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II. Idéaux à singularité régulière

Définissons une nouvelle filtration de ^ : si P £ ak, txkDl, où akf t e C,
l^d
k^O

est un élément non nul de

le poids de P est l'entier p(P) e Z :

p(P) inf{k — l | akJ ^ 0}

la forme initiale de P est :

in(P) X aKiXkVl •

k-l p(P)

Remarquons que d'après B. Malgrange [MJ et [M3], — p(P) est l'indice de

l'opérateur formel P: C[x] C[x], tandis que l'indice de l'opérateur

analytique P: C{x} -+ C{x} est d(P) - v(P); et P est à singularité régulière si

p(P) v(P) - d(P) (c'est-à-dire si P et in(P) ont même degré).

On a les formules habituelles de multiplication :

p(Pi ' P2) P(Pi) + P(p2), in(Pi • P2) in(Pi) • in(P2),

et d'addition :

si p(PJ < p(P2), pCPi+^2) P(^i) et in(P1 + P2) in(pi)
si p(Pi) - P(P2), et in(Pi) + in(P2) ^ 0, p(Pi + P2) p(PJ

et inCPi + P^ in(Px) + in(P2)

si p(Pi) p(P2) et in(Pi) + in(P2) 0, p(Pi + P2) > p(Px).

Nous disons qu'un élément de Q) est homogène s'il est égal à sa forme initiale,
et qu'un idéal J de Q) est homogène s'il admet un système de générateurs

homogènes.
A un idéal I de S) on peut associer son idéal initial in(/) homogène

engendré par les formes initiales des éléments de L
Si J est un idéal homogène de S), tout élément non nul de J a sa forme

initiale dans J; réciproquement si I est un idéal de Q) vérifiant cette
propriété, in(/) c /, le reste de la division d'un élément de / par in(/) ne peut
qu'être nul : in(/) / et I est homogène.

Lemme 9. Soit I un idéal non nul de Q) d'escalier {(ap, p),..., (a9, q)}
et {Fp,..., Fq) une base standard de I. Les propriétés suivantes sont
équivalentes :
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i) il existe un élément Pel à singularité régulière (non nul),

ii) les éléments Fp,...,Fq de la base standard sont à singularité régulière,

iii) in(/) et I ont même escalier.

Lorsque ces propriétés sont satisfaites, nous dirons que I est un idéal à singularité

régulière; dans ce cas, nous savons d'après [W] par exemple que les

solutions analytiques E(I) E(Fp) de / sont de classe de Nilsson (de
détermination finie, à croissance modérée ; l'écriture explicite sera rappelée en II.B)
ainsi que les solutions micro-fonctions F(I) F(Fq).

Démontrons le lemme 9 :

(i) => (ii). Par division (lemme 1) il existe un entier a tel que xaP QFp ;

donc
in(xaP) in(g) in(Fp), d(inQ) ^ d(Q), d(inFp) < d(Fp) p

et par hypothèse

d(in(x«P)) d(in(P)) d(P) d(Q) + d(Fp).

Cela prouve que d(inQ) d{Q) et d(inFp)) p et en particulier que Fp est à

singularité régulière.
Montrons maintenant que Fj est à singularité régulière pour j ^ p + 1,

en supposant que Fp,..., Fj^1 le sont; la relation 0t-} (proposition 3) est

xa/-i «jp. m (D + Ujj-JFj-i 4- ujtj-2Fj-2 + ••• + uj,pFp

et les formules d'addition et de multiplication donnent

in(x"J~l-*JFj) D ir^Fj-i).
in(Fj) est donc de degré j et par conséquent Fj est à singularité régulière.

(ii) => (iii). De manière évidente Exp(in(/)) => Exp(7) puisque pour tout
opérateur P de Q), exp(P) e exp(in(P)) -I- N2.

Prenons alors P dans /; par division (proposition 2), P s'écrit

P QpFp+ + Q<Fq,(Qp, Q„-i) e C{x}"--, es.
Par simple considération des degrés, toute relation

R, in (Fp)+ + Rqin(Fs)0 (Rp,..., R,_x) e C{x}«->, e 9
implique Rp Rq0; donc en fait in(Fp),..., in(F,) est un système de

générateurs de in(/) avec comme base des relations

M'y.in {Fj)D in(F;_!), + 1 < ^
Grâce à ces relations, un élément P de in peut s'écrire

PRPin(Fp)+ + in(Fq),
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(R R J g C{x}q~p, Rq e l'exposant de P est alors égal à l'exposant

du terme de plus haut degré dans cette somme. Donc in(I) et I ont même

escalier.

(iii) => (i). Une application élémentaire des définitions:

exp(in(Ep)) exp (Fp) et Fp

est à singularité régulière.

ILA. Idéaux homogènes

Etant donné un escalier a {(apî p),..., (ag, q)} on note m m(a) le plus

petit des entiers; tels que (j, j) g Exp(à) à + N2.

(a*, 4)

On convient de poser a;- CLq lorsque j ^ q et alors m inf {; | j ^ p et

j ^ a,}. A l'escalier a nous associons les ensembles d'entiers suivants:

A(a) {0, 1, 2,q — ag} — {m — am, (m+1) - am+1,q - aj
lorsque aq ^ g, et A(ôc) 0 sinon. Les éléments de A(a) sont des entiers ^ 0

en nombre égal à m — oiq.

B{à) {-(a p-p),-(ap+1-(p+l1))}lorsque ap > p, et 5(a) 0 sinon. Ce sont des entiers strictement négatifs en

nombre égal à m — p.

