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8 J. BRIANÇON ET P. MAISONOBE

En II.A, nous explicitons complètement les idéaux de 9 à singularité
régulière homogène. Cela nous permet de donner « les escaliers possibles » ou,
ce qui revient au même, de retrouver dans le cas local une inégalité de

P. Strömbeck ([S]).
En II.B, nous donnons une démonstration du théorème de structure des

^-modules holonomes à singularité régulière (ou des quotients 9/1, où / est

à singularité régulière) dû à L. Boutet de Monvel ([B.M.]). Nous utilisons pour
cela l'idée essentielle qui nous a été apportée par B. Malgrange, d'étudier les

classes d'isomorphismes E(I) £ F(I) (u morphisme canonique et v morphisme

de variation). E{I) et F(I) sont formés de fonctions de classe de Nilsson et une
fois décomposé le couple (£(/), F(I)), il suffit d'appliquer les résultats de I.C.

En II.C, nous donnons la structure possible des solutions d'un seul

opérateur différentiel à singularité régulière; plus précisément noüs déterminons

les classes d'isomorphismes E(9P) i±F(9P) pour un tel opérateur P (ou

encore des classes d'isomorphismes des quotients 9/9P).
Nous sommes heureux de remercier F. Pham et J.E. Björk de l'aide et des

encouragements qu'ils nous ont prodigués.

I. Base standard d'un idéal de 9

C{x} désigne l'anneau local des séries convergentes d'une variable et v la
valuation naturelle sur C{x} : pour a élément non nul de C{x},

v(a) sup{n e N | ae C{x}x"}

d
D désigne l'opérateur différentiel —. Dans tout l'article, idéal de 9 signifie

dx
idéal à gauche.

I.A. Divisions dans 9

Un élément non nul P de 9 s'écrit de manière unique
P (idDd + ad_1Dd 1

-f- 4- a0

avec d eN ; (ad,ad_j,a0) e C{x}<l+1 ; 0.

Nous définissons l'exposant privilégié de P :

exp(P) (t iP),d{P))e N2
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v(P) la valuation naturelle de ad dans C{x},
d(P) d le degré de P

Pour P adDd + ad^1Dd~1 + + a0 et Q beDe + he_lDe~1 + + fe0,

la règle de multiplication dans Qf donne (en prenant d{0) -oo):

QP beadDd + e + S, d(S) < d + e

On en déduit facilement que pour deux éléments P et Q non nuls de # :

exp(ßP) exp(ß) + exp(P), et qu'on a l'algorithme de division :

Lemme 1. Etant donné Ae@, P e Q) non nul d'exposant privilégié (v, d),

il existe un couple unique (ß, R) d'éléments de Q) tel que :

f A QP + R,
| R Yj rk,i xkDl + S ' d(S) < d rkJ e C

0^k<v
d(A)Zl^d

Introduisons maintenant, pour un idéal à gauche non nul / de

l'ensemble Exp(/) des exposants privilégiés des éléments non nuls de /, puis:

a) p le degré minimum des éléments non nuls de I,

b) pour j ^ p, vLj la valuation minimum des éléments de I de degré j.
Du fait que I est un idéal à gauche, en appliquant la règle exp(ßP)

exp(ß) 4- exp(P), on s'aperçoit que Exp(/) + N2 Exp(/) et en particulier
que la suite (oij)j>p est décroissante;

c) q inf{;| (X; a/+1 ...}

En regroupant ces définitions on obtient la caractérisation de l'escalier ES(/)
d'un idéal I :

ES(/) {(<*„, p);(ap+1,p+l)(a,,
Exp(/) u {(a,-,j)+ N x {0}}) u {(a4 N2},

p^j<q

(où u désigne la réunion disjointe).

Nous appelons basestandard de I un système d'éléments
de I tels que p<j<q,exp(F,-) (a jfj).

Proposition 2 (division par un idéal). Etant donné un idéal I non nul
de d'escalier {(ap, p) ;... ; (a4, q)} de base standard {Fp, Fp+1,.., Fq},

et un élément A de 3>, il existe un système unique (Qp.Qq x

eC {x}q~p, Qqe 2>, RsS> tel que:
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f A - QpFp + + QqFq + R,
J d(A) ai - 1

1 RX I 'm xk°l + S, rkJ C.
I — p k 0

De plus A e I si et seulement si R 0.

