Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 30 (1984)

Heft: 1-2: LENSEIGNEMENT MATHEMATIQUE

Artikel: IDEAUX DE GERMES D'OPERATEURS DIFFERENTIELS A UNE
VARIABLE

Autor: Briancon, J. / Maisonobe, Ph.

DOl: https://doi.org/10.5169/seals-53819

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-53819
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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IDEAUX DE GERMES D’'OPERATEURS DIFFERENTIELS
A UNE VARIABLE

par J. BRIANGCON et Ph. MAISONOBE

INTRODUCTION

Notre but dans ce travail est de décrire de la maniére la plus explicite
possible les idéaux (4 gauche) de 'anneau 2 des germes d’opérateurs diffé-
rentiels analytiques d’une variable complexe. Notre apport repose pour
I’essentiel sur le procédé, élémentaire s’il en est, de la division. La plupart des
résultats présentés ici étaient déja connus ; nous les démontrons de fagon simple

en y apportant parfois quelques précisions.

| En I.A, nous montrons comment recopier [ Br] pour faire des divisions dans
Z et introduisons un systéme particulier (F,, .., F,) de générateurs d’un
idéal I de 2, appelé base standard de I. Soit P = ay(x)D? + ... + ay(x) un
¢lement de & de degré d; appelons valuation de P, la valuation naturelle de
a (x) dans C{x}; disons seulement que F, (resp. F,) est un élément de I de
degre (resp. valuation) minimal quelconque parmi ceux de valuation (resp.
degré) minimale.

En LI.B, nous explicitons les relations entre les éléments d’une base standard,
ce qui nous permet de donner une présentation de I sous la forme

0929 P 91P"1 4,150,

En «divisant », on montre [ = 9F, + 2F, Nous trouvons donc deux
genérateurs promis par lutilisation du théoréme de J.T. Stafford ([Bj];
chap. I, th. 8.18). }

En L.C, nous examinons les questions sous I’angle des systémes d’équations
differentielles. On y établit que les solutions analytiques de I, E(I), (resp.
microfonctions, F(I)) dans un disque coupé sont données par les solutions de
Popérateur F, (resp. F,). Les théorémes de Cauchy et de I'indice de Malgrange
(IM,] et [M;]) nous _permettent d’en déterminer le nombre. Toujours en
«divisant », on montre alors que ces deux types de solutions déterminent
I'idéal: si un opérateur P s’annule sur E(I) et F(I), il appartient & Iidéal I.
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En ILA, nous explicitons complétement les idéaux de 2 a singularité
reguliere homogéne. Cela nous permet de donner « les escaliers possibles » ou,
ce qui revient au méme, de retrouver dans le cas local une inégalité de
P. Strombeck ([S]).

En I1.B, nous donnons une démonstration du théoréme de structure des
2-modules holonomes a singularité réguliére (ou des quotients /I, ou I est
a singularité réguliere) di a L. Boutet de Monvel ([B.M.]). Nous utilisons pour
cela I'idée essentielle qui nous a été apportée par B. Malgrange, d’étudier les

classes d’isomorphismes E(I) 7:_* F(I) (u morphisme canonique et v morphisme

de variation). E(I) et F(I) sont formés de fonctions de classe de Nilsson et une
fois décomposé le couple (E(I), F(I)), il suffit d’appliquer les résultats de I.C.

En II.C, nous donnons la structure possible des solutions d’un seul opé-
rateur différentiel a singularité réguliére; plus précisément nous déterminons

les classes d’isomorphismes E(2P) éF(@P) pour un tel opérateur P (ou

encore des classes d’isomorphismes des quotients 2/2P).
Nous sommes heureux de remercier F. Pham et J.E. Bjork de I'aide et des
encouragements qu’ils nous ont prodigués.

I. BASE STANDARD D’UN IDEAL DE %

C{x} désigne I'anneau local des séries convergentes d’une variable et v la
valuation naturelle sur C{x}: pour a élément non nul de C{x},

(a) = sup{ne N |ae C{x}x"}.

d C 1 .
D désigne l'opérateur différentiel I Dans tout Particle, idéal de 2 signifie
X

idéal a gauche.
I.LA. DIVISIONS DANS &

Un élément non nul P de 2 s’écrit de maniere unique
P = adDd + ad_lDd_l + — + ao

avec d e N; (ag, ag—1, - ao) € C{x}**1; a; # 0.
Nous définissons I’exposant privilégié de P:

exp(P) = (o(P), d(P)) € N?
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»(P) = la valuation naturelle de a, dans C{x},
d(P) = d le degré de P.