Lemme 10. Si m m(a) p + aqi il existe un unique idéal homogène

H(ol) admettant à pour escalier; H(S) est défini par ses solutions:

© Cxk,
< keA(à)

l F(H(à)) © C <x">
keB(à)

Preuve. L'espace des éléments homogènes de poids 0 s'identifie à l'anneau
commutatif C[xD] ; pour P e C[xD] et n e Z on note P[n] le polynôme défini
par P[n](xD) P(xD + n).

Pour n g N on a le formulaire suivant
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x"P p[-"V,
D"PPln]D",

co„ x"D" xD(xD —1)... (x1),

œ[n] Dnxn ^ + ^ ^ + 2) (XD + n)

Il résulte de ce qui précède qu'un idéal homogène / de & d'escalier à

admet une base standard Fp,..., Fq formée d'éléments homogènes liés par les

relations

&j: x*J"1 ~ajFj DFj-x p + 1 < j < q

Fj admet l'écriture unique :

f Fj DJ~aj Pj(xD) si j ^ a,-, Pj de poids 0 de degré a7-,

\ Fj xaj~J Pj(xD) si j ^ a,-, Pj de poids 0 de degré j
(a),- Pour j — 1 ^ la relation 01) se traduit par

p. - p.1 j - 1 «j - i - «j J

(b)j Pour j ^ a,- on obtient

Pj (xD + a^-i-O-l))?^!.
(c)y Pour j ^ a,- et j — 1 < oq_ x

Wj Pj (xD +V-J-(~ Wj-1 •

Dans le cas m p ^ olp, seules interviennent les relations (a)j pour
p + 1 < j < q et en itérant on obtient :

pP n
v-p+i y

L'hypothèse du lemme est alors aq 0, Pq 1 et on trouve

H(ôc) Pp + 0)Dq ^cp'a* Dp_a* Pp + 9Dq

puisque ces idéaux n'ont pas de solutions micro-fonctions et les mêmes

solutions analytiques. Il ne reste plus qu'à se convaincre que le polynôme

Pp n CD^-V1
j p+1

a pour racines les entiers de A(a) et ces racines sont simples.

Dans le cas m aq ^ q, de la même façop, en utilisant cette fois les

formules (b)j on trouve
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Pq + &>]—.j)j Pp-

L'hypothèse du lemme est alors p 0, donc Pp 1 et

H(ol) 9x(tq~qPq 4- @Da«-q xaq~q Pq + @xap

cet idéal n'ayant que des solutions micro-fonctions. Encore une fois il reste à

vérifier que le polynôme

D«q-«xo«,-iPq^Yl

a pour racines les entiers de B{a) et que ces racines sont simples.

Dans le cas ocp > p et aq < q, on a p + 1 ^ m ^ q et on obtient d'après

{a) et (h) :

pm fi <Vr-i;l]W d(Pq) a,,
\j~m+1 /

/m — 2

pm-ln (xD + CLj-j)
\j P

En utilisant maintenant [c)m on trouve :

(xD + am^1-{rn-l))Pm.1

soit encore APq BPp où A est le polynôme unitaire admettant les éléments

de ,4(ôc) pour racines simples, et B celui admettant les éléments de B(à) pour
racines simples :

d(A) m — aq, d(B) m — p
>

A et B étant premiers entre eux, on déduit l'inégalité d(Pq) aq ^ d(B)

m — p, ainsi que l'existence d'un polynôme C g C[xD] de degré 8 CLq

+ p — m tel que

Pq BC, Pp AC,

Fq Dq-°«BC Fp xap~pAC

Le cas d'égalité du lemme donne 8 0, donc C 1 et H(ôc) @x*p~pA

+ @Dq~*q B; les solutions analytiques de H(d) sont celles de A, et les solutions

micro-fonctions de H(ct) sont celles de B. Enfin il est facile de vérifier
que H{ol) a bien les solutions indiquées dans l'énoncé du lemme, et a pour
escalier a.

d(Pp) P
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Remarquons que m(ôc) est toujours supérieur ou égal à p et donc que
l'escalier translaté a[-ô] {(ap — 5, p — 8),(otq — 8, q — 5)} est bien défini avec
ô CLq + p — m; de plus A(vl) et B(a) sont invariants par translation et
m(ôc[-5]) m(a) — 8. Nous avons donc obtenu:

Proposition 11. Soit a =• {(ocp, p),(a^, g)} un escalier, 8 p -h

— m(a), Jf(a) l'ensemble des idéaux homogènes d'escalier a.

Pour 8 < 0, Jf(a) 0.
Pour 8 0, (ôc) est réduit au seul élément H(a).

Pour 8 > 0, si on désigne par C5[xZ)] l'ensemble des polynômes
unitaires de degré 8, l'application qui à Ce C6[xD] associe l'idéal H(ôc[~51)C

est une bijection sur jf(a).

