x]$, tandis que l'indice de l'opérateur analytique $P: \mathbb{C}\{x\} \to \mathbb{C}\{x\}$ est d(P) - v(P); et P est à singularité régulière si p(P) = v(P) - d(P) (c'est-à-dire si P et in(P) ont même degré). On a les formules habituelles de multiplication:

$$p(P_1 \cdot P_2) = p(P_1) + p(P_2), \quad in(P_1 \cdot P_2) = in(P_1) \cdot in(P_2),$$

et d'addition:

si
$$p(P_1) < p(P_2)$$
, $p(P_1 + P_2) = p(P_1)$ et $in(P_1 + P_2) = in(P_1)$

si
$$p(P_1) = p(P_2)$$
, et $in(P_1) + in(P_2) \neq 0$, $p(P_1 + P_2) = p(P_1)$

et
$$in(P_1 + P_2) = in(P_1) + in(P_2)$$

si
$$p(P_1) = p(P_2)$$
 et $in(P_1) + in(P_2) = 0$, $p(P_1 + P_2) > p(P_1)$.

Nous disons qu'un élément de \mathcal{D} est homogène s'il est égal à sa forme initiale, et qu'un idéal J de \mathcal{D} est homogène s'il admet un système de générateurs homogènes.

A un idéal I de \mathcal{D} on peut associer son idéal initial in(I) homogène engendré par les formes initiales des éléments de I.

Si J est un idéal homogène de \mathcal{D} , tout élément non nul de J a sa forme initiale dans J; réciproquement si I est un idéal de \mathcal{D} vérifiant cette propriété, in $(I) \subset I$, le reste de la division d'un élément de I par in(I) ne peut qu'être nul: in(I) = I et I est homogène.

LEMME 9. Soit I un idéal non nul de \mathscr{D} d'escalier $\{(\alpha_p,p),...,(\alpha_q,q)\}$ et $\{F_p,...,F_q\}$ une base standard de I. Les propriétés suivantes sont équivalentes :

- i) il existe un élément $P \in I$ à singularité régulière (non nul),
- ii) les éléments F_p , ..., F_q de la base standard sont à singularité régulière,
- iii) in(I) et I ont même escalier.

Lorsque ces propriétés sont satisfaites, nous dirons que I est un idéal à singularité régulière; dans ce cas, nous savons d'après [W] par exemple que les solutions analytiques $E(I) = E(F_p)$ de I sont de classe de Nilsson (de détermination finie, à croissance modérée; l'écriture explicite sera rappelée en II.B) ainsi que les solutions micro-fonctions $F(I) = F(F_q)$.

Démontrons le lemme 9 :

(i) \Rightarrow (ii). Par division (lemme 1) il existe un entier α tel que $x^{\alpha}P = QF_p$; donc

$$\operatorname{in}(x^{\alpha}P) = \operatorname{in}(Q) \operatorname{in}(F_p), d(\operatorname{in}Q) \leq d(Q), d(\operatorname{in}F_p) \leq d(F_p) = p$$

et par hypothèse

$$d(\operatorname{in}(x^{\alpha}P)) = d(\operatorname{in}(P)) = d(P) = d(Q) + d(F_{p}).$$

Cela prouve que d(inQ) = d(Q) et $d(inF_p) = p$ et en particulier que F_p est à singularité régulière.

Montrons maintenant que F_j est à singularité régulière pour $j \ge p+1$, en supposant que F_p , ..., F_{j-1} le sont; la relation \mathcal{R}_j (proposition 3) est

$$x^{\alpha_{j-1}-\alpha_{j}}F_{j} = (D+u_{j,j-1})F_{j-1} + u_{j,j-2}F_{j-2} + \dots + u_{j,p}F_{p}$$

et les formules d'addition et de multiplication donnent

$$\operatorname{in}(x^{\alpha_{j-1}-\alpha_j}F_j) = D \operatorname{in}(F_{j-1}).$$

 $in(F_j)$ est donc de degré j et par conséquent F_j est à singularité régulière.

(ii) \Rightarrow (iii). De manière évidente $\text{Exp}(\text{in}(I)) \supset \text{Exp}(I)$ puisque pour tout opérateur P de \mathcal{D} , $\exp(P) \in \exp(\text{in}(P)) + \mathbb{N}^2$.

Prenons alors P dans I; par division (proposition 2), P s'écrit

$$P \,=\, Q_p F_p \,+\, \ldots \,+\, Q_q F_q \,, \quad (Q_p,\, ...,\, Q_{q-1}) \in {\bf C} \{x\}^{q-p}, \quad Q_q \in \mathcal{D} \,.$$

Par simple considération des degrés, toute relation

$$R_p \operatorname{in}(F_p) + ... + R_q \operatorname{in}(F_q) = 0$$
, $(R_p, ..., R_{q-1}) \in \mathbb{C}\{x\}^{q-p}$, $R_q \in \mathcal{D}$,

implique $R_p = ... = R_q = 0$; donc en fait $in(F_p)$, ..., $in(F_q)$ est un système de générateurs de in(I) avec comme base des relations

$$\mathscr{R}'_j$$
: $x^{\alpha_{j-1}-\alpha_j}\inf(F_j) = D\inf(F_{j-1}), \quad p+1 \leq j \leq q$.

Grâce à ces relations, un élément P de in(I) peut s'écrire

$$P = R_p \operatorname{in}(F_p) + ... + R_q \operatorname{in}(F_q),$$

 $(R_p, ..., R_{q-1}) \in \mathbb{C}\{x\}^{q-p}, R_q \in \mathcal{D}$; l'exposant de P est alors égal à l'exposant du terme de plus haut degré dans cette somme. Donc $\operatorname{in}(I)$ et I ont même escalier.

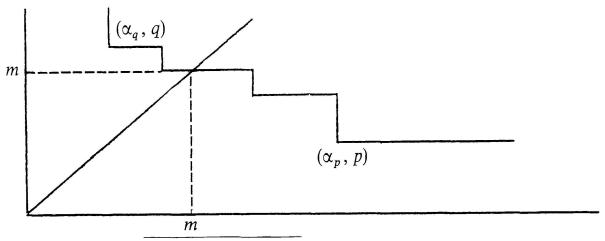
(iii) ⇒ (i). Une application élémentaire des définitions:

$$\exp(\operatorname{in}(F_p)) = \exp(F_p)$$
 et F_p

est à singularité régulière.

II.A. IDÉAUX HOMOGÈNES

Etant donné un escalier $\tilde{\alpha} = \{(\alpha_p, p), ..., (\alpha_q, q)\}$ on note $m = m(\tilde{\alpha})$ le plus petit des entiers j tels que $(j, j) \in \operatorname{Exp}(\tilde{\alpha}) = \tilde{\alpha} + \mathbf{N}^2$.



On convient de poser $\alpha_j = \alpha_q$ lorsque $j \ge q$ et alors $m = \inf \{j \mid j \ge p \text{ et } j \ge \alpha_i\}$. A l'escalier $\tilde{\alpha}$ nous associons les ensembles d'entiers suivants:

$$A(\tilde{\alpha}) = \{0, 1, 2, ..., q - \alpha_q\} - \{m - \alpha_m, (m+1) - \alpha_{m+1}, ..., q - \alpha_q\}$$

lorsque $\alpha_q \leqslant q$, et $A(\tilde{\alpha}) = \emptyset$ sinon. Les éléments de $A(\tilde{\alpha})$ sont des entiers $\geqslant 0$ en nombre égal à $m - \alpha_q$.

$$B(\tilde{\alpha}) = \{-(\alpha_p - p), -(\alpha_{p+1} - (p+1)), ..., -(\alpha_{m-1} - (m-1))\}$$

lorsque $\alpha_p > p$, et $B(\tilde{\alpha}) = \emptyset$ sinon. Ce sont des entiers strictement négatifs en nombre égal à m - p.

Lemme 10. Si $m=m(\tilde{\alpha})=p+\alpha_q$, il existe un unique idéal homogène $H(\tilde{\alpha})$ admettant $\tilde{\alpha}$ pour escalier; $H(\tilde{\alpha})$ est défini par ses solutions:

$$\begin{cases}
E(H(\tilde{\alpha})) = \bigoplus_{k \in A(\tilde{\alpha})} \mathbb{C} x^k, \\
F(H(\tilde{\alpha})) = \bigoplus_{k \in B(\tilde{\alpha})} \mathbb{C} < x^k > .
\end{cases}$$

Preuve. L'espace des éléments homogènes de poids 0 s'identifie à l'anneau commutatif C[xD]; pour $P \in C[xD]$ et $n \in \mathbb{Z}$ on note $P^{[n]}$ le polynôme défini par $P^{[n]}(xD) = P(xD+n)$.