Preuve. En ce qui concerne l'existence, on commence par diviser A par Fq
suivant le lemme 1, puis en faisant le premier pas de la division du reste obtenu
successivement par Fq _ x,..., Fp.

Pour l'unicité, on constate que les conditions imposées sur le reste

impliquent exp(R) $ Exp(/) pour R non nul ; par conséquent : A e I <=> R 0.

Les détails sont laissés au lecteur.

Une base standard de / forme donc un système de générateurs de / ; comme
d'habitude, une base standard plus belle que les autres s'obtient en faisant la
division de xaj Dj par {Fp,..., Fq} : en notant Rj le reste obtenu,

{Gp x" Dp - Rp,..., Gq x«« Dq - Rq)

est la base standard en question.

Lorsque l'on filtre Q) par le degré, on note gr^ C{x} [^] le gradué
associé et gr/ l'idéal homogène engendré par les symboles principaux des

éléments de /; par définition de Exp(7), gr/ est engendré par les monômes

(xaj^j)p^j^q- Cela permet en particulier de calculer, en fonction de l'escalier

de/:

dimc # {(«.;') e N21 Exp(/) et a + jgr/ + (x, %)"

Ainsi la multiplicité de la variété caractéristique V(ßjl) définie par gr/ au

voisinage de 0 dans C2 est ctq + p: il s'agit de la multiplicité de Çèjl à

l'origine (voir [L]).

I.B. Relations entre les éléments d'une base standard

7 désigne toujours un idéal non nul de Q) d'escalier {(ap, p) ;... ; (<xq, q)}

et (Fp,...,Fq) une base standard de / que nous supposons désormais
normalisée :

d(Fj-x*J Dj) < j pour 7 p,..., q

Par division de xajFj par {Fj^1,..., Fp} nous obtenons les relations

: x"'1 "'Fj {D + Ujj-1)Fj-l+ + + uJ<pFp(uj<keC{x}),

pour tout p + 1 ^ j ^ q.
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Proposition 3. Les relations (&j)p+i forment une base des relations

entre les éléments de la base (Fp,..., Fq) de I et on a la résolution libre

de I comme @-module à gauche:

o @1-P % -> 0

Preuve. La matrice M des relations (•%),, 1SJ.<„
est la transposée de la

matrice

F ~h Up+ip Up+2,p

— x<Xp~ap+1 D + u

0

p+2,p+ 1

yçaP + 1 aP +2

0

0

0

Uq,q~ 2

D + uq,q- i

_ Yaq-1 "Ctg

et ces relations sont donc libres.

Soit ApFp 4- Ap+1Fp+1 + + AqFq 0,une relation; étant donnés deux

entiers k et /, k ^ 0 ,p ^ l ^ q + 1, nous dirons que la relation sé — (Ap,...,Aq)
est dans Qk l si :

d{Aj) ^ k pour l ^ j ^ q

d(Aj) < k pour p ^ j < l.
Nous allons montrer par récurrence la propriété ce>M: toute relation appartenant

à Qkj est engendrée par les relations Par des considérations

de degré la propriété co0 p
est vraie ainsi que l'implication (ùk_1 p

®k,q+ 1 ®k,q-

Il ne reste donc plus qu'à démontrer que (okJ + 1 entraîne coM pour
p ^ l < q et k ^ 1. Or si sé (Ap,..., Aq) est une relation appartenant à

Qk i on peut écrire Ax b Dk + A\ avec b e C{x) et d(A[) < k ; alors sé — b

Dk'1^l + 1 appartient à QM + 1 .ce qui permet d'appliquer l'hypothèse de

récurrence.

Nous allons maintenant montrer que Fp et Fq engendrent l'idéal I ; pour
cela nous utilisons un lemme classique (voir [P], lemme 10.3.1, p. 95).

Lemme 4. Soit M un Q)-module à gauche tel que le C{x}-module sous-
jacent soit de type fini; alors M est un C {x}-module libre.