Soit C Yl (xD — X)r{X) la décomposition de C en convenant de prendre
leA

A =5 A(ol) u P(ôc) et r(X) 0 si nécessaire. Avec les notations du lemme 10,

/ tf(a[_ô])C ^x8p"MC 4- ®Dq-««BC

Pour X e A(ôc), définissons

/(X) ^(xD-^)r(X) + 1 + @Dl + 1(xD-X)r(X),

pour X, g 2?(a),

/(2c) ^(xZ)-À,)r(X) + 1 -f 3x-\xD-Xy(X)

et enfin pour ÀeA - A(a) — £(ôc), /(^) ^(xD — X)r(X). On constate que E(I)
© E(I(X)) et F(I) © F(I(X)); d'après le corollaire 8, / n /(X) et £^/J

X.eA XeA XeA

est isomorphe à © @/I(X).
X\

Par ailleurs la multiplication à droite par la classe de Dx est un iso-

morphisme de ^/^D(xD)r(X) sur @/I(X) lorsque X e A(ôc) ; et pour X e B(oî), il
faut multiplier à droite par la classe de x"^_1 pour obtenir l'isomorphisme
de @/@x(Dx)r{l) sur @/I(X). En conclusion, avec A' A — A(u) — B(a) :

Corollaire 12. Soit I un idéal homogène d'escalier ôc, 8 + p — m,

Q)jl est isomorphe à

(m-aq Q \ /m-p 3f \ Q) \
V ifi &D(xD)r'J

0 (S)x(DxY'J ® V®' mxD-Xya>) '

avec
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Z ri + S rj + I 5 •

i 1 7=1 XeA'

Nous retrouvons le résultat de P. Strömbeck ([S], théorème 1, p. 120):

Corollaire 13. Soit I un idéal de p dim(£(/)), a9 dim(F(/))
et m(I) le degré minimum d'un opérateur de I ayant autant de solutions

analytiques que de solutions micro-fonctions ; alors m(I) ^ p + aq et l'égalité
n'est possible que si I est à singularité régulière.

Preuve. Lorsque I est à singularité régulière, les escaliers de I et de in(7)

sont identiques et le premier point de la proposition 11 donne le résultat
cherché.

Supposons I non à singularité régulière, et notons (ap — u, p — v) l'exposant
privilégié de in^) ; son poids est

PiFp) <*p - u -< a

et donc u > v > 0.

Les relations 3tj fournissent alors, pour p + 1 ^ j ^ q:

j P{Fj)Cty — j — (u — v),
1 xaj•••*J int/ ;) - ,|.

La division d'un élément de I par Fp,...,Fq (proposition 2) permet alors de
montrer que sa forme initiale est engendrée par in(Fp),in(Fq). Il résulte de
tout cela que in(/) a pour escalier

{(ap- P— v), (ap+j- u, p+1 - n),(a,
et pour base standard in(Fp),in(F,). La proposition 11 appliquée à l'idéal
homogène in(/) donne :

(*) p — v + (aq — u),p m(in(/)).

Or, par translation, (m(in(/)) + u, m(In(J)) + t>) e Exp d'où

m(In(/)) + u ^ am(]n u»+^am(in(n) + u-

(La dernière égalité provenant de u>u), et par définition de m(I) :

m(In(/)) + u^m(I).

En reportant dans (*) on obtient facilement a, > m(I) + v > m{I).
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II.B. Décomposition d'un idéal à singularité régulière

u
Soit un diagramme E F où E et F sont des C espaces vectoriels de

dimension finie, u et v des morphismes d'espaces vectoriels. De tels diagrammes
sont les objets d'une catégorie abélienne 0 dont les flèches sont naturelles.

u
Lemme 14. Tout objet E ^ F de 0 se décompose en une somme

d'objets indécomposables Ex z ^ FXJ muni de flèches de restriction où Ex z

(resp. Fxl) est un sous-espace irréductible maximal de E (resp. F) stable

par v o u (resp. u ° v) associé à la valeur propre X. D'autre part si X # 0,

u If, et v If, sont des isomorphismes, et si X 0 u \E ou v |F est
X) l X, l X) l X91

surjective.

Une fois connu ce résultat déjà employé par L. Boutet de Monvel ([BM])
et B. Malgrange ([M.2]) sa démonstration facile est laissée au lecteur (on
regarde la correspondance entre les blocs de Jordan de E sous l'action de

v o u et de F sous l'action de u ° v). Reprenons les notations de I.C et
choisissons une détermination du logarithme. Une somme

et où J est un ensemble fini de nombres complexes ne différant pas d'un
entier relatif, détermine un unique élément de $4 et par action de u un unique
élément de M. De tels éléments sont appelés fonctions de classe de Nilsson et

microfonctions de classe de Nilsson.
Soit I ,un idéal à singularité régulière ; nous savons lui associer un élément

u

de 0 : E(I) ^ F(I). De plus les éléments de E(I) et F(I) sont des fonctions et

des microfonctions de classe de Nilsson (voir la remarque suivant le lemme 9).

Nous allons expliciter la décomposition d'un tel objet de 0 :

hj {Pe0|V(/, <g>)eEXJ x FXJ,Pf= 0 et P<g> 0}

D'après le lemme 13, Ex l (resp. FXJ) est un sous-espace vectoriel de E(I)
(resp. de F(I)), indécomposable maximal stable par la monodromie M de sé

(resp. M de M) et associé à la valeur propre X + 1 de cette monodromie. Un

(£(/); F(I)) F,,,).

Notation :
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calcul simple sur les fonctions de classe de Nilsson permet de déterminer une

base de EXt t et FXt t
:

Cas ri0 1 : X ^ 0

Une base de EXJ {{M — e2lYf}je{a e ^ — Z et À, + 1 e

(.M-e2in*)

/ s'écrit:
/ # 0 et (M — e2ina)rf 0, où quitte à ajouter à a un entier,

/M Z x" Lo§ 'x
- 6 CM >

i 0

u

dim £x_r r, d'après le lemme 14: EXJ- £x>l donc dim £M r.