Pour $n \in \mathbb{N}$ on a le formulaire suivant

$$x^{n}P = P^{[-n]}x^{n},$$

 $D^{n}P = P^{[n]}D^{n},$
 $\omega_{n} = x^{n}D^{n} = xD(xD-1)...(xD-n+1),$
 $\omega_{n}^{[n]} = D^{n}x^{n} = (xD+1)(xD+2)...(xD+n).$

Il résulte de ce qui précède qu'un idéal homogène I de $\mathscr D$ d'escalier $\tilde \alpha$ admet une base standard F_p , ..., F_q formée d'éléments homogènes liés par les relations

$$\mathscr{R}'_j \colon x^{\alpha_{j-1}-\alpha_j} F_j = D F_{j-1} \,, \quad p+1 \leqslant j \leqslant q \,.$$

F_i admet l'écriture unique:

$$\left\{ \begin{array}{ll} F_j = D^{j-\alpha_j} \, P_j(xD) & \text{si} \quad j \geqslant \alpha_j \,, \quad P_j \text{ de poids 0 de degr\'e } \alpha_j \,, \\ F_j = x^{\alpha_j-j} \, P_j(xD) & \text{si} \quad j \leqslant \alpha_j \,, \quad P_j \text{ de poids 0 de degr\'e } j \,. \end{array} \right.$$

 $(a)_j$ Pour $j-1 \ge \alpha_{j-1}$ la relation \mathcal{R}'_j se traduit par

$$P_{j-1} = \omega_{\alpha_{j-1}-\alpha_{j}}^{[-j+\alpha_{j-1}]} P_{j}.$$

 $(b)_i$ Pour $j \leq \alpha_j$ on obtient

$$P_{j} = (xD + \alpha_{j-1} - (j-1))P_{j-1}$$

 $(c)_j$ Pour $j \geqslant \alpha_j$ et $j - 1 < \alpha_{j-1}$

$$\omega_{j-\alpha_j} P_j = (xD + \alpha_{j-1} - (j-1))P_{j-1}.$$

Dans le cas $m = p \ge \alpha_p$, seules interviennent les relations $(a)_j$ pour $p + 1 \le j \le q$ et en itérant on obtient:

$$P_p = \left(\prod_{j=p+1}^q \omega_{\alpha_{j-1}-\alpha_j}^{[-j+\alpha_{j-1}]}\right) P_q.$$

L'hypothèse du lemme est alors $\alpha_q = 0$, $P_q = 1$ et on trouve

$$H(\tilde{\alpha}) = \mathcal{D}^{p-\alpha_p} P_p + \mathcal{D}^{p} = \mathcal{D}^{q} = \mathcal{D}^{p-\alpha_p} D^{p-\alpha_p} P_p + \mathcal{D}^{p}$$

puisque ces idéaux n'ont pas de solutions micro-fonctions et les mêmes solutions analytiques. Il ne reste plus qu'à se convaincre que le polynôme

$$x^{p-\alpha_p} D^{p-\alpha_p} P_p = \omega_{p-\alpha_p} \prod_{j=p+1}^{q} \omega_{\alpha_{j-1}-\alpha_j}^{[-j+\alpha_{p-1}]}$$

a pour racines les entiers de $A(\tilde{\alpha})$ et ces racines sont simples.

Dans le cas $m = \alpha_q \ge q$, de la même façon, en utilisant cette fois les formules $(b)_i$ on trouve

$$P_q = \left(\prod_{j=p}^{q-1} (xD + \alpha_j - j)\right) P_p.$$

L'hypothèse du lemme est alors p = 0, donc $P_p = 1$ et

$$H(\tilde{\alpha}) = \mathcal{D} x^{\alpha_q - q} P_q + \mathcal{D} x^{\alpha_p} = \mathcal{D} D^{\alpha_q - q} x^{\alpha_q - q} P_q + \mathcal{D} x^{\alpha_p}$$

cet idéal n'ayant que des solutions micro-fonctions. Encore une fois il reste à vérifier que le polynôme

$$D^{\alpha_q-q} x^{\alpha_q-q} P_q = \left(\prod_{j=p}^{q-1} (xD + \alpha_j - j) \right) P_p$$

a pour racines les entiers de $B(\tilde{\alpha})$ et que ces racines sont simples.

Dans le cas $\alpha_p > p$ et $\alpha_q < q$, on a $p + 1 \le m \le q$ et on obtient d'après (a) et (b):

$$P_m = \left(\prod_{j=m+1}^q \omega_{\alpha_{j-1}-\alpha_j}^{[-j+\alpha_{j-1}]}\right) P_q, \quad d(P_q) = \alpha_q,$$

$$P_{m-1} = \left(\prod_{j=p}^{m-2} (xD + \alpha_j - j)\right) P_p, \quad d(P_p) = p.$$

En utilisant maintenant $(c)_m$ on trouve:

$$\omega_{m-n}P_m = (xD + \alpha_{m-1} - (m-1))P_{m-1}$$

soit encore $AP_q = BP_p$ où A est le polynôme unitaire admettant les éléments de $A(\tilde{\alpha})$ pour racines simples, et B celui admettant les éléments de $B(\tilde{\alpha})$ pour racines simples:

$$d(A) = m - \alpha_q, \quad d(B) = m - p.$$

A et B étant premiers entre eux, on déduit l'inégalité $d(P_q) = \alpha_q \ge d(B)$ = m-p, ainsi que l'existence d'un polynôme $C \in \mathbb{C}[xD]$ de degré $\delta = \alpha_q + p - m$ tel que

$$P_q = BC$$
, $P_p = AC$, $F_a = D^{q-\alpha_q}BC$, $F_p = x^{\alpha_p-p}AC$.

Le cas d'égalité du lemme donne $\delta = 0$, donc C = 1 et $H(\tilde{\alpha}) = \mathcal{D}x^{\alpha_p - p}A + \mathcal{D}D^{q-\alpha_q}B$; les solutions analytiques de $H(\tilde{\alpha})$ sont celles de A, et les solutions micro-fonctions de $H(\tilde{\alpha})$ sont celles de B. Enfin il est facile de vérifier que $H(\tilde{\alpha})$ a bien les solutions indiquées dans l'énoncé du lemme, et a pour escalier $\tilde{\alpha}$.

Remarquons que $m(\tilde{\alpha})$ est toujours supérieur ou égal à p et donc que l'escalier translaté $\tilde{\alpha}^{[-\delta]} = \{(\alpha_p - \delta, p - \delta), ..., (\alpha_q - \delta, q - \delta)\}$ est bien défini avec $\delta = \alpha_q + p - m$; de plus $A(\tilde{\alpha})$ et $B(\tilde{\alpha})$ sont invariants par translation et $m(\tilde{\alpha}^{[-\delta]}) = m(\tilde{\alpha}) - \delta$. Nous avons donc obtenu:

PROPOSITION 11. Soit $\tilde{\alpha} = \{(\alpha_p, p), ..., (\alpha_q, q)\}$ un escalier, $\delta = p + \alpha_q - m(\tilde{\alpha})$, $\mathcal{H}(\tilde{\alpha})$ l'ensemble des idéaux homogènes d'escalier $\tilde{\alpha}$.

Pour $\delta < 0$, $\mathcal{H}(\tilde{\alpha}) = \emptyset$.

Pour $\delta = 0$, $\mathcal{H}(\tilde{\alpha})$ est réduit au seul élément $H(\tilde{\alpha})$.

Pour $\delta > 0$, si on désigne par $\mathbf{C}^{\delta}[xD]$ l'ensemble des polynômes unitaires de degré δ , l'application qui à $C \in \mathbf{C}^{\delta}[xD]$ associe l'idéal $H(\tilde{\alpha}^{[-\delta]})C$ est une bijection sur $\mathcal{H}(\tilde{\alpha})$.

Soit $C = \prod_{\lambda \in \Lambda} (xD - \lambda)^{r(\lambda)}$ la décomposition de C en convenant de prendre $\Lambda \supset A(\tilde{\alpha}) \cup B(\tilde{\alpha})$ et $r(\lambda) = 0$ si nécessaire. Avec les notations du lemme 10,

$$I = H(\tilde{\alpha}^{[-\delta]})C = \mathcal{D}x^{\alpha_p-p}AC + \mathcal{D}D^{q-\alpha_q}BC.$$

Pour $\lambda \in A(\tilde{\alpha})$, définissons

$$I(\lambda) = \mathcal{D}(xD - \lambda)^{r(\lambda)+1} + \mathcal{D}D^{\lambda+1}(xD - \lambda)^{r(\lambda)},$$

pour $\lambda \in B(\tilde{\alpha})$,

$$I(\lambda) = \mathcal{D}(xD - \lambda)^{r(\lambda)+1} + \mathcal{D}x^{-\lambda}(xD - \lambda)^{r(\lambda)}$$

et enfin pour $\lambda \in \Lambda - A(\tilde{\alpha}) - B(\tilde{\alpha})$, $I(\lambda) = \mathcal{D}(xD - \lambda)^{r(\lambda)}$. On constate que E(I) $= \bigoplus_{\lambda \in \Lambda} E(I(\lambda))$ et $F(I) = \bigoplus_{\lambda \in \Lambda} F(I(\lambda))$; d'après le corollaire 8, $I = \bigcap_{\lambda \in \Lambda} I(\lambda)$ et \mathcal{D}/I est isomorphe à $\bigoplus_{\lambda \in \Lambda} \mathcal{D}/I(\lambda)$.