Pour P = a,D* + a;_ D ' + .. + aget Q = b D + b,_ (D! + .. + by,
la régle de multiplication dans 2 donne (en prenant d(0) = —0):

QP = b,aD?"¢ + S, dS) <d+e.
On en déduit facilement que pour deux éléments P et Q non nuls de Z:

exp(QP) = exp(Q) + exp(P), et qu'on a l'algorithme de division:

LEMME 1. Etantdonné A€ @, Pe P nonnul dexposant privilégié (v, d),
il existe un couple unique (Q, R) d'éléments de 2 tel que:

A= QP + R,
R= ) rea XD+ S, diS) < d, r, €C.
dgﬁ;f;d )

Introduisons maintenant, pour un idéal a gauche non nul I de &, l'en-
semble Exp(I) des exposants privilégiés des éléments non nuls de I, puis:

a) p = le degré minimum des éléments non nuls de I,
b) pour j > p, o; = la valuation minimum des éléments de I de degré j.
Du fait que I est un idéal a gauche, en appliquant la régle exp(QP)
= exp(Q) + exp(P), on s’apergoit que Exp(I) + N? = Exp(l) et en particulier
que la suite (o), , est decroissante;
¢) g =inf{jlo; = o, = ..}.
En regroupant ces définitions on obtient la caractérisation de lescalier ES(I)
d'un idéal 1I:
ES(I) = {(ap’ p). (ap+1 ? p+ 1). b '; (aq’ q)} bl
Exp(l) = (U {(a;, )+ Nx{0}}) U {(o. 9+ N} ,

psj<g
(ou U désigne la réunion disjointe).

Nous appelons base standard de I un systéme {F o F pris F,} d’éléments
de Itelsque p <j < g, exp(F;) = (a;,]).

PROPOSITION 2 (division par un idéal). Etant donné un idéal I non nul
de 9 descalier {(a,,p);..;(a,,q)} de base standard {Fp, Fpiys o Fi}y
et un élément A de 2, il existe un systéme unique (Qp» s Qg—1)
eC{x}"?,0,€9, ReD tel que:
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A=QF, +.+0F, +R,
d(A) a;—1
R=5> 5 ruxD'+S§, dS)<p, . r,eC.

I=p k=0
De plus A€l siet seulement si R = 0.

Preuve. En ce qui concerne P'existence, on commence par diviser A par F,
suivant le lemme 1, puis-en faisant le premier pas de la division du reste obtenu
successivement par F,_, .., F,. N .

Pour l'unicité, on constate que les conditions imposées sur le reste
impliquent exp(R) ¢ Exp(I) pour R non nul; par conséquent: A€ < R = 0.
Les détails sont laissés au lecteur.

Une base standard de I forme donc un systéme de générateurs de I ; comme
d’habitude, une base standard plus belle que les autres s’obtient en faisant la
division de x*% D’ par {F > Fg} en notant R; le reste obtenu,

{G, = x*D? — R,, .., G, = x* D — R}

q

est la base standard en question.

Lorsque l'on filtre & par le degré, on note gr? = C{x} [£] le gradué
associé et grl I'idéal homogene engendré par les symboles principaux des élé-
ments de I; par définition de Exp(I), grl est engendre par les mondmes
(x¥&%),<;<q- Cela permet en particulier de calculer, en fonction de I'escalier
de I:

C{x} [€]
“grl + (x, &)

dim = # {(0,j) e N?| (o, j) ¢ Exp(/) et o +j<n}.

Ainsi la multiplicité de la variété caractéristique V(2/I) définie par grl au
voisinage de 0 dans C? est o, + p: il sagit de la multiplicit¢ de 9/I a
'origine (voir [L]).

I.B. RELATIONS ENTRE LES ELEMENTS D'UNE BASE STANDARD

" I désigne toujours un idéal non nul de 2 d’escalier {(a,, p);...; (%, )}
et (F,, .., F,) une base standard de I que nous supposons désormais nor-
malisée : _

d(F]:—x“f D)y <j pourj=p,..q.

Par division de x*~'"% F; par {F [ TR p} nous obtenons les relations
R x4 "W F; = (DHuy - )Fjoy + u5-5F; 5 + o+ u , Fp (u;,€C{x}),

pourtoutp + 1 <j < gq.
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PROPOSITION 3. Les relations (R)),+1<j<q Jorment une base des relations
entre les éléments de la base (F,,..F;) de I etonala résolution libre
de I comme %-module a gauche:

09978 girtl L1590,

Preuve. La matrice # des relations (%)),,,_,, ¢st la transposée de la
matrice

D + up‘l'l,p U,i2.p e Uy
— X%t D+ upijpp+1
0 _xap+1—0!p+2 .
0 . Ugg-2
D+ u, .
6 () . S

et ces relations sont donc libres.