Lemme 15. Pour £ ^ 0 :2)f£>x"Logr_1x,®/®(xD-a)r et

£(/,.,) £Xi t) F(IX,)£M.
Preuve. Tout d'abord un calcul facile établit:

(1) VpsN, @xa+pLogr

CM !ca Log7" *x + + C{>

On en déduit l'inclusion 0/ c Logr *x. Ecrivons: fr-x{x) u(x)xk, où

«(0) 7^ 0, u(x) g C{x} et k g Z.

(xD-a-k)-— f(x)
u{x)

f _
e= xa+k Log~2x -f (.xD — Oi — k)

2 xaLogr~2x +
u(x)

Mais le terme de « degré » a + k de r~2 xa Logr_ 2x est tué par (xD — a — /c),
u(x)

1 r — 2

(xD-a-fc) —— /(x) £ ^i(x)xa Log 'x où ^(x) g C{x} et gr.2(x) # 0. Par
u{x) i 0

récurrence, on montre ainsi que @xa+k Logr_1x est inclus dans S)f D'où le

résultat (en utilisant (1)): @f ^xaLogr_1x

/ engendre par u et v : Ex l et Fx l, de sorte que Q)f ^/IXi i

xaLogr_1x est annulé par (xD — a)r et engendre par u et v, r solutions
analytiques et r solutions microfonctions indépendantes. En utilisant les propositions

5 et 6, on obtient: ^xaLogr_1x @/<3{xD — a)r. On a donc @/L
@/@{xD- a)r.
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Cet isomorphisme entraîne :

dim E(IX j) dim E((xD — a)r) r et dim F(IX z) dim F((xD — a)r) r

Des inclusions E(IX t) => Ex t et F(IX t) => FXJ, on en déduit la dernière égalité
cherchée.

Cas n° 2: X 0 et u |£q
;

surjective.
Une base de E0J {(M-1)//}W0. (M — 0, (M — l)r_1/

^ 0, où / s'écrit

/M Z /.M xmLog fx, m e Z et //x) 6 C{x}
' ~= 0

Or (Af-ip1 /(x) (r—1)! W1 /„^(x)*",
(M— l)r-2 /(x) (r—1)! (2m)r_2 /r_i(x) xm Log x + xm0(x),

où ^(x) e C{x} — De sorte que:

si X-i(x) xm $ C{x}, u: E0tl-> F0J est un isomorphisme
et dim E0J dimF0J r;

si /r_1(x)xmeC{x}, dim£0,i r et dim F0 z r — 1.

Lemme 16. Pour X 0 et u \Eq
z

surjective deux cas se présentent :

a) dim E0 l dim F0>z, alors /r_ ^x) xm <£ C{x} et

3f 3- Logr_xx 0//o z 3/2{Dx)r,
x

b) dimLoj dimL0>/ + 1, alors /r_ 1(x)xm e C{x} et

2f 3 Logr-1x ®/I0tl @/3>(Dx)r~1D

Dans les deux cas:

E(Io,i) E0,i et F(I0 ù F0j.

Preuve. On établit facilement que

1

V p e N — {0}, 3)-— Logr *x C{x Logr *x + + C{x}

C{x} Logr lx + C{x}

V p e N 3)xp Logr lx
1

Logr 2x + + C{x}
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La démonstration est alors analogue à celle du lemme 15.

Cas n° 3: X 0 v |foj surjective.

Une base de F0J {{M—iy <f>}M0 r-u °ù <f> u(fX et f
s'écrit :

f(x) ï fi(x)XmLog 'x, Z et f,(x) e C{x}.
0

En déterminant les germes de (M—l)j<f >, il vient:

dim F0tl r dim £0, z r - 1 si /r_ x(x) xm C{x}

dim F0 l - r - 1 dim E0fZ si /r_i(x)xm e C{x}

.Lemme 17. Pour X 0 et f |Fq surjective deux cas se présentent:

a) dim F0jî — dim E0J + 1, alors /r_i(x) xm $ C{x}

3 <f> 3 <-Logr_1x> 3/10 i 3/3(xD)r~ 1x
x

b) dim E0,/ dim £0>/, alors /r_i(x)xm g C{x}

3 <f > 3 <Logr_1x> 3/10J 3/3{xD)r~1

Dans les deux cas : E(I0J) E0J et F(I0 l) F0J.

Preuve. Les égalités 3 <f> 3 <-Logr-1x> dans le cas a) et
x

3 <f> =3 <Logr-1x> dans le cas b) se déduisent du lemme 16. La fin
de la preuve est alors analogue à celle du lemme 15.

Proposition 18. Soit I un idéal à singularité régulière, © (EXI;FXJ)
u

une décomposition de E(I) ^ F(I) en sous-espaces indécomposables maximaux.

Posons:

Li {pe^; v/e£x,i et V

Pf0 et P <g> 0}.
Alors :

I niet S/I© S/IXJ,F(/m) FXjI

De p/u.s chacun des estisomorphe à l'un des Si-modules

S S S S S
S>(xD-a)r' ©(Dx)r '

â>(x£>y ' ' â>(xD)rx
'
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Preuve. Des lemmes 15, 16, 17, on déduit:

E(I) © E(IXj) et F(I') ®F(IXid,

du corollaire 8, la proposition découle facilement.
Un ^-module holonome (d'une variable) est un ^-module de type fini

dont la variété caractéristique est de dimension 1 ([P] chap. 8); on dit qu'il
est à singularité régulière lorsqu'il est engendré sur B par un sous C-module
de type fini stable par xD.