Preuve. La démonstration étant très rapide nous nous permettons de la
recopier. Soit (el,..., ep) un système de générateur de M sur C{x} induisant
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une base de l'espace vectoriel M/(x)M (possible par le lemme de Nakayama).
p

Supposons l'existence d'une relation £ ut et 0 entre les générateurs à
i 1

coefficients dans C{x} d'ordre co minimum des valuations des coefficients

Uj non nuls ; en appliquant D on trouve la relation
p p p p

Z (".D+u'i)ei ' Z "! ei+ Z ui( Z vik ek) °
i — 1 i 1 i 1 fc 1

P

(en prenant D et £ vik ek) ; on peut l'écrire sous la forme
fc i

p p

Z ("« + Z vji)ei ° •

i=i j=i
où on s'aperçoit que c'est une relation d'ordre co — 1. Une relation d'ordre 0

étant impossible, le lemme est démontré.

Proposition 5. Soit I un idéal non nul de Q), d'escalier

{(ap,p)i...;(uq,q)},
et soit {Fp,...,Fq} une base standard :

a) q p équivaut à I monogène, et I @Fp;

b) q > P alors I @Fp + FèFq.

Preuve. Introduisons le ^-module M I/{@Fp + @Fq). En appliquant la

proposition 2, tout élément A de / s'écrit

A QpFp + + Qq-1Fq^1 + QqFq,

où (Qp,..., Qq-1) sont dans C{x}; M est donc un C{x}-module de type fini
(engendré par Fp+1,..., F4_ i).

D'autre part, pour tout élément A de /, il existe un entier a et B e @

tels que xa A B Fp : il suffit pour cela de diviser xaA par Fp (lemme 1) et de

se souvenir de la définition de l'escalier de I.
Ainsi M 0 d'après le lemme 4.

I.C. Solutions analytiques et micro-fonctions

Notons, pour 8 > 0 :

De {xe C | | x | < s},
i)e {x e C | 0 < | x | < 8},

DE {xe C | Re(x) < Loge} le revêtement universel du disque pointé muni

j de sa projection n :De-+De : n(y) ey.

î
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On considère les espaces de fonctions analytiques &(De) ci (9(De) comme

sous-espaces (par rr*) de l'espace des fonctions analytiques multiforme 0(DJ

sur Z)e.

Les opérateurs différentiels à coefficients analytiques dans DE opèrent de

manière naturelle sur (9(DZ), (9(DZ) et (9(DZ) :

a(x) • f{y) a(ey)f{y),

D • f(y) f'(y)e-y.

Et cette action commute avec la monodromie :

M -f(y) =f(y + 2in),

monodromie laissant fixe les éléments de (P(De).

Enfin on peut définir le morphisme de variation v: (9(DE)/(9(DE) - &(DZ)

par:
v • f(y) (M-id) • f(y) f(y + 2in) - f(y).

En définitive, en passant à la limite inductive pour e 0, on construit un

couple de ^-modules :

sé — lim 0{De),

M lim (9(De)/(9(Ds)

muni des applications C-linéaires :

sé^Jl
v

u application canonique de passage au quotient,

I v morphisme de variation

qui commutent avec les actions Q) sur sé et Jt. De plus v ° u + id et

u o v + id sont les morphismes de monodromie sur sé et Jl respectivement.
On appelle solution analytique d'un idéal / de ^ un élément / de sé

annulé par les opérateurs appartenant à J, et on note E(I) c= sé le sous-

espace vectoriel des solutions analytiques de /; on définit de même le

sous-espace F(I) a M des solutions micro-fonctions de /. En un mot, on
obtient le couple

E(I) z
V

des solutions de /.
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Proposition 6. Soit I un idéal non nul de d'escalier

{(a„,p);.„;(a q,q)},

une base standard de /, E(I) et F(I) les espaces de solutions analytiques
et micro-fonctions de I :

a) dim E(I) p et les solutions analytiques de I sont les solutions analy¬

tiques de Fp.

b) dim F(I) aq et les solutions micro-fonctions de I sont les solutions

micro-fonctions de Fq.

c) Etant données une base (f1,fp) de E(I) et une base

deF(I), le morphisme canonique

9/1-+ 9 <0« >) CI sép I

est un isomorphisme de B-modules.

