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8 J. BRIANCON ET P. MAISONOBE

En ILA, nous explicitons complétement les idéaux de 2 a singularité
reguliere homogéne. Cela nous permet de donner « les escaliers possibles » ou,
ce qui revient au méme, de retrouver dans le cas local une inégalité de
P. Strombeck ([S]).

En I1.B, nous donnons une démonstration du théoréme de structure des
2-modules holonomes a singularité réguliére (ou des quotients /I, ou I est
a singularité réguliere) di a L. Boutet de Monvel ([B.M.]). Nous utilisons pour
cela I'idée essentielle qui nous a été apportée par B. Malgrange, d’étudier les

classes d’isomorphismes E(I) 7:_* F(I) (u morphisme canonique et v morphisme

de variation). E(I) et F(I) sont formés de fonctions de classe de Nilsson et une
fois décomposé le couple (E(I), F(I)), il suffit d’appliquer les résultats de I.C.

En II.C, nous donnons la structure possible des solutions d’un seul opé-
rateur différentiel a singularité réguliére; plus précisément nous déterminons

les classes d’isomorphismes E(2P) éF(@P) pour un tel opérateur P (ou

encore des classes d’isomorphismes des quotients 2/2P).
Nous sommes heureux de remercier F. Pham et J.E. Bjork de I'aide et des
encouragements qu’ils nous ont prodigués.

I. BASE STANDARD D’UN IDEAL DE %

C{x} désigne I'anneau local des séries convergentes d’une variable et v la
valuation naturelle sur C{x}: pour a élément non nul de C{x},

(a) = sup{ne N |ae C{x}x"}.

d C 1 .
D désigne l'opérateur différentiel I Dans tout Particle, idéal de 2 signifie
X

idéal a gauche.
I.LA. DIVISIONS DANS &

Un élément non nul P de 2 s’écrit de maniere unique
P = adDd + ad_lDd_l + — + ao

avec d e N; (ag, ag—1, - ao) € C{x}**1; a; # 0.
Nous définissons I’exposant privilégié de P:

exp(P) = (o(P), d(P)) € N?
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»(P) = la valuation naturelle de a, dans C{x},
d(P) = d le degré de P.

Pour P = a,D* + a;_ D ' + .. + aget Q = b D + b,_ (D! + .. + by,
la régle de multiplication dans 2 donne (en prenant d(0) = —0):

QP = b,aD?"¢ + S, dS) <d+e.
On en déduit facilement que pour deux éléments P et Q non nuls de Z:

exp(QP) = exp(Q) + exp(P), et qu'on a l'algorithme de division:

LEMME 1. Etantdonné A€ @, Pe P nonnul dexposant privilégié (v, d),
il existe un couple unique (Q, R) d'éléments de 2 tel que:

A= QP + R,
R= ) rea XD+ S, diS) < d, r, €C.
dgﬁ;f;d )

Introduisons maintenant, pour un idéal a gauche non nul I de &, l'en-
semble Exp(I) des exposants privilégiés des éléments non nuls de I, puis:

a) p = le degré minimum des éléments non nuls de I,
b) pour j > p, o; = la valuation minimum des éléments de I de degré j.
Du fait que I est un idéal a gauche, en appliquant la régle exp(QP)
= exp(Q) + exp(P), on s’apergoit que Exp(I) + N? = Exp(l) et en particulier
que la suite (o), , est decroissante;
¢) g =inf{jlo; = o, = ..}.
En regroupant ces définitions on obtient la caractérisation de lescalier ES(I)
d'un idéal 1I:
ES(I) = {(ap’ p). (ap+1 ? p+ 1). b '; (aq’ q)} bl
Exp(l) = (U {(a;, )+ Nx{0}}) U {(o. 9+ N} ,

psj<g
(ou U désigne la réunion disjointe).

Nous appelons base standard de I un systéme {F o F pris F,} d’éléments
de Itelsque p <j < g, exp(F;) = (a;,]).

PROPOSITION 2 (division par un idéal). Etant donné un idéal I non nul
de 9 descalier {(a,,p);..;(a,,q)} de base standard {Fp, Fpiys o Fi}y
et un élément A de 2, il existe un systéme unique (Qp» s Qg—1)
eC{x}"?,0,€9, ReD tel que:
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A=QF, +.+0F, +R,
d(A) a;—1
R=5> 5 ruxD'+S§, dS)<p, . r,eC.