Corollaire 19. Soit M un B-module à singularité régulière holonome.

Alors M est isomorphe à une somme directe finie de B-module de la forme:

B B B B B
B(xD — a)r ' B{Dx)r ' B{xD)r ' B(Dx)rD ' B(xD)rx

'

C'est le résultat donné par L. Boutet de Monvel [BM].

Preuve à partir de la proposition 17. M étant un ^-module holonome,
M est de longueur finie (voir [L], chap. III). Comme B est un anneau simple,
le théorème de J.T. Stafford (voir [Bj] chap. I) dit que M est cyclique; ou
encore il existe un idéal I de B tel que M B/I. On montre à partir de la
définition des ^-modules à singularité régulière holonome (voir [P] chap. 11,

p. 105) que les solutions analytiques et microfonctions de B/I sont de classe de

Nilsson. Or c'est la seule propriété de / que l'on a utilisée pour démontrer la

proposition 18, d'où le corollaire 19. De plus il est facile de construire un
opérateur à singularité régulière annulant E(I) et F(I), donc appartenant à /.
Il résulte de la définition (lemme 9) que I est à singularité régulière.

Corollaire 20. Soit I un idéal à singularité régulière, alors il existe

J idéal à singularité régulière homogène tel que B/I B/J.

Preuve. C'est une conséquence de la proposition 18 et du corollaire 12.

II.C. Les idéaux principaux

L'objet de ce dernier paragraphe est la classification des ^-modules à

singularité régulière de la forme B/BP.

Notation : Etant donné des entiers (p, q, r, s) positifs ou nuls, A une

partie finie de C-Z, et des entiers :
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a (a,,...,ogeN", ß (ßj, -, ß„) 6 N«,

y (y jyr) e (N*)r, 8 (8j,8S) e (N*)s,

s (s(X))XeA e (N*)A

on note ,#(a, ß, y, 5, e) le ^-module :

Il est convenu que si p, q, r ou s est nul, ou si A — 0 le facteur

correspondant est nul. Les facteurs indécomposables qui apparaissent seront dits de

type (I), (II), (III), (IV) ou (V) respectivement.

Définition 21. On dit que Jl' « J((ol', ß', y', 5', s) s'obtient à partir de

M « J((ol, ß, y, 5, s) par adjonction d'une solution « micro-méro » dans l'un

des trois cas suivants :

a) M' « Jl © {ßl@x),

b) un facteur @/@D(xD)ai de M est remplacé par un facteur S}/9{Dxfi + 1

dans Jl',
c) un facteur @/@(xD)yk de Jl est remplacé par un facteur @/@x(Dx)yk

Nous représentons les quatre premiers types de modules indécomposables

par un éclair :

Les points de la colonne de gauche représentent une « base de Jordan de

solutions analytiques », les points de la colonne de droite « une base de Jordan
de solutions micro-fonctions » ; les traits horizontaux de la gauche vers la
droite représentent le morphisme u, et les traits descendants de la droite vers
la gauche le morphisme de variation v.

Avec cette figuration :

dans Jl'.

(I) (II) (III) (IV)
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— l'opération (a) est l'adjonction de l'éclair élémentaire de type II,

— l'opération (b) consiste à remplacer un éclair de type (I) par un éclair de

type (IV) en ajoutant le trait horizontal inférieur:

— l'opération (c) consiste à remplacer un éclair de type (III) par un éclair
de type (II) en ajoutant le trait horizontal inférieur:

Définition 22 : On dit que a, ß, y, 8, e) d'indice p — q — 0 vérifie la

condition (M0) si, quitte à réordonner les facteurs, pour 1 < i ^ p, > ß^.

On dit que Ji(a, ß, y, 8, s) d'indice x p — q < 0 vérifie la condition (MT) s'il
s'obtient à partir d'un ^-module vérifiant la condition (M0) par adjonction
successive de — x) solutions « micro-méro ».

On dit que oc, ß, y, 8, s) d'indice x p — q > 0 vérifie la condition (MT)

si, par adjonction successive de x solutions « micro-méro », on peut obtenir

un ^-module vérifiant la condition (M0). On peut aussi exprimer cette

condition en disant que, quitte à réordonner les facteurs, af > ßf pour
1 ^ i ^ p.

Théorème 23. Etant donné le Q)-module ß, y, 8, e) d'indice

x p — q, les propositions suivantes sont équivalentes :

(i) Jt(öL, ß, y, 8, s) vérifie la condition (MT),

(ii) il existe P e @ à singularité régulière tel que @/!3P & a, ß, y, 8, s).

Les lemmes 24 et 25 suivants ainsi que la proposition 26 vont nous
permettre de démontrer (i) => (ii).
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Lemme 24. Soit des entiers a > ß ^ 0, a ^ 0, b > 0 ; il existe P e

d'indice 0 et de degré d a + ß + 1 vérifiant

@P ~ &D{xDf
®

@x(Dxf

et de polynôme initial in(P) P0 (xD — af+1(xD + byt.

Preuve. Notons Q (xD 4- bf •

{ a+b
• (xD - a) ; par intégration

élémentaire on vérifie que les solutions analytiques de Q)Q sont engendrées par

une fonction :

(p xa(Log xf + (c1xa + d1x~b) (Log x)a_1 + + (caxa + dax b).