Preuve, a) Par les théorèmes classiques sur les équations différentielles,

nous savons que l'espace des solutions analytiques de Fp est de dimension p;
il nous suffit donc de montrer que toute solution analytique de Fp est

solution de Fq (proposition 5). Par division (lemme 1) nous savons qu'il existe

a entier et tel Jjue xa Fq Q Fp; on en déduit que Fp
• / 0 implique

xa Fq - f 0 donc Fq • / 0 pour f e sé.

b) Les relations entre les éléments de la base standard (proposition 3)

peuvent s'écrire :

D

— — "—

FP FP 0

FP+1 Fp+1 0

•

A
•

+
•

0

F9-I F9-1 jçUq - i _ aqp'

_ — _

où A est la matrice à coefficients analytiques :
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~-up + Up x<*p-zP +io0 ~

-"p + 2 ,p • 0

- 2 — Ctg - 1

Hq, p • • • ^q,q~l

si < g > est une solution micro-fonction de Fq, Fq g est analytique et :

Fp-g
1

L5_

é
0

• A • + :

• •

0

Fq-i -g Fg-i-g xCtq-l-(Xqpq g

Ce qui signifie que (Fp • g,..., Fq^x • g) est solution du système différentiel

analytique au voisinage de 0 ; donc Fp • g est analytique et Fp < g > =0.
C'est-à-dire que toute solution micro-fonction de Fq est solution
microfonction de L

Il nous reste à montrer que la dimension de l'espace des solutions
microfonctions de Fq xag Dq + est a?;ona le diagramme commutatif suivant,
dans lequel les lignes et les colonnes sont exactes :

0 0 0

F(Fq)

-*»jK O
F*\,
—Ji 0

0



16 J. BRIANÇON ET P. MAISONOBE

D'après le théorème de l'indice de B. Malgrange ([MJ et [M3]) dim K
— dim L q — aq, et on a vu au point a) que dim E(Fq) q; le lemme du

serpent fournit alors dim F(Fq) aq.
c) Si P e 3 non nul donne par passage au quotient par / un élément du

noyau de r\, P a au moins p solutions analytiques indépendantes et aq

solutions micro-fonctions indépendantes ; d'après les parties a) et b) appliquées
à 3P, l'exposant privilégié de P est dans (aq, p) -h N2. En divisant par Fq on
voit alors que Ker r\ est un C{x}-module de type fini; d'autre part, il existe

un entier a tel que xaP soit multiple de Fp. Le lemme 4 implique Ker q 0.

On obtient comme corollaire l'inégalité de Bernstein sur la dimension de

la variété caractéristique d'un ^-module, dans notre cas bien particulier :

Corollaire 7. Si I est un idéal de 3 tel que p dim E(I) 0 et

aq dim F(I) 0, alors I 3.

Corollaire 8. Si I,, I2,Ir sont des idéaux de Q) vérifiant

E Eil,) + + E(Ir) Eil,) © E(I2)... © E{Ir),

F Fil,) + + F(Ir) Fil,) © Fil2) © F(Ir)\

alors F injection canonique

Q) 3) <3 ®
7 — — © — •..© —

^1 ^ ^2 — n Ir ^1 12 h

est un isomorphisme et £(/1n/2... n/r) £, P(/1n/2... n/r) F.

Preuve. Par induction on est ramené à démontrer le corollaire pour
r 2; on remarque que Eil,+I2) EU,) n £(I2) 0 et F(/1 + /2) Fil,)
n Fil2) 0 par hypothèse; d'après le corollaire 7,1, + I2 3 et de la suite

exacte

3 3 3 3
0 -> — © > > 0

I,nl2 I, I2 I, + I2

on tire l'isomorphisme cherché.

D'autre part on a toujours Eil,ni2) =5 Eil,) -h £(/2) et Fil,ni2) Fil,)
+ P(/2). Choisissons A, el, et A2el2 tels que 1 A, + A2; alors pour
tout cp e Eil,nl2\ (p ^4xcp + A2(p. Si P, est dans 1,, P, A2 P, — P,A,
appartient à I, n I2 et donc P,A2<p 0 ce qui prouve que A2(p e Eil,). On

montrerait de même que A,cp g £(/2) et en conséquence que Eil,nl2) Eil,)
+ £(/2). Le raisonnement est identique pour Fil,ni2) F(I,) 4- P(/2)-
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