I=p k=0
De plus A€l siet seulement si R = 0.

Preuve. En ce qui concerne P'existence, on commence par diviser A par F,
suivant le lemme 1, puis-en faisant le premier pas de la division du reste obtenu
successivement par F,_, .., F,. N .

Pour l'unicité, on constate que les conditions imposées sur le reste
impliquent exp(R) ¢ Exp(I) pour R non nul; par conséquent: A€ < R = 0.
Les détails sont laissés au lecteur.

Une base standard de I forme donc un systéme de générateurs de I ; comme
d’habitude, une base standard plus belle que les autres s’obtient en faisant la
division de x*% D’ par {F > Fg} en notant R; le reste obtenu,

{G, = x*D? — R,, .., G, = x* D — R}

q

est la base standard en question.

Lorsque l'on filtre & par le degré, on note gr? = C{x} [£] le gradué
associé et grl I'idéal homogene engendré par les symboles principaux des élé-
ments de I; par définition de Exp(I), grl est engendre par les mondmes
(x¥&%),<;<q- Cela permet en particulier de calculer, en fonction de I'escalier
de I:

C{x} [€]
“grl + (x, &)

dim = # {(0,j) e N?| (o, j) ¢ Exp(/) et o +j<n}.

Ainsi la multiplicité de la variété caractéristique V(2/I) définie par grl au
voisinage de 0 dans C? est o, + p: il sagit de la multiplicit¢ de 9/I a
'origine (voir [L]).

I.B. RELATIONS ENTRE LES ELEMENTS D'UNE BASE STANDARD

" I désigne toujours un idéal non nul de 2 d’escalier {(a,, p);...; (%, )}
et (F,, .., F,) une base standard de I que nous supposons désormais nor-
malisée : _

d(F]:—x“f D)y <j pourj=p,..q.

Par division de x*~'"% F; par {F [ TR p} nous obtenons les relations
R x4 "W F; = (DHuy - )Fjoy + u5-5F; 5 + o+ u , Fp (u;,€C{x}),

pourtoutp + 1 <j < gq.
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PROPOSITION 3. Les relations (R)),+1<j<q Jorment une base des relations
entre les éléments de la base (F,,..F;) de I etonala résolution libre
de I comme %-module a gauche:

09978 girtl L1590,

Preuve. La matrice # des relations (%)),,,_,, ¢st la transposée de la
matrice

D + up‘l'l,p U,i2.p e Uy
— X%t D+ upijpp+1
0 _xap+1—0!p+2 .
0 . Ugg-2
D+ u, .
6 () . S

et ces relations sont donc libres.

Soit A,F, + A, F,,1 + .. + A;F, = O.une relation; étant donnés deux
entiersket,k = 0,p < | < g + 1,nousdirons quelarelationo/ = (4,, .., 4))
est dans Q, ; si: |

d(A4 J<q,

)< k pour | <
dlA;) <k pour p<j<lI.

J

Nous allons montrer par récurrence la propriété w, ;: toute relation appar-
tenant a Q, , est engendreée par les relations (%;),+1<;<,- Par des conside-
rations de degré la propriété m, , est vraie ainsi que l'implication w,
= O, g+1 = O, q-

—1?p

Il ne reste donc plus qu'a démontrer que w, ., entraine w, ; pour
p<l<qgetk>1 Orsi o =(4,,..,A,) est une relation appartenant a
Q, , on peut écrire A4, = b D*¥ + Aj avec b e C{x} et d(4}) < k; alors of — b
D' R, appartient & Q. ,,, ce qui permet d’appliquer I’hypothése de
récurrence.

Nous allons maintenant montrer que F, et F, engendrent I'idéal I; pour

cela nous utilisons un lemme classique (voir [P], lemme 10.3.1, p. 95).

LEMME 4. Soit M un Z-module a gauche tel que le C{x}-module sous-
Jacent soit de type fini; alors M est un C{x}-module libre.