D'autre part soit *¥ x~fc(Log xf; calculons Q • :

1

— b — a)x ö(Logx)ß + ßx b(Logx)ß 1 1 +
1 — x.a + b / '

ß-y (xD + fe)*-
_ ^a+b

[(-fr-a)(Logx)ß + ß(Logx)ß x]

car a est strictement supérieur à ß, par hypothèse. Donc

ß.vp — xah0(Logx)ß -h xfl/i1(Log x)ß_1 + + xa/iß,

avec (h0,..., hp) analytiques au voisinage de 0, h0 inversible. On s'aperçoit alors

que (xD — a) — Q-x¥ est de la même forme que Q • *F, ß étant remplacé par
h0

ß — 1, et on peut donc construire un opérateur

R (xD — a) —— (xD — a) —— (xD — a)— (u0,..., u«_x inversibles)
Mß_i wß-2 W0

tel que RQ • soit analytique au voisinage de 0, autrement dit RQ<x¥> =0.
Il résulte de ces calculs que P RQ admet les solutions engendrées par cp

et < > (sous l'action de u et v) et donc, vu leur nombre, que

9P 9D(xDf @x{Dxf '
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Enfin, par construction, on a le résultat annoncé sur la partie initiale:

in(P) in(P)-in(g) (xD — a)ß (xD + bf (xD — a).

Lemme 25. Soit P et P' deux opérateurs à singularité régulière
d'indice 0 et de degré d et d', dont les parties initiales P0 et P '0 n'ont

pas de racine commune. Il existe un opérateur Q d'indice 0 et de degré
d + d' tel que 3P n 3P' 3Q, 3P + 3P' 3), de partie initiale
Qo PoP'o•

Preuve. On note C[xD](d) l'espace vectoriel des polynômes de degré
strictement inférieur à d, et

<D: C[xD](d) x C[xD](d) C[xD](d+d'}

l'application définie par <D((7, U') UP0 — U'P'0; P0 et P'0 étant premiers
entre eux, ® est un isomorphisme.

En multipliant à gauche P et P' par des unités, nous pouvons supposer:

P P0+ £ xkPk,P'P'o + X
k>l k&l

avec, pour k ^ 1, Pke C[xD](d), Pk e C[xD](d).
Résolvons formellement l'équation AP A 'P' en posant :

A A0 + X A' A'o + I JA'k,
kZ1 kèl

A0 P'o, Af0 P0 et pour k ^ 1, Ake C[xD](d), A'k e C[xD](d). Le

couple (Ak, Ak) est déterminé par récurrence de manière unique par la
formule (fc^l):

<HAk, A'k)"f{-A^ri]+ P^,).
Z 0

La notation est celle introduite précédemment : pour B e C[xD], B[n] est défini

par B[n](xD) B(xD + n).

Choisissons comme norme d'un polynôme de C[xD] la somme des modules

des coefficients ; on a les majorations élémentaires suivantes :

— pour B e C[xD](d) ou C[xZ)](d || B[n] fl ^ || B || (1 + n)6,

avec 5 sup(d, d');

— en prenant || (Ak, A'k) || sup(||v4fc, \\Ak ||),

\\(Ak,A'k)\\ < ll^"1 II E2 II (Ai, AÇ) Il II (Pfc_Z3 P^-,) |f (H-/C-/)6.
1 0
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Nous pouvons alors montrer la convergence des séries A et Ä grâce à une

série majorante: nous savons qu'il existe p > 0 et K > 0 tel que, pour tout

entier k,|| {Pk, P'k)\\«SKpk-cequi donne

Il (Ak,A'k)Il< 2 II S»"1 II K *£ Il || p*"'(l
1 0

-r X

Soit U Y, ukxk la série numérique à coefficients positifs définie par
k 0

u0 Il (A0, ri'o) Il et, pour k ^ 1 :

uk 2 H O"1 11 K Uipk~l(l + k — l)d.
1 0

Cette série est convergente puisque c'est la solution de l'équation

U u0 + 2 H O"1 II JE(£p*(l+*)V)l7
k^l

et, par récurrence, pour tout entier k, || (Ak, Ak) || ^ uk ; les séries A et A'
sont donc convergentes.

Nous pouvons donc prendre Q AP A'P' d'indice 0 et de degré à + d\
qui vérifie 3Q c= Q)P n &P' et Q0 P0- P'0.

En ce qui concerne l'affirmation Q)P + BP' — Q), on peut résoudre de

manière analogue à la précédente l'équation AP — A'P' 1. Une autre
méthode consiste à remarquer que si xau(x) (ou <xau(x)> pour a^N) est

solution de @P avec u{x) inversible, nécessairement a est racine de P0; par
hypothèse sur P0 et P'0, Q)P et @P' n'ont donc pas de solution commune, et

par le corollaire 7, @P 4- Q)P' Q). En comptant alors le nombre de solutions

on a Q)P n Q)P'.

Proposition 26. Soit donné le Q)-module a, ß, y, 5, s) d'indice p - q
0, vérifiant la condition (M0), et

— pour 1 ^ i ^ p et 1^/c^r des entiers positifs ou nuls (at) et
{ck) tous distincts ;

— pour 1 ^ j ^ p et 1 ^ l ^ s des entiers (bf et (dt) strictement
positifs distincts.