Par ailleurs la multiplication à droite par la classe de D^{λ} est un isomorphisme de $\mathscr{D}/\mathscr{D}D(xD)^{r(\lambda)}$ sur $\mathscr{D}/I(\lambda)$ lorsque $\lambda \in A(\tilde{\alpha})$; et pour $\lambda \in B(\tilde{\alpha})$, il faut multiplier à droite par la classe de $x^{-\lambda-1}$ pour obtenir l'isomorphisme de $\mathscr{D}/\mathscr{D}x(Dx)^{r(\lambda)}$ sur $\mathscr{D}/I(\lambda)$. En conclusion, avec $\Lambda' = \Lambda - A(\tilde{\alpha}) - B(\tilde{\alpha})$:

COROLLAIRE 12. Soit I un idéal homogène d'escalier $\tilde{\alpha}, \delta = \alpha_q + p - m$, \mathcal{D}/I est isomorphe à

$$\begin{pmatrix} \bigoplus_{i=1}^{m-\alpha_q} \frac{\mathscr{D}}{\mathscr{D}D(xD)^{r_i}} \end{pmatrix} \oplus \begin{pmatrix} \bigoplus_{j=1}^{m-p} \frac{\mathscr{D}}{\mathscr{D}x(Dx)^{r_j}} \end{pmatrix} \oplus \begin{pmatrix} \bigoplus_{\lambda \in \Lambda'} \frac{\mathscr{D}}{\mathscr{D}(xD-\lambda)^{r(\lambda)}} \end{pmatrix},$$

$$\sum_{i=1}^{m-\alpha_q} r_i + \sum_{j=1}^{m-p} r_j + \sum_{\lambda \in \Lambda'} r(\lambda) = \delta.$$

Nous retrouvons le résultat de P. Strömbeck ([S], théorème 1, p. 120):

COROLLAIRE 13. Soit I un idéal de \mathcal{D} , $p=\dim(E(I))$, $\alpha_q=\dim(F(I))$ et m(I) le degré minimum d'un opérateur de I ayant autant de solutions analytiques que de solutions micro-fonctions; alors $m(I) \leq p + \alpha_q$ et l'égalité n'est possible que si I est à singularité régulière.

Preuve. Lorsque I est à singularité régulière, les escaliers de I et de in(I) sont identiques et le premier point de la proposition 11 donne le résultat cherché.

Supposons I non à singularité régulière, et notons $(\alpha_p - u, p - v)$ l'exposant privilégié de in (F_p) ; son poids est

$$p(F_p) = \alpha_p - u - (p - v) < \alpha_p - p$$

et donc u > v > 0.

Les relations \mathcal{R}_j fournissent alors, pour $p+1 \leqslant j \leqslant q$:

$$\begin{cases} p(F_j) = \alpha_j - j - (u - v), \\ x^{\alpha_{j-1} - \alpha_j} \inf(F_j) = D \inf(F_{j-1}). \end{cases}$$

La division d'un élément de I par F_p , ..., F_q (proposition 2) permet alors de montrer que sa forme initiale est engendrée par $\operatorname{in}(F_p)$, ..., $\operatorname{in}(F_q)$. Il résulte de tout cela que $\operatorname{in}(I)$ a pour escalier

$$\{(\alpha_p - u, p - v), (\alpha_{p+1} - u, p + 1 - v), ..., (\alpha_q - u, q - v)\}$$

et pour base standard $\text{in}(F_p)$, ..., $\text{in}(F_q)$. La proposition 11 appliquée à l'idéal homogène in(I) donne:

$$(*) p - v + (\alpha_q - u) \geqslant m(\operatorname{in}(I)).$$

Or, par translation, $(m(in(I)) + u, m(In(I)) + v) \in Exp(I)$ d'où

$$m(\operatorname{In}(I)) + u \geqslant \alpha_{m(\operatorname{In}(I)) + v} \geqslant \alpha_{m(\operatorname{In}(I)) + u}$$
.

(La dernière égalité provenant de $u \ge v$), et par définition de m(I):

$$m(\operatorname{In}(I)) + u \geqslant m(I)$$
.

En reportant dans (*) on obtient facilement $p + \alpha_q \ge m(I) + v > m(I)$.

II.B. DÉCOMPOSITION D'UN IDÉAL À SINGULARITÉ RÉGULIÈRE

Soit un diagramme $E \stackrel{u}{\rightleftharpoons} F$ où E et F sont des C espaces vectoriels de dimension finie, u et v des morphismes d'espaces vectoriels. De tels diagrammes sont les objets d'une catégorie abélienne Θ dont les flèches sont naturelles.

Lemme 14. Tout objet $E \stackrel{u}{\rightleftharpoons} F$ de Θ se décompose en une somme d'objets indécomposables $E_{\lambda,l} \rightleftarrows F_{\lambda,l}$ (muni de flèches de restriction) où $E_{\lambda,l}$ (resp. $F_{\lambda,l}$) est un sous-espace irréductible maximal de E (resp. F) stable par $v \circ u$ (resp. $u \circ v$) associé à la valeur propre λ . D'autre part si $\lambda \neq 0$, $u \mid_{E_{\lambda,l}}$ et $v \mid_{F_{\lambda,l}}$ sont des isomorphismes, et si $\lambda = 0$ $u \mid_{E_{\lambda,l}}$ ou $v \mid_{F_{\lambda,l}}$ est surjective.

Une fois connu ce résultat déjà employé par L. Boutet de Monvel ([BM]) et B. Malgrange ([M.2]) sa démonstration facile est laissée au lecteur (on regarde la correspondance entre les blocs de Jordan de E sous l'action de $v \circ u$ et de E sous l'action de E

$$\sum_{\alpha \in J} \left(\sum_{i=0}^{m_{\alpha}} f_{\alpha, i}(x) \operatorname{Log}^{i} x \right) x^{\alpha}, \quad \text{où } f_{\alpha, i} \in \mathbb{C}\{x\},$$

et où J est un ensemble fini de nombres complexes ne différant pas d'un entier relatif, détermine un unique élément de \mathscr{A} et par action de u un unique élément de \mathscr{M} . De tels éléments sont appelés fonctions de classe de Nilsson et microfonctions de classe de Nilsson.

Soit I un idéal à singularité régulière; nous savons lui associer un élément de $\Theta: E(I) \stackrel{u}{\rightleftharpoons} F(I)$. De plus les éléments de E(I) et F(I) sont des fonctions et des microfonctions de classe de Nilsson (voir la remarque suivant le lemme 9). Nous allons expliciter la décomposition d'un tel objet de Θ :

$$(E(I); F(I)) = \bigoplus (E_{\lambda, l}; F_{\lambda, l}).$$

Notation:

$$I_{\lambda,l} = \{ P \in \mathcal{D} \mid \forall (f, \langle g \rangle) \in E_{\lambda,l} \times F_{\lambda,l}, Pf = 0 \text{ et } P \langle g \rangle = 0 \}.$$

D'après le lemme 13, $E_{\lambda,l}$ (resp. $F_{\lambda,l}$) est un sous-espace vectoriel de E(I) (resp. de F(I)), indécomposable maximal stable par la monodromie M de \mathscr{A} (resp. M de \mathscr{M}) et associé à la valeur propre $\lambda + 1$ de cette monodromie. Un

calcul simple sur les fonctions de classe de Nilsson permet de déterminer une base de $E_{\lambda,l}$ et $F_{\lambda,l}$:

Cas n^o 1: $\lambda \neq 0$.

Une base de $E_{\lambda,l} = \{(M - e^{2i\pi\alpha})^j f\}_{j \in \{0,\dots,r-1\}}, \alpha \in \mathbb{C} - \mathbb{Z} \text{ et } \lambda + 1 = e^{2i\pi\alpha}, (M - e^{2i\pi\alpha})^{r-1} f \neq 0 \text{ et } (M - e^{2i\pi\alpha})^r f = 0, \text{ où quitte à ajouter à } \alpha \text{ un entier,} f \text{ s'écrit:}$

$$f(x) = \sum_{i=0}^{r-1} f_i(x) x^{\alpha} \operatorname{Log}^{i} x, \quad f_i(x) \in \mathbb{C}\{x\},$$

 $\dim E_{\lambda,r} = r$, d'après le lemme 14: $E_{\lambda,l} \stackrel{u}{\underset{\cong}{\longrightarrow}} F_{\lambda,l}$ donc $\dim F_{\lambda,l} = r$.

Lemme 15. Pour $\lambda \neq 0$: $\mathscr{D}f = \mathscr{D}x^{\alpha} \operatorname{Log}^{r-1}x$, $\mathscr{D}/I_{\lambda, l} \cong \mathscr{D}/\mathscr{D}(xD-\alpha)^{r}$ et $E(I_{\lambda, l}) = E_{\lambda, l}$, $F(I_{\lambda, l}) = F_{\lambda, l}$.