Preuve. La démonstration étant trés rapide nous nous permettons de la
recopier. Soit (e, .., e,) un systéme de générateur de M sur C{x} induisant
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une base de I'espace vectoriel M/(x)M (possible par le lemme de Nakayama).

p

Supposons l'existence d’une relation ) u;e; = O entre les générateurs a
i=1 .

coefficients dans C{x} d’ordre ® = minimum des valuations des coefficients
u; non nuls; en appliquant D on trouve la relation

M=

p p p
(u; D+ue; =) uie; + ) ul), vge) =0
i=1 i=1 k=1 .

i=1
p ..
(en prenant D e; = ) vy e,); on peut I'écrire sous la forme
k=1
p
/
(u,- + Z uj vﬁ)ei == O

1 ji=1

DM

i
ou on s’apergoit que c’est une relation d’ordre @ — 1. Une relation d’ordre 0
étant impossible, le lemme est démontre.

PRrOPOSITION 5. Soit I un idéal non nul de 2, d’escalier

{0, D)5 5 (05 D}
et soit {F,, .., F,} une base standard: |
a) q = p équivaut a 1 monogene, et 1 = DF,;
b) g >p alors I = 9F, + DF,.

Preuve. Introduisons le Z-module M = I/(ZF ,+ 2F,). En appliquant la
proposition 2, tout élément 4 de I s’écrit

A=QF, + ..+ Qu \Fo1 + QF,,

ou (Q,, ... 0,—1) sont dans C{x}; M est donc un C{x}-module de type fini
(engendré par Fj,q, .., Fy_ 1)

D’autre part, pour tout élément A de I, il existe un entier o et Be &
tels que x* A = B F,: il suffit pour cela de diviser x*4 par F, (lemme 1) et de
se souvenir de la définition de I’escalier de I.

Ainsi M = 0 d’apres le lemme 4.

I.C. SOLUTIONS ANALYTIQUES ET MICRO-FONCTIONS

Notons, pour € > O:
D, ={xeCl||x| < e},
D, = {xeC|0<|x|<g},

€

~

D, = {x e C|Re(x) < Loge} le revétement universel du disque pointé muni
de sa projection n: D, —» D,: n(y) = e’
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On considére les espaces de fonctions analytiques O(D,) (O(D) comme
sOus-espaces (par n*) de l'espace des fonctions analytiques multiforme oD,

sur D
Les opérateurs différentiels a coefficients analytiques dans D, opérent de

maniére naturelle sur O(D,), (O(D ) et O(D,):

{ a(x)- f(y) = a@)f(),
D-f(y) = fiye .

Et cette action commute avec la monodromie:

M-f(y) = fy+2im),

monodromie laissant fixe les éléments de (O(De).
Enfin on peut définir le morphisme de variation v: O(D.)/0O(D,) — O(D,)
par:

v f(y) = (M—id)- f(y) = fy+2im) — f(3).

En définitive, en passant 4 la limite inductive pour & — 0, on construit un
couple de Z-modules:

o = lim O(D,),
M = lim O(D,)/O(D,)
muni des applications C-linéaires:

u
A o> M
v
u application canonique de passage au quotient,
v morphisme de variation ,

qui commutent avec les actions & sur &/ et 4. De plus vou + id et
uov + id sont les morphismes de monodromie sur .« et .# respectivement.

On appelle solution analytique d’un idéal I de @ un élément f de o
annulé par les opérateurs appartenant a I, et on note E(I) = &/ le sous-
espace vectoriel des solutions analytiques de I; on définit de méme le

sous-espace F(I) ¢ .# des solutions micro-fonctions de I. En un mot, on
obtient le couple

E(l) - F()

des solutions de I.
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PROPOSITION 6. Soit I un idéal non nul de 2, d’escalier

{0, P) 55 (g, @)} s {Fpsr Fo}

une base standard de I, E(I) et F(I) les espaces de solutions analytiques
et micro-fonctions de 1I:

a) dim E(I) = p et les solutions analytiques de 1 sont les solutions analy-
tiques de F,.

b) dim F(I) = o, et les solutions micro-fonctions de I sont les solutions

micro-fonctions de F,.

¢) Etant données une base (f,,.., f,) de E(I) et une base

(<gl>9 weey <gaq>)

de F(I), le morphisme canonique

/1 S 9 [(fl, o F (<1 o <gaq>):| c AP M

est un isomorphisme de &-modules.