Il existe P e 3) à singularité régulière d'indice 0 tel que a, ß, y, 8, s)

~ -z— et P a pour partie initiale :
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*>0 [1 (xD-af' + HxD + bf
l^i^p

n (xd ~ ck

n (xD+d,)
1=1

n (xD-xyMX)

Preuve. On peut supposer af > ßf pour 1 ^ i ^ p et le lemme 24 fournit
Pi g @ tel que

0
9Pt <2)D(xDT 9x(Dxfl

et in(P^ (xD - +1(xD + b^

Pour 1 ^ le ^ r on prend Rk (xD — ck)yk, pour 1 ^ U s ^ (xD + dz)6î,

et pour X g A Tx (xD — X)£il}.

On applique le lemme 25 un nombre convenable de fois à partir des

polynômes (Pi)1<i<p5 (Rk)l<k<r> (Si)1<i<s C^)XeAî on obtient ainsi P satisfaisant
à la demande.

Preuve de (i) => (ii). Soit Jt' Jf(a', ß', y', 8', e) d'indice x p' — q' < 0

satisfaisant à la condition (Mx), donc provenant de Ji(a, ß, y, ô, s) satisfaisant
à la condition (M0) par adjonction de — x solutions « micro-méro ».

On a 5' — 5 p — p' ^ 0, r — r' ^ 0, q' — q (r — r') + h, h ^ 0 et

— x (p — p') + (r — r') + h où h désigne le nombre d'opérations de type (a)

effectuées, p — p' le nombre d'opérations de type (b), r — r' le nombre
d'opérations de type (c)). Quitte à réordonner les indices, on peut supposer que les

éclairs de ß, y, Ô, s) touchés par une opération de type (b) sont numérotés

de i 1 à i p — p', ceux touchés par une opération de type (c)

numérotés de k 1 à k r — r'.

Appliquons la proposition 26 à Ji(a, ß, y, ô, e) en prenant at i — 1

pour 1 ^ i ^ p — p', ck p — p' + k — 1 pour 1 ^ k ^ r — r', tous les

autres entiers étant choisis distincts en dehors de {0, 1, 2,..., — x} ; on obtient P

d'indice 0 tel que @/@P % Jl(a, ß, y, ô, s) et il reste à vérifier que P' Px~T

satisfait à @/@P' « Jt(a', ß', y', 8', e) : en effet les solutions de Q)P' s'obtiennent

en divisant les solutions de Q)P par et en ajoutant les h solutions

microfonctions <—>
x

1

< 2 >
X

1

<-h>xh

On traite le cas de M' Jt(ül, ß', y7, ô', e) d'indice x p' — q' > 0 de

manière analogue: si M' satisfait (Mt), en ajoutant x solutions « micro-méro »

on obtient M(a, ß, y, ô, s) vérifiant (M0); toujours d'après la proposition 26,

il existe P tel que @/<2>P « M(a, ß, y, ô, s), les solutions « micro-méro » sup-
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plémentaires étant <-> <^> ,<—> ; l'annuleur de ces solutions étant

Q)x\ on a P P'xx et P' vérifie @/@Pf « M'.
Nous passons maintenant à la démonstration de (ii) => (i), et faisons pour

cela des réductions successives.

Réduction au cas d'indice 0. Soit P un opérateur à singularité régulière

d'indice p — q x > 0 ; les solutions de l'opérateur P' Pxx s'obtiennent en

divisant les solutions de l'opérateur P par xT et en ajoutant les solutions

micro-fonctions < —> ,<—> ; précisons des générateurs des blocs indé-
x xT

composables maximaux des solutions de Q)P du type (I) et (III) :

| (p; (p? (log x)a' + (Pi1 (log x)"'-1 + + (p? 1 < «S

j <Tk> <4*® (log x)yk+ (log x)Yk~1 + + Wl"> 1 < < r,
et notons (at) et (ck) les ordres des fonctions analytiques (indépendantes)
(cp?) et W).

Si par exemple at «=» max(ax,ap; y1,yr), quitte à enlever à (<Pi)2<i<

et (<x¥k>)1^k^r un multiple d'une solution engendrée par <px (sous l'action
de u et v), on peut supposer que (<P?)aÇl.^ et >)i<k<r ne contiennent plus
xfll dans leur développement; on opère de manière analogue lorsque y1

sup(y2,yr) > sup(a1,oep) à partir de <VF1>. Au bout du compte on
s'arrange pour obtenir les ordres (<zf) et (ck) tous distincts. Pour 0 < at

^ x — 1 (resp. 0^cfe^x-l) le bloc engendré par cpf (resp. <x¥k>) est
remplacé dans les solutions de P' par un facteur de type III (resp. II) engendré

(p; ¥
par -4 (resp. <-->). Il reste à adjoindre les solutions micro-fonctions

x xT

1

< —> pour 1 < 5 < x, s distinct des (a&t^p et des (ck)^k^r Ainsi, si @/@F

satisfait (M0), Qj/QjP satisfait (MT).

Traitons maintenant le cas de P d'indice x p — q<0:P P'x~x où P'
est d'indice 0; la démonstration précédente montre que le diagramme de @/@P
s'obtient à partir de celui de 9/S)P' par adjonction de (-x) solutions « micro-
méro » et donc, si @/@P' vérifie (M0), Q)/Q)P vérifie (MT) par définition.