Preuve. Tout d'abord un calcul facile établit:

(1)
$$\forall p \in \mathbf{N}, \mathcal{D}x^{\alpha+p} \operatorname{Log}^{r-1}x$$
$$= \mathbf{C}\{x\} \left[\frac{1}{x}\right] x^{\alpha} \operatorname{Log}^{r-1}x + \dots + \mathbf{C}\{x\} \left[\frac{1}{x}\right] x^{\alpha}.$$

On en déduit l'inclusion $\mathcal{D} f \subset \mathcal{D} x^{\alpha} \operatorname{Log}^{r-1} x$. Ecrivons: $f_{r-1}(x) = u(x)x^k$, où $u(0) \neq 0$, $u(x) \in \mathbb{C}\{x\}$ et $k \in \mathbb{Z}$.

$$(xD - \alpha - k) \frac{1}{u(x)} f(x)$$

$$= x^{\alpha + k} \operatorname{Log}^{r-2} x + (xD - \alpha - k) \frac{f_{r-2}(x)}{u(x)} x^{\alpha} \operatorname{Log}^{r-2} x + \dots$$

Mais le terme de « degré » $\alpha + k$ de $\frac{f_{r-2}(x)}{u(x)} x^{\alpha} \operatorname{Log}^{r-2} x$ est tué par $(xD - \alpha - k)$,

$$(xD-\alpha-k)\frac{1}{u(x)}f(x)=\sum_{i=0}^{r-2}g_i(x)x^\alpha \log^i x$$
 où $g_i(x)\in \mathbb{C}\{x\}$ et $g_{r-2}(x)\not\equiv 0$. Par récurrence, on montre ainsi que $\mathscr{D}x^{\alpha+k} \log^{r-1} x$ est inclus dans $\mathscr{D}f$. D'où le

résultat (en utilisant (1)): $\mathcal{D}f = \mathcal{D}x^{\alpha} \operatorname{Log}^{r-1}x$

f engendre par u et $v: E_{\lambda, l}$ et $F_{\lambda, l}$, de sorte que $\mathcal{D}f \cong \mathcal{D}/I_{\lambda, l}$

 $x^{\alpha} \operatorname{Log}^{r-1} x$ est annulé par $(xD-\alpha)^r$ et engendre par u et v, r solutions analytiques et r solutions microfonctions indépendantes. En utilisant les propositions 5 et 6, on obtient: $\mathscr{D}x^{\alpha} \operatorname{Log}^{r-1} x \cong \mathscr{D}/\mathscr{D}(xD-\alpha)^r$. On a donc $\mathscr{D}/I_{\lambda,l} \cong \mathscr{D}/\mathscr{D}(xD-\alpha)^r$.

Cet isomorphisme entraîne:

$$\dim E(I_{\lambda, l}) = \dim E((xD - \alpha)^r) = r \text{ et } \dim F(I_{\lambda, l}) = \dim F((xD - \alpha)^r) = r.$$

Des inclusions $E(I_{\lambda,l}) \supset E_{\lambda,l}$ et $F(I_{\lambda,l}) \supset F_{\lambda,l}$, on en déduit la dernière égalité cherchée.

Cas n^o 2: $\lambda = 0$ et $u|_{E_0}$ surjective.

Une base de $E_{0,l} = \{(M-1)^{j}f\}_{j \in \{0, ..., r-1\}}, (M-1)^{r}f = 0, (M-1)^{r-1}f \neq 0$, où f s'écrit

$$f(x) = \sum_{i=0}^{r-1} f_i(x) x^m \operatorname{Log}^i x, \quad m \in \mathbb{Z} \text{ et } f_i(x) \in \mathbb{C}\{x\}.$$

Or
$$(M-1)^{r-1} f(x) = (r-1)! (2i\pi)^{r-1} f_{r-1}(x) x^m,$$

 $(M-1)^{r-2} f(x) = (r-1)! (2i\pi)^{r-2} f_{r-1}(x) x^m \text{Log } x + x^m g(x),$

où $g(x) \in \mathbb{C}\{x\} \left[\frac{1}{x}\right]$. De sorte que:

si $f_{r-1}(x) x^m \notin \mathbb{C}\{x\}$, $u: E_{0,l} \to F_{0,l}$ est un isomorphisme et dim $E_{0,l} = \dim F_{0,l} = r$;

si
$$f_{r-1}(x) x^m \in \mathbb{C}\{x\}$$
, dim $E_{0,l} = r$ et dim $F_{0,l} = r - 1$.

Lemme 16. Pour $\lambda = 0$ et $u|_{E_{0,1}}$ surjective deux cas se présentent :

a) dim $E_{0,l} = \dim F_{0,l}$, alors $f_{r-1}(x) x^m \notin \mathbb{C}\{x\}$ et

$$\mathscr{D}f = \mathscr{D}\frac{1}{x}\operatorname{Log}^{r-1}x, \quad \mathscr{D}/I_{0,l} \cong \mathscr{D}/\mathscr{D}(Dx)^{r},$$

b) dim $E_{0,l} = \dim F_{0,l} + 1$, alors $f_{r-1}(x)x^m \in \mathbb{C}\{x\}$ et $\mathscr{D}f = \mathscr{D} \operatorname{Log}^{r-1}x, \quad \mathscr{D}/I_{0,l} \cong \mathscr{D}/\mathscr{D}(Dx)^{r-1}D.$

Dans les deux cas:

$$E(I_{0,l}) = E_{0,l}$$
 et $F(I_{0,l}) = F_{0,l}$.

Preuve. On établit facilement que

$$\forall p \in \mathbf{N} - \{0\}, \quad \mathcal{D}\frac{1}{x^{p}}\operatorname{Log}^{r-1}x = \mathbf{C}\{x\}\left[\frac{1}{x}\right]\operatorname{Log}^{r-1}x + \dots + \mathbf{C}\{x\}\left[\frac{1}{x}\right],$$

$$\forall p \in \mathbf{N}, \quad \mathcal{D}x^{p}\operatorname{Log}^{r-1}x$$

$$= \mathbf{C}\{x\}\operatorname{Log}^{r-1}x + \mathbf{C}\{x\}\left[\frac{1}{x}\right]\operatorname{Log}^{r-2}x + \dots + \mathbf{C}\{x\}\left[\frac{1}{x}\right].$$

La démonstration est alors analogue à celle du lemme 15.

Cas n^{o} 3: $\lambda = 0$ $v|_{F_{0,1}}$ surjective.

Une base de $F_{0,l} = \{(M-1)^j < f > \}_{j \in \{0,...,r-1\}}$ où < f > u(f), et f s'écrit:

$$f(x) = \sum_{i=0}^{r-1} f_i(x) x^m \operatorname{Log}^i x, m \in \mathbb{Z} \text{ et } f_i(x) \in \mathbb{C}\{x\}.$$

En déterminant les germes de $(M-1)^j < f >$, il vient:

$$\dim F_{0,l} = r , \quad \dim E_{0,l} = r - 1 \quad \text{si} \quad f_{r-1}(x) \, x^m \notin \mathbb{C}\{x\} ,$$

$$\dim F_{0,l} = r - 1 = \dim E_{0,l} \quad \text{si} \quad f_{r-1}(x) x^m \in \mathbb{C}\{x\} .$$

Lemme 17. Pour $\lambda = 0$ et $v|_{F_{0,1}}$ surjective deux cas se présentent :

a) dim $F_{0,l} = \dim E_{0,l} + 1$, alors $f_{r-1}(x) x^m \notin \mathbb{C}\{x\}$,

$$\mathscr{D} < f > = \mathscr{D} < \frac{1}{x} \operatorname{Log}^{r-1} x > , \quad \mathscr{D}/I_{0,l} \cong \mathscr{D}/\mathscr{D}(xD)^{r-1} x ,$$

b) dim $F_{0,l} = \dim E_{0,l}$, alors $f_{r-1}(x)x^m \in \mathbb{C}\{x\}$,

$$\mathscr{D} < f > = \mathscr{D} < \operatorname{Log}^{r-1} x > , \quad \mathscr{D}/I_{0,l} \cong \mathscr{D}/\mathscr{D}(xD)^{r-1}.$$

Dans les deux cas: $E(I_{0,l}) = E_{0,l}$ et $F(I_{0,l}) = F_{0,l}$.

Preuve. Les égalités $\mathscr{D} < f > = \mathscr{D} < \frac{1}{x} \operatorname{Log}^{r-1} x >$ dans le cas a) et $\mathscr{D} < f > = \mathscr{D} < \operatorname{Log}^{r-1} x >$ dans le cas b) se déduisent du lemme 16. La fin de la preuve est alors analogue à celle du lemme 15.