Preuve. a) Par les théoremes classiques sur les équations différentielles,
nous savons que P'espace des solutions analytiques de F, est de dimension p;
il nous suffit donc de montrer que toute solution analytique de F, est
solution de F, (proposition 5). Par division (lemme 1) nous savons qu’il existe
o entier et Q € 9 tel pue x*F, = Q F,; on en déduit que F,- f = 0 implique
x*F,+f=0donc F,- f = 0pour fe.«.

b) Les relations entre les €léments de la base standard (proposition 3)
peuvent s’écrire:

v

— - ~- - — _
Fp Fp 0
Fp+1 Fp+1 0
DJ|. = A . + .
0

Fq_1 Fq_l x“q“‘_“"Fq

ou A est la matrice a coeflicients analytiques:
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s, x4+ 0
_up+2,p ° 0

. xdq—z Qg-1
—Ugp s o e —Ugq-1

si < g > est une solution micro-fonction de F,, F, g est analytique et:

o m— — — Sy
F, g D‘;p-g 0
, 0
D . = A . + |
0

Fooyg F,_1+9g xPa-1TME . . g

Ce qui signifie que (F,-g, .., F,_;g) est solution du systéme différentiel
analytique au voisinage de 0; donc F,-g est analytique et F, < g > = 0.
C'est-a-dire que toute solution micro-fonction de F, est solution micro-
fonction de I.

Il nous reste a montrer que la dimension de I'espace des solutions micro-
fonctions de F, = x® D? 4 .. est o, ; on a le diagramme commutatif suivant,
dans lequel les lignes et les colonnes sont exactes: |

1) 0 0
K E(F,) F(F)
Lo
0—’C{x} —> of > _/ > ()
S I
| Y ,
00— C{x} > of -/ >0

-+
O -+
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D’apres le théoreme de l'indice de B. Malgrange ([M;] et [M;]) dim K
— dim L = q — a,, et on a vu au point a) que dim E(F)) = g; le lemme du
serpent fournit alors dim F(F,) = a,. '
¢) Si P e 2 non nul donne par passage au quotient par I un élément du
noyau de mn, P a au moins p solutions analytiques indépendantes et o,
solutions micro-fonctions indépendantes; d’aprés les parties a) et b) appliquées
a 9P, l'exposant privilégié de P est dans (o, p) + N?. En divisant par F, on
voit alors que Ker n est un C{x}-module de type fini; d’autre part, il existe
un entier o tel que x*P soit multiple de F »- Le lemme 4 implique Ker np = 0.

On obtient comme corollaire I'inégalité de Bernstein sur la dimension de
la variété caractéristique d’'un 2-module, dans notre cas bien particulier:

COROLLAIRE 7. Si I estunidéalde 2 telque p = dim E(I) = 0 et
«, = dim F(I) = 0, alors I = 9.

COROLLAIRE 8. Si I,,1,, .., I, sont desidéaux de 2 vérifiant
E=ElI)+ ..+ EU)=El,)®EI,)..®EI),
F = F(,) + ..+ F(I,) = F(I,) & F(I,) .. ® F(l,),

alors linjection canonique

9 2 9 7
Q.0

—& — ;
Lal,.nl, 1, 71,7 71,

est un isomorphisme et E(I,nl,..Nnl) = E, F(I;nl,..nl,) = F.

Preuve. Par induction on est ramené a démontrer le corollaire pour
r = 2; on remarque que E(I,+1,) = E(I;) n E(I,) = Oet FI,+1,) = F(I,)
N F(I,) = 0 par hypothése; d’apres le corollaire 7, I, + I, = 2 et de la suite
exacte

7 9 9 9
- — P — -

00— -0

on tire I'isomorphisme cherché.

D’autre part on a toujours E(I,nI;) o E(I;) + E(I,) et F(I,nl,) > F(I,)
+ F(I,). Choisissons A, €1, et A,el, tels que 1 = A; + A,; alors pour
tout ¢ € E(I,nI,), ¢ = A;¢ + A,¢. Si P, est dans I, P, A, = P; — P,;A,
appartient a I, n I, et donc P, 4,¢ = 0 ce qui prouve que A4,¢ € E(I,). On
montrerait de méme que 4, ¢ € E(I,) et en conséquence que E(I,nI,) = E(I,)
+ E(I,). Le raisonnement est identique pour F(I,nI,) = F(I,) + F(I,).
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