Réduction au cas s 0, A 0. Soit cp une fonction de classe de Nilsson
de la forme :

cp xx[u0(\ogxf + ^(logx)8-1 + + vj
u0,vi,..., vs uniformes, u0 inversible
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Nous allons préciser l'opérateur d'indice 0 et de degré minimum annulant cp ;

soit cp (xD — X) — cp ; un calcul évident donne :

"o

cp xx[u0(log x)8-1 + îTj^log x)e~2 + + pe-i], avec u0 s + x( —W
Lorsque vx est holomorphe ü0 est inversible; lorsque v1 a un pôle d'ordre V{1,

u0 a également un pôle d'ordre r\ 1 et (p s'écrit :

cp a ^"^[^(log x)8"1 + COx(log x)£~~ 2 + +

u1, ©1}..., coe_ uniformes ; ux inversible

On obtient, au bout de e + 1 pas

(*) (xD-^ + ru) —
wE

0 < ru < rj2... < riE

Lorsque cp engendre un bloc de type (IV) ou (V), ÇèS9 est exactement l'annu-
lateur de ce bloc puisque le nombre de solutions analytiques et

microfonctions de ÇiïSy est e + 1.

Revenons alors à P d'indice 0 et cp générateur d'un bloc de type (IV) ou
(V) de solutions de @P; P s'écrit P ßS9 avec Q d'indice 0 et de degré

d(P) — d(S9) et on a :

E(ßP) © F(ßP) IE(SJ@F(S9]] 0 [F©F]
F © F étant la somme directe des autres blocs de solutions de Q)P \ en

appelant J l'annulateur de E' © F, @P n J et + J Q) ; d'après
le corollaire 8, @/@P ^/^S9 © <3/3.

Remarquons que le morphisme de multiplication à droite par S9 de

i^/i^ß dans @/J est bien défini et surjectif ; il est injectif car et J ont
même nombre de solutions analytiques et de solutions micro-fonctions, donc

même multiplicité; en conséquence @/J & i^/^ß et @/@P vérifie (M0) si et

seulement si @/@Q vérifie (M0).

On enlève ainsi tous les blocs de type (IV) et (V) et on est ramené au

cas voulu 5 0 et A 0.

Fin de la preuve de (ii) => (i). Soit donc P d'indice 0 dont la décomposition

ne comporte que des blocs de type (I), (II) et (III). Précisons des

générateurs de type (II) :

<x¥j> < (log xfj + *Fj- (log x)ßj_1 + + ^> 1 ^ j ^ p;

(xD — X + rj i) — (xD — X) —
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et notons bj les ordres des fonctions méromorphes indépendantes Lorsque

ßj max(ß1,..., ßp), par exemple, nous pouvons enlever à {<^j>)tWp
un multiple d'une solution engendrée par <lF1> de manière que ne

comporte plus de terme en dans son développement. Ainsi, on peut arriver

à un système de générateurs <x¥j> pour lesquels les ordres bj correspondants

soient tous distincts — ce que nous supposons par la suite.

Soit cPi (p?(logx)ai + cplilogxf1'1 + + cpï1 un générateur d'un

bloc indécomposable maximal de solutions de de type (I); lorsqu'on fait
la division de P par SÇl de degré oc1 + 1 (*) on trouve un reste nul puisque
les (ax +l)-solutions analytiques de S(pi sont solutions de P: P Les

solutions de S9l se composent du bloc engendré par cpx et d'une solution

microfonction supplémentaire définie par une fonction méromorphe h d'ordre

(i : par construction de S(pi (voir (*)), p est l'ordre de la première fonction

méromorphe cp rx (t — 1,..., ocx) apparaissant dans le développement de cpx (si

toutes les fonctions cp étaient holomorphes au voisinage de 0 les solutions de

S9l forment un bloc de type III).
Appelons encore J' l'ensemble des indices j e {1, 2,..., p} pour lesquels

ß;- ^ a1 et J" les autres; on peut modifier cpt en enlevant un multiple d'une
solution engendrée par (<xPj>)jeJ, (en suivant l'ordre des (bj)jeJI décroissants)
et supposer p égal à l'un des {bj)jj„. Alors <h> + c2xF% +
+ CpW p et l'un des scalaires c-} pour j e J" est non nul.

Choisissons j0 e J" vérifiant ßJ0 inf{ß/c,- # 0}; toujours en enlevant à

<x¥jo> une combinaison linéaire des fonctions (u0vYj~^Jo(<x¥j>) pour j
vérifiant Cj # 0 et j ^ j0, on se ramène à < h > cjo<x¥j0>.

Nommons E' © F' la somme directe formée de tous les blocs de solutions
de <3)P à l'exception des blocs engendrés par cpx et <XFJ0>, et du sous
espace vectoriel de solutions engendré par v ° (u ° v)v<x¥jo> et (i/o vY<>
pour 0 ^ v ^ ßio — 1 ; ^S(?l n'a dans E' © F' que la solution triviale 0, et par
conséquent S9l opère injectivement sur E' © F' ; S9l(F) © S9l(F) sont des solutions

de Q (car P gS9i) en nombre exactement égal aux nombres de solutions

de Q: E(ßQ) S9l(F) et F(@Q) S9l(F). Enfin, comme u et u

commutent à l'opérateur S9i, le diagramme d'éclairs de @/@Q se déduit de celui
de $I2)P en supprimant l'éclair de type (I) engendré par cpx, l'éclair de type (II)
engendré par <x¥jo>i et en ajoutant un éclair de type (III) (de longueur ßJo).

Puisque j0eJ", a1 > ßJO, et par induction, si @/S)Q vérifie (M0) il en est
de même de &/Ç&P.


	II. Idéaux à singularité régulière