PROPOSITION 18. Soit I un idéal à singularité régulière, $\bigoplus (E_{\lambda,l}; F_{\lambda,l})$ une décomposition de $E(I) \stackrel{\mathsf{u}}{\underset{v}{\leftarrow}} F(I)$ en sous-espaces indécomposables maximaux. Posons:

$$I_{\lambda, l} = \{ P \in \mathcal{D}; \quad \forall \ f \in E_{\lambda, l} \quad \text{et} \quad \forall \ \langle g \rangle \in F_{\lambda, l},$$

$$Pf = 0 \quad \text{et} \quad P < g \rangle = 0 \}.$$

Alors:

$$I = \bigcap I_{\lambda, l}$$
 et $\mathscr{D}/I \cong \bigoplus \mathscr{D}/I_{\lambda, l}$, $E(I_{\lambda, l}) = E_{\lambda, l}$, $F(I_{\lambda, l}) = F_{\lambda, l}$

De plus chacun des $\mathcal{D}/I_{\lambda,l}$ est isomorphe à l'un des \mathcal{D} -modules

$$\frac{\mathscr{D}}{\mathscr{D}(xD-\alpha)^r}$$
, $\frac{\mathscr{D}}{\mathscr{D}(Dx)^r}$, $\frac{\mathscr{D}}{\mathscr{D}(xD)^r}$, $\frac{\mathscr{D}}{\mathscr{D}(Dx)^rD}$, $\frac{\mathscr{D}}{\mathscr{D}(xD)^rx}$.

Preuve. Des lemmes 15, 16, 17, on déduit:

$$E(I) = \bigoplus E(I_{\lambda, l})$$
 et $F(I) = \bigoplus F(I_{\lambda, l})$,

du corollaire 8, la proposition découle facilement.

Un \mathcal{D} -module holonome (d'une variable) est un \mathcal{D} -module de type fini dont la variété caractéristique est de dimension 1 ([P] chap. 8); on dit qu'il est à singularité régulière lorsqu'il est engendré sur \mathcal{D} par un sous \mathcal{O} -module de type fini stable par xD.

COROLLAIRE 19. Soit M un \mathcal{D} -module à singularité régulière holonome. Alors M est isomorphe à une somme directe finie de \mathcal{D} -module de la forme :

$$\frac{\mathscr{D}}{\mathscr{D}(xD-\alpha)^r}$$
, $\frac{\mathscr{D}}{\mathscr{D}(Dx)^r}$, $\frac{\mathscr{D}}{\mathscr{D}(xD)^r}$, $\frac{\mathscr{D}}{\mathscr{D}(Dx)^rD}$, $\frac{\mathscr{D}}{\mathscr{D}(xD)^rx}$.

C'est le résultat donné par L. Boutet de Monvel [BM].

Preuve à partir de la proposition 17. M étant un \mathcal{D} -module holonome, M est de longueur finie (voir [L], chap. III). Comme \mathcal{D} est un anneau simple, le théorème de J.T. Stafford (voir [Bj] chap. I) dit que M est cyclique; ou encore il existe un idéal I de \mathcal{D} tel que $M \cong \mathcal{D}/I$. On montre à partir de la définition des \mathcal{D} -modules à singularité régulière holonome (voir [P] chap. 11, p. 105) que les solutions analytiques et microfonctions de \mathcal{D}/I sont de classe de Nilsson. Or c'est la seule propriété de I que l'on a utilisée pour démontrer la proposition 18, d'où le corollaire 19. De plus il est facile de construire un opérateur à singularité régulière annulant E(I) et F(I), donc appartenant à I. Il résulte de la définition (lemme 9) que I est à singularité régulière.

COROLLAIRE 20. Soit I un idéal à singularité régulière, alors il existe J idéal à singularité régulière homogène tel que $\mathcal{D}/I \cong \mathcal{D}/J$.

Preuve. C'est une conséquence de la proposition 18 et du corollaire 12.

II.C. LES IDÉAUX PRINCIPAUX

L'objet de ce dernier paragraphe est la classification des \mathscr{D} -modules à singularité régulière de la forme $\mathscr{D}/\mathscr{D}P$.

Notation: Etant donné des entiers (p, q, r, s) positifs ou nuls, Λ une partie finie de C-Z, et des entiers:

$$\begin{split} \alpha &= (\alpha_1, ..., \alpha_p) \in \mathbf{N}^p \,, & \beta &= (\beta_1, ..., \beta_q) \in \mathbf{N}^q \,, \\ \gamma &= (\gamma_1, ..., \gamma_r) \in (\mathbf{N}^*)^r \,, & \delta &= (\delta_1, ..., \delta_s) \in (\mathbf{N}^*)^s \,, \\ \varepsilon &= (\varepsilon(\lambda))_{\lambda \in \Lambda} \in (\mathbf{N}^*)^{\Lambda} \,, & \end{split}$$

on note $\mathcal{M}(\alpha, \beta, \gamma, \delta, \epsilon)$ le \mathscr{D} -module:

$$\begin{pmatrix} p & \mathcal{D} \\ \bigoplus_{i=1}^{p} & \overline{\mathcal{D}}D(xD)^{\alpha_{i}} \end{pmatrix} \oplus \begin{pmatrix} q & \mathcal{D} \\ \bigoplus_{j=1}^{q} & \overline{\mathcal{D}}x(Dx)^{\beta_{j}} \end{pmatrix} \oplus \begin{pmatrix} p & \mathcal{D} \\ \bigoplus_{k=1}^{r} & \overline{\mathcal{D}}(xD)^{\gamma_{k}} \end{pmatrix}$$

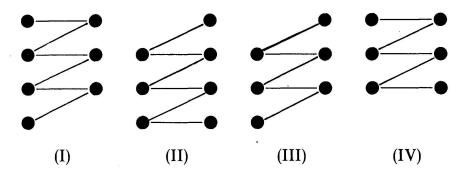
$$\oplus \begin{pmatrix} p & \mathcal{D} \\ \bigoplus_{j=1}^{s} & \overline{\mathcal{D}}(Dx)^{\delta_{i}} \end{pmatrix} \oplus \begin{pmatrix} p & \mathcal{D} \\ \bigoplus_{k \in \Lambda} & \overline{\mathcal{D}}(xD - \lambda)^{\varepsilon(\lambda)} \end{pmatrix}$$

Il est convenu que si p, q, r ou s est nul, ou si $\Lambda = \emptyset$ le facteur correspondant est nul. Les facteurs indécomposables qui apparaissent seront dits de type (I), (II), (IV) ou (V) respectivement.

Définition 21. On dit que $\mathcal{M}' \approx \mathcal{M}(\alpha', \beta', \gamma', \delta', \varepsilon)$ s'obtient à partir de $\mathcal{M} \approx \mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ par adjonction d'une solution « micro-méro » dans l'un des trois cas suivants:

- a) $\mathcal{M}' \approx \mathcal{M} \oplus (\mathcal{D}/\mathcal{D}x)$,
- b) un facteur $\mathcal{D}/\mathcal{D}D(xD)^{\alpha_i}$ de \mathcal{M} est remplacé par un facteur $\mathcal{D}/\mathcal{D}(Dx)^{\alpha_i+1}$ dans \mathcal{M}' ,
- c) un facteur $\mathcal{D}/\mathcal{D}(xD)^{\gamma_k}$ de \mathcal{M} est remplacé par un facteur $\mathcal{D}/\mathcal{D}x(Dx)^{\gamma_k}$ dans \mathcal{M}' .

Nous représentons les quatre premiers types de modules indécomposables par un éclair:



Les points de la colonne de gauche représentent une « base de Jordan de solutions analytiques », les points de la colonne de droite « une base de Jordan de solutions micro-fonctions »; les traits horizontaux de la gauche vers la droite représentent le morphisme u, et les traits descendants de la droite vers la gauche le morphisme de variation v.

Avec cette figuration:

- l'opération (a) est l'adjonction de l'éclair élémentaire de type II,
- l'opération (b) consiste à remplacer un éclair de type (I) par un éclair de type (IV) en ajoutant le trait horizontal inférieur:

— l'opération (c) consiste à remplacer un éclair de type (III) par un éclair de type (II) en ajoutant le trait horizontal inférieur:

Définition 22: On dit que $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ d'indice p - q = 0 vérifie la condition (M_0) si, quitte à réordonner les facteurs, pour $1 \le i \le p$, $\alpha_i > \beta_i$. On dit que $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ d'indice $\tau = p - q < 0$ vérifie la condition (M_τ) s'il s'obtient à partir d'un \mathcal{D} -module vérifiant la condition (M_0) par adjonction successive de $(-\tau)$ solutions « micro-méro ».

On dit que $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ d'indice $\tau = p - q > 0$ vérifie la condition (M_{τ}) si, par adjonction successive de τ solutions « micro-méro », on peut obtenir un \mathscr{D} -module vérifiant la condition (M_0) . On peut aussi exprimer cette condition en disant que, quitte à réordonner les facteurs, $\alpha_i > \beta_i$ pour $1 \le i \le p$.

Théorème 23. Etant donné le \mathscr{D} -module $\mathscr{M}(\alpha, \beta, \gamma, \delta, \epsilon)$ d'indice $\tau = p - q$, les propositions suivantes sont équivalentes :

- (i) $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ vérifie la condition (M_{τ}) ,
- (ii) il existe $P \in \mathcal{D}$ à singularité régulière tel que $\mathcal{D}/\mathcal{D}P \approx \mathcal{M}(\alpha, \beta, \gamma, \delta, \epsilon)$.

Les lemmes 24 et 25 suivants ainsi que la proposition 26 vont nous permettre de démontrer (i) \Rightarrow (ii).

LEMME 24. Soit des entiers $\alpha > \beta \geqslant 0$, $a \geqslant 0$, b > 0; il existe $P \in \mathcal{D}$ d'indice 0 et de degré $d = \alpha + \beta + 1$ vérifiant

$$\frac{\mathscr{D}}{\mathscr{D}P} \approx \frac{\mathscr{D}}{\mathscr{D}D(xD)^{\alpha}} \oplus \frac{\mathscr{D}}{\mathscr{D}x(Dx)^{\beta}}$$

et de polynôme initial $in(P) = P_0 = (xD-a)^{\beta+1}(xD+b)^{\alpha}$.

Preuve. Notons $Q = (xD+b)^{\alpha} \cdot \frac{1}{1-x^{a+b}} \cdot (xD-a)$; par intégration élémentaire on vérifie que les solutions analytiques de $\mathcal{D}Q$ sont engendrées par une fonction:

$$\varphi = x^{a}(\operatorname{Log} x)^{\alpha} + (c_{1}x^{a} + d_{1}x^{-b})(\operatorname{Log} x)^{\alpha-1} + \dots + (c_{\alpha}x^{a} + d_{\alpha}x^{-b}).$$

D'autre part soit $\Psi = x^{-b}(\text{Log } x)^{\beta}$; calculons $Q \cdot \Psi$:

$$\frac{1}{1-x^{a+b}}(xD-a)\Psi$$

$$= \left[(-b-a)x^{-b}(\log x)^{\beta} + \beta x^{-b}(\log x)^{\beta-1} \right] \left(1 + \frac{x^{a+b}}{1-x^{a+b}} \right),$$

$$Q \cdot \Psi = (xD+b)^{\alpha} \cdot \frac{x^{a}}{1-x^{a+b}} \left[(-b-a)(\log x)^{\beta} + \beta(\log x)^{\beta-1} \right],$$

car α est strictement supérieur à β, par hypothèse. Donc

$$Q \cdot \Psi = x^a h_0 (\text{Log } x)^{\beta} + x^a h_1 (\text{Log } x)^{\beta-1} + ... + x^a h_B$$

avec $(h_0, ..., h_\beta)$ analytiques au voisinage de 0, h_0 inversible. On s'aperçoit alors que $(xD-a)\frac{1}{h_0}Q\cdot\Psi$ est de la même forme que $Q\cdot\Psi$, β étant remplacé par $\beta-1$, et on peut donc construire un opérateur

$$R = (xD - a) \frac{1}{u_{\beta - 1}} (xD - a) \frac{1}{u_{\beta - 2}} ... (xD - a) \frac{1}{u_0} (u_0, ..., u_{\beta - 1} \text{ inversibles})$$

tel que $RQ \cdot \Psi$ soit analytique au voisinage de 0, autrement dit $RQ < \Psi > = 0$. Il résulte de ces calculs que P = RQ admet les solutions engendrées par φ et $<\Psi >$ (sous l'action de u et v) et donc, vu leur nombre, que

$$\frac{\mathscr{D}}{\mathscr{D}P} \approx \frac{\mathscr{D}}{\mathscr{D}D(xD)^{\alpha}} \oplus \frac{\mathscr{D}}{\mathscr{D}x(Dx)^{\beta}}.$$

Enfin, par construction, on a le résultat annoncé sur la partie initiale:

$$in(P) = in(R) \cdot in(Q) = (xD-a)^{\beta} (xD+b)^{\alpha} (xD-a).$$

Lemme 25. Soit P et P' deux opérateurs à singularité régulière d'indice 0 et de degré d et d', dont les parties initiales P_0 et P'_0 n'ont pas de racine commune. Il existe un opérateur Q d'indice 0 et de degré d+d' tel que $\mathscr{D}P\cap \mathscr{D}P'=\mathscr{D}Q$, $\mathscr{D}P+\mathscr{D}P'=\mathscr{D}$, de partie initiale $Q_0=P_0P'_0$.

Preuve. On note $\mathbb{C}[xD]^{(d)}$ l'espace vectoriel des polynômes de degré strictement inférieur à d, et

$$\Phi \colon \mathbb{C}[xD]^{(d')} \times \mathbb{C}[xD]^{(d)} \to \mathbb{C}[xD]^{(d+d')}$$

l'application définie par $\Phi(U, U') = UP_0 - U'P'_0$; P_0 et P'_0 étant premiers entre eux, Φ est un isomorphisme.

En multipliant à gauche P et P' par des unités, nous pouvons supposer:

$$P = P_0 + \sum_{k \ge 1} x^k P_k, \quad P' = P'_0 + \sum_{k \ge 1} x^k P'_k$$

avec, pour $k \ge 1$, $P_k \in \mathbb{C}[xD]^{(d)}$, $P'_k \in \mathbb{C}[xD]^{(d')}$

Résolvons formellement l'équation AP = A'P' en posant:

$$A = A_0 + \sum_{k \ge 1} x^k A_k, \quad A' = A'_0 + \sum_{k \ge 1} x^k A'_k,$$

 $A_0 = P_0'$, $A_0' = P_0$ et pour $k \ge 1$, $A_k \in \mathbb{C}[xD]^{(d')}$, $A_k' \in \mathbb{C}[xD]^{(d)}$. Le couple (A_k, A_k') est déterminé par récurrence de manière unique par la formule $(k \ge 1)$:

$$\Phi(A_k, A'_k) = \sum_{l=0}^{k-1} \left(-A_l^{[k-l]} P_{k-l} + A'_l^{[k-l]} P'_{k-l} \right).$$

La notation est celle introduite précédemment: pour $B \in \mathbb{C}[xD]$, $B^{[n]}$ est défini par $B^{[n]}(xD) = B(xD+n)$.

Choisissons comme norme d'un polynôme de C[xD] la somme des modules des coefficients; on a les majorations élémentaires suivantes:

- pour $B \in \mathbb{C}[xD]^{(d)}$ ou $\mathbb{C}[xD]^{(d')}$, $||B^{[n]}|| \leq ||B|| (1+n)^{\delta}$, avec $\delta = \sup(d, d')$;
 - en prenant $||(A_k, A'_k)|| = \sup(||A_k, ||A'_k||)$,

$$\| (A_k, A'_k) \| \leq \| \Phi^{-1} \| \sum_{l=0}^{k-1} 2 \| (A_l, A'_l) \| \| (P_{k-l}, P'_{k-l}) \| (1+k-l)^{\delta}.$$

Nous pouvons alors montrer la convergence des séries A et A' grâce à une série majorante: nous savons qu'il existe $\rho > 0$ et K > 0 tel que, pour tout entier k, $\|(P_k, P_k')\| \leq K\rho^k$; ce qui donne

$$\| (A_k, A'_k) \| \leq 2 \| \Phi^{-1} \| K \sum_{l=0}^{k-1} \| (A_l, A'_l) \| \rho^{k-l} (1 + (k-l))^{\delta}.$$

Soit $U = \sum_{k=0}^{+\infty} u_k x^k$ la série numérique à coefficients positifs définie par $u_0 = \| (A_0, A'_0) \|$ et, pour $k \ge 1$:

$$u_k = 2 \| \Phi^{-1} \| K \sum_{l=0}^{k-1} u_l \rho^{k-l} (1+k-l)^{\delta}.$$

Cette série est convergente puisque c'est la solution de l'équation

$$U = u_0 + 2 \| \Phi^{-1} \| K(\sum_{k \ge 1} \rho^k (1+k)^{\delta} x^k) U$$

et, par récurrence, pour tout entier k, $||(A_k, A'_k)|| \le u_k$; les séries A et A' sont donc convergentes.

Nous pouvons donc prendre Q = AP = A'P' d'indice 0 et de degré d + d', qui vérifie $\mathcal{D}Q \subset \mathcal{D}P \cap \mathcal{D}P'$ et $Q_0 = P_0 \cdot P'_0$.

En ce qui concerne l'affirmation $\mathscr{D}P + \mathscr{D}P' = \mathscr{D}$, on peut résoudre de manière analogue à la précédente l'équation AP - A'P' = 1. Une autre méthode consiste à remarquer que si $x^{\alpha}u(x)$ (ou $< x^{\alpha}u(x)>$ pour $\alpha \notin \mathbb{N}$) est solution de $\mathscr{D}P$ avec u(x) inversible, nécessairement α est racine de P_0 ; par hypothèse sur P_0 et P'_0 , $\mathscr{D}P$ et $\mathscr{D}P'$ n'ont donc pas de solution commune, et par le corollaire 7, $\mathscr{D}P + \mathscr{D}P' = \mathscr{D}$. En comptant alors le nombre de solutions on a $\mathscr{D}Q = \mathscr{D}P \cap \mathscr{D}P'$.

Proposition 26. Soit donné le \mathcal{D} -module $\mathcal{M}(\alpha, \beta, \gamma, \delta, \epsilon)$ d'indice p-q=0, vérifiant la condition (M_0) , et

- pour $1 \le i \le p$ et $1 \le k \le r$ des entiers positifs ou nuls (a_i) et (c_k) tous distincts;
- pour $1 \le j \le p$ et $1 \le l \le s$ des entiers (b_j) et (d_l) strictement positifs distincts.

Il existe $P \in \mathcal{D}$ à singularité régulière d'indice 0 tel que $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ $\approx \frac{\mathcal{D}}{\mathcal{D}P}$ et P a pour partie initiale :

$$P_{0} = \left[\prod_{1 \leq i \leq p} (xD - a_{i})^{\beta_{i} + 1} (xD + b_{i})^{\alpha_{i}} \right] \left[\prod_{k=1}^{r} (xD - c_{k})^{\gamma_{k}} \right]$$

$$\left[\prod_{l=1}^{s} (xD + d_{l})^{\delta_{l}} \right] \left[\prod_{\lambda \in \Lambda} (xD - \lambda)^{\epsilon(\lambda)} \right].$$

Preuve. On peut supposer $\alpha_i > \beta_i$ pour $1 \le i \le p$ et le lemme 24 fournit $P_i \in \mathcal{D}$ tel que

$$\frac{\mathscr{D}}{\mathscr{D}P_i} \approx \frac{\mathscr{D}}{\mathscr{D}D(xD)^{\alpha_i}} \oplus \frac{\mathscr{D}}{\mathscr{D}x(Dx)^{\beta_i}} \quad \text{et} \quad \text{in}(P_i) = (xD - a_i)^{\beta_i + 1}(xD + b_i)^{\alpha_i}.$$

Pour $1 \le k \le r$ on prend $R_k = (xD - c_k)^{\gamma_k}$, pour $1 \le l \le s$ $S_l = (xD + d_l)^{\delta_l}$, et pour $\lambda \in \Lambda$ $T_{\lambda} = (xD - \lambda)^{\varepsilon(\lambda)}$.

On applique le lemme 25 un nombre convenable de fois à partir des polynômes $(P_i)_{1 \le i \le p}$, $(R_k)_{1 \le k \le r}$, $(S_l)_{1 \le l \le s}$ et $(T_{\lambda})_{\lambda \in \Lambda}$; on obtient ainsi P satisfaisant à la demande.

Preuve de (i) \Rightarrow (ii). Soit $\mathcal{M}' = \mathcal{M}(\alpha', \beta', \gamma', \delta', \varepsilon)$ d'indice $\tau = p' - q' < 0$ satisfaisant à la condition (M_{τ}) , donc provenant de $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ satisfaisant à la condition (M_0) par adjonction de $-\tau$ solutions « micro-méro ».

On a $s'-s=p-p'\geqslant 0$, $r-r'\geqslant 0$, q'-q=(r-r')+h, $h\geqslant 0$ et $-\tau=(p-p')+(r-r')+h$ où h désigne le nombre d'opérations de type (a) effectuées, p-p' le nombre d'opérations de type (b), r-r' le nombre d'opérations de type (c)). Quitte à réordonner les indices, on peut supposer que les éclairs de $\mathcal{M}(\alpha,\beta,\gamma,\delta,\epsilon)$ touchés par une opération de type (b) sont numérotés de i=1 à i=p-p', ceux touchés par une opération de type (c) numérotés de k=1 à k=r-r'.

Appliquons la proposition 26 à $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ en prenant $a_i = i - 1$ pour $1 \le i \le p - p'$, $c_k = p - p' + k - 1$ pour $1 \le k \le r - r'$, tous les autres entiers étant choisis distincts en dehors de $\{0, 1, 2, ..., -\tau\}$; on obtient P d'indice 0 tel que $\mathcal{D}/\mathcal{D}P \approx \mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ et il reste à vérifier que $P' = Px^{-\tau}$ satisfait à $\mathcal{D}/\mathcal{D}P' \approx \mathcal{M}(\alpha', \beta', \gamma', \delta', \varepsilon)$: en effet les solutions de $\mathcal{D}P'$ s'obtiennent en divisant les solutions de $\mathcal{D}P$ par $x^{-\tau}$ et en ajoutant les h solutions micro-

fonctions
$$<\frac{1}{x}>$$
, $<\frac{1}{x^2}>$, ..., $<\frac{1}{x^h}>$.

On traite le cas de $\mathcal{M}' = \mathcal{M}(\alpha', \beta', \gamma', \delta', \varepsilon)$ d'indice $\tau = p' - q' > 0$ de manière analogue: si \mathcal{M}' satisfait (M_{τ}) , en ajoutant τ solutions « micro-méro » on obtient $\mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$ vérifiant (M_0) ; toujours d'après la proposition 26, il existe P tel que $\mathcal{D}/\mathcal{D}P \approx \mathcal{M}(\alpha, \beta, \gamma, \delta, \varepsilon)$, les solutions « micro-méro » sup-

plémentaires étant $<\frac{1}{x}>$, $<\frac{1}{x^2}>$, ..., $<\frac{1}{x^\tau}>$; l'annuleur de ces solutions étant $\mathcal{D}x^\tau$, on a $P=P'x^\tau$ et P' vérifie $\mathcal{D}/\mathcal{D}P'\approx \mathcal{M}'$.

Nous passons maintenant à la démonstration de (ii) \Rightarrow (i), et faisons pour cela des réductions successives.

Réduction au cas d'indice 0. Soit P un opérateur à singularité régulière d'indice $p-q=\tau>0$; les solutions de l'opérateur $P'=Px^{\tau}$ s'obtiennent en divisant les solutions de l'opérateur P par x^{τ} et en ajoutant les solutions micro-fonctions $<\frac{1}{x}>$, ..., $<\frac{1}{x^{\tau}}>$; précisons des générateurs des blocs indécomposables maximaux des solutions de $\mathscr{D}P$ du type (I) et (III):

$$\begin{cases} & \phi_i = \phi_i^0 (\log x)^{\alpha_i} + \phi_i^1 (\log x)^{\alpha_i - 1} + \dots + \phi_i^{\alpha_i}, & 1 \leq i \leq p, \\ & <\Psi_k> = <\Psi_k^0 (\log x)^{\gamma_k} + \Psi_k^1 (\log x)^{\gamma_k - 1} + \dots + \Psi_k^{\gamma_k}>, & 1 \leq k \leq r, \end{cases}$$

et notons (a_i) et (c_k) les ordres des fonctions analytiques (indépendantes) (ϕ_i^0) et (Ψ_k^0) .

Si par exemple $\alpha_1 = \max(\alpha_1,...,\alpha_p;\gamma_1,...,\gamma_r)$, quitte à enlever à $(\varphi_i)_{2 \le i \le p}$ et $(<\Psi_k>)_{1 \le k \le r}$ un multiple d'une solution engendrée par φ_1 (sous l'action de u et v), on peut supposer que $(\varphi_i^0)_{2 \le i \le p}$ et $(<\Psi_k^0>)_{1 \le k \le r}$ ne contiennent plus x^{a_1} dans leur développement; on opère de manière analogue lorsque $\gamma_1 = \sup(\gamma_2,...,\gamma_r) > \sup(\alpha_1,...,\alpha_p)$ à partir de $<\Psi_1>$. Au bout du compte on s'arrange pour obtenir les ordres (a_i) et (c_k) tous distincts. Pour $0 \le a_i \le \tau - 1$ (resp. $0 \le c_k \le \tau - 1$) le bloc engendré par φ_i (resp. $<\Psi_k>$) est remplacé dans les solutions de P' par un facteur de type III (resp. II) engendré par $\frac{\varphi_i}{x^\tau}$ (resp. $<\frac{\Psi_k}{x^\tau}>$). Il reste à adjoindre les solutions micro-fonctions $<\frac{1}{x^s}>$ pour $1 \le s \le \tau$, s distinct des $(a_i)_{1 \le i \le p}$ et des $(c_k)_{1 \le k \le r}$. Ainsi, si $\mathscr{D}/\mathscr{D}P'$ satisfait (M_0) , $\mathscr{D}/\mathscr{D}P$ satisfait (M_τ) .

Traitons maintenant le cas de P d'indice $\tau = p - q < 0$: $P = P'x^{-\tau}$ où P' est d'indice 0; la démonstration précédente montre que le diagramme de $\mathscr{D}/\mathscr{D}P$ s'obtient à partir de celui de $\mathscr{D}/\mathscr{D}P'$ par adjonction de $(-\tau)$ solutions « microméro » et donc, si $\mathscr{D}/\mathscr{D}P'$ vérifie (M_0) , $\mathscr{D}/\mathscr{D}P$ vérifie (M_τ) par définition.

Réduction au cas $s=0, \Lambda=\emptyset$. Soit φ une fonction de classe de Nilsson de la forme:

$$\varphi = x^{\lambda} [u_0(\log x)^{\varepsilon} + v_1(\log x)^{\varepsilon-1} + \dots + v_{\varepsilon}]$$

 $u_0, v_1, \dots, v_{\varepsilon}$ uniformes, u_0 inversible.

Nous allons préciser l'opérateur S_{φ} d'indice 0 et de degré minimum annulant φ ; soit $\tilde{\varphi} = (xD - \lambda) \frac{1}{u_0} \varphi$; un calcul évident donne:

$$\tilde{\varphi} = x^{\lambda} \left[\tilde{u_0} (\log x)^{\varepsilon - 1} + \tilde{v_1} (\log x)^{\varepsilon - 2} + \dots + \tilde{v_{\varepsilon - 1}} \right], \text{ avec } \tilde{u_0} = \varepsilon + x \left(\frac{v_1}{u_0} \right)'.$$

Lorsque v_1 est holomorphe $\tilde{u_0}$ est inversible; lorsque v_1 a un pôle d'ordre η_1 , $\tilde{u_0}$ a également un pôle d'ordre η_1 et $\tilde{\phi}$ s'écrit:

$$\tilde{\varphi} = x^{\lambda - \eta_1} [u_1(\log x)^{\varepsilon - 1} + \omega_1(\log x)^{\varepsilon - 2} + \dots + \omega_{\varepsilon - 1}],$$

$$u_1, \omega_1, \dots, \omega_{\varepsilon - 1} \text{ uniformes}; u_1 \text{ inversible}.$$

On obtient, au bout de $\varepsilon + 1$ pas:

$$(*) S_{\varphi} = (xD - \lambda + \eta_{\varepsilon}) \frac{1}{u_{\varepsilon}} \dots (xD - \lambda + \eta_{1}) \frac{1}{u_{1}} (xD - \lambda) \frac{1}{u_{0}},$$

$$0 \leqslant \eta_{1} \leqslant \eta_{2} \dots \leqslant \eta_{\varepsilon}.$$

Lorsque φ engendre un bloc de type (IV) ou (V), $\mathscr{D}S_{\varphi}$ est exactement l'annulateur de ce bloc puisque le nombre de solutions analytiques et microfonctions de $\mathscr{D}S_{\varphi}$ est $\varepsilon + 1$.

Revenons alors à P d'indice 0 et φ générateur d'un bloc de type (IV) ou (V) de solutions de $\mathcal{D}P$; P s'écrit $P=QS_{\varphi}$ avec Q d'indice 0 et de degré $d(P)-d(S_{\varphi})$ et on a:

$$E(\mathcal{D}P) \oplus F(\mathcal{D}P) = [E(S_{\bullet}) \oplus F(S_{\bullet})] \oplus [E' \oplus F']$$

 $E' \oplus F'$ étant la somme directe des autres blocs de solutions de $\mathscr{D}P$; en appelant J l'annulateur de $E' \oplus F'$, $\mathscr{D}P = \mathscr{D}S_{\varphi} \cap J$ et $\mathscr{D}S_{\varphi} + J = \mathscr{D}$; d'après le corollaire, S, $\mathscr{D}/\mathscr{D}P = \mathscr{D}/\mathscr{D}S_{\varphi} \oplus \mathscr{D}/J$.

Remarquons que le morphisme de multiplication à droite par S_{φ} de $\mathscr{D}/\mathscr{D}Q$ dans \mathscr{D}/J est bien défini et surjectif; il est injectif car $\mathscr{D}Q$ et J ont même nombre de solutions analytiques et de solutions micro-fonctions, donc même multiplicité; en conséquence $\mathscr{D}/J \approx \mathscr{D}/\mathscr{D}Q$ et $\mathscr{D}/\mathscr{D}P$ vérifie (M_0) si et seulement si $\mathscr{D}/\mathscr{D}Q$ vérifie (M_0) .

On enlève ainsi tous les blocs de type (IV) et (V) et on est ramené au cas voulu s=0 et $\Lambda=\emptyset$.

Fin de la preuve de (ii) \Rightarrow (i). Soit donc P d'indice 0 dont la décomposition ne comporte que des blocs de type (I), (II) et (III). Précisons des générateurs de type (II):

$$<\Psi_{j}> = <\Psi_{j}^{0} (\log x)^{\beta_{j}} + \Psi_{j}^{1} (\log x)^{\beta_{j}-1} + ... + \Psi_{j}^{\beta_{j}}> , \quad 1 \leq j \leq p;$$

et notons b_j les ordres des fonctions méromorphes indépendantes Ψ_j^0 . Lorsque $\beta_1 = \max(\beta_1, ..., \beta_p)$, par exemple, nous pouvons enlever à $(<\Psi_j>)_{2 \le j \le p}$ un multiple d'une solution engendrée par $<\Psi_1>$ de manière que Ψ_j^0 ne comporte plus de terme en $\frac{1}{x^{b_1}}$ dans son développement. Ainsi, on peut arriver à un système de générateurs $<\Psi_j>$ pour lesquels les ordres b_j correspondants soient tous distincts — ce que nous supposons par la suite.

Soit $\varphi_1 = \varphi_1^0 (\log x)^{\alpha_1} + \varphi_1^1 (\log x)^{\alpha_1-1} + ... + \varphi_1^{\alpha_1}$ un générateur d'un bloc indécomposable maximal de solutions de $\mathcal{D}P$ de type (I); lorsqu'on fait la division de P par S_{φ_1} de degré $\alpha_1 + 1$ (*) on trouve un reste nul puisque les $(\alpha_1 + 1)$ -solutions analytiques de S_{φ_1} sont solutions de $P: P = QS_{\varphi_1}$. Les solutions de S_{φ_1} se composent du bloc engendré par φ_1 et d'une solution microfonction supplémentaire définie par une fonction méromorphe h d'ordre μ : par construction de S_{φ_1} (voir (*)), μ est l'ordre de la première fonction méromorphe φ_1^t ($t=1,...,\alpha_1$) apparaissant dans le développement de φ_1 (si toutes les fonctions φ_1^t étaient holomorphes au voisinage de 0 les solutions de S_{φ_1} forment un bloc de type III).

Appelons encore J' l'ensemble des indices $j \in \{1, 2, ..., p\}$ pour lesquels $\beta_j \geqslant \alpha_1$ et J'' les autres; on peut modifier ϕ_1 en enlevant un multiple d'une solution engendrée par $(\langle \Psi_j \rangle)_{j \in J'}$ (en suivant l'ordre des $(b_j)_{j \in J'}$ décroissants) et supposer μ égal à l'un des $(b_j)_{j \in J''}$. Alors $\langle h \rangle = c_1 \Psi_1^0 + c_2 \Psi_2^0 + ... + c_p \Psi_p^0$ et l'un des scalaires c_j pour $j \in J''$ est non nul.

Choisissons $j_0 \in J''$ vérifiant $\beta_{j_0} = \inf\{\beta_j/c_j \neq 0\}$; toujours en enlevant à $<\Psi_{j_0}>$ une combinaison linéaire des fonctions $(u_0v)^{\beta_j-\beta_{j_0}}(<\Psi_j>)$ pour j vérifiant $c_j \neq 0$ et $j \neq j_0$, on se ramène à $< h> = c_{j_0} < \Psi_{j_0}^0>$.

Nommons $E' \oplus F'$ la somme directe formée de tous les blocs de solutions de $\mathscr{D}P$ à l'exception des blocs engendrés par φ_1 et $\langle \Psi_{j_0} \rangle$, et du sous espace vectoriel de solutions engendré par $v \circ (u \circ v)^{\mathsf{v}} \langle \Psi_{j_0} \rangle$ et $(u \circ v)^{\mathsf{v}} \langle \Psi_{j_0} \rangle$ pour $0 \leqslant \mathsf{v} \leqslant \beta_{j_0} - 1$; $\mathscr{D}S_{\varphi_1}$ n'a dans $E' \oplus F'$ que la solution triviale 0, et par conséquent S_{φ_1} opère injectivement sur $E' \oplus F'$; $S_{\varphi_1}(E') \oplus S_{\varphi_1}(F')$ sont des solutions de Q (car $P = QS_{\varphi_1}$) en nombre exactement égal aux nombres de solutions de Q: $E(\mathscr{D}Q) = S_{\varphi_1}(E')$ et $F(\mathscr{D}Q) = S_{\varphi_1}(F')$. Enfin, comme u et v commutent à l'opérateur S_{φ_1} , le diagramme d'éclairs de $\mathscr{D}/\mathscr{D}Q$ se déduit de celui de $\mathscr{D}/\mathscr{D}P$ en supprimant l'éclair de type (I) engendré par φ_1 , l'éclair de type (II) engendré par $\langle \Psi_{j_0} \rangle$, et en ajoutant un éclair de type (III) (de longueur β_{j_0}). Puisque $j_0 \in J''$, $\alpha_1 > \beta_{j_0}$, et par induction, si $\mathscr{D}/\mathscr{D}Q$ vérifie (M_0) il en est de même de $\mathscr{D}/\mathscr{D}P$.