Soit A,F, + A, F,,1 + .. + A;F, = O.une relation; étant donnés deux
entiersket,k = 0,p < | < g + 1,nousdirons quelarelationo/ = (4,, .., 4))
est dans Q, ; si: |

d(A4 J<q,

)< k pour | <
dlA;) <k pour p<j<lI.

J

Nous allons montrer par récurrence la propriété w, ;: toute relation appar-
tenant a Q, , est engendreée par les relations (%;),+1<;<,- Par des conside-
rations de degré la propriété m, , est vraie ainsi que l'implication w,
= O, g+1 = O, q-

—1?p

Il ne reste donc plus qu'a démontrer que w, ., entraine w, ; pour
p<l<qgetk>1 Orsi o =(4,,..,A,) est une relation appartenant a
Q, , on peut écrire A4, = b D*¥ + Aj avec b e C{x} et d(4}) < k; alors of — b
D' R, appartient & Q. ,,, ce qui permet d’appliquer I’hypothése de
récurrence.

Nous allons maintenant montrer que F, et F, engendrent I'idéal I; pour

cela nous utilisons un lemme classique (voir [P], lemme 10.3.1, p. 95).

LEMME 4. Soit M un Z-module a gauche tel que le C{x}-module sous-
Jacent soit de type fini; alors M est un C{x}-module libre.

Preuve. La démonstration étant trés rapide nous nous permettons de la
recopier. Soit (e, .., e,) un systéme de générateur de M sur C{x} induisant
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une base de I'espace vectoriel M/(x)M (possible par le lemme de Nakayama).

p

Supposons l'existence d’une relation ) u;e; = O entre les générateurs a
i=1 .

coefficients dans C{x} d’ordre ® = minimum des valuations des coefficients
u; non nuls; en appliquant D on trouve la relation

M=

p p p
(u; D+ue; =) uie; + ) ul), vge) =0
i=1 i=1 k=1 .

i=1
p ..
(en prenant D e; = ) vy e,); on peut I'écrire sous la forme
k=1
p
/
(u,- + Z uj vﬁ)ei == O

1 ji=1

DM

i
ou on s’apergoit que c’est une relation d’ordre @ — 1. Une relation d’ordre 0
étant impossible, le lemme est démontre.

PRrOPOSITION 5. Soit I un idéal non nul de 2, d’escalier

{0, D)5 5 (05 D}
et soit {F,, .., F,} une base standard: |
a) q = p équivaut a 1 monogene, et 1 = DF,;
b) g >p alors I = 9F, + DF,.

Preuve. Introduisons le Z-module M = I/(ZF ,+ 2F,). En appliquant la
proposition 2, tout élément 4 de I s’écrit

A=QF, + ..+ Qu \Fo1 + QF,,

ou (Q,, ... 0,—1) sont dans C{x}; M est donc un C{x}-module de type fini
(engendré par Fj,q, .., Fy_ 1)

D’autre part, pour tout élément A de I, il existe un entier o et Be &
tels que x* A = B F,: il suffit pour cela de diviser x*4 par F, (lemme 1) et de
se souvenir de la définition de I’escalier de I.

Ainsi M = 0 d’apres le lemme 4.

I.C. SOLUTIONS ANALYTIQUES ET MICRO-FONCTIONS

Notons, pour € > O:
D, ={xeCl||x| < e},
D, = {xeC|0<|x|<g},

€

~

D, = {x e C|Re(x) < Loge} le revétement universel du disque pointé muni
de sa projection n: D, —» D,: n(y) = e’
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On considére les espaces de fonctions analytiques O(D,) (O(D) comme
sOus-espaces (par n*) de l'espace des fonctions analytiques multiforme oD,

sur D
Les opérateurs différentiels a coefficients analytiques dans D, opérent de

maniére naturelle sur O(D,), (O(D ) et O(D,):

{ a(x)- f(y) = a@)f(),
D-f(y) = fiye .

Et cette action commute avec la monodromie:

M-f(y) = fy+2im),

monodromie laissant fixe les éléments de (O(De).
Enfin on peut définir le morphisme de variation v: O(D.)/0O(D,) — O(D,)
par:

v f(y) = (M—id)- f(y) = fy+2im) — f(3).

En définitive, en passant 4 la limite inductive pour & — 0, on construit un
couple de Z-modules:

o = lim O(D,),
M = lim O(D,)/O(D,)
muni des applications C-linéaires:

u
A o> M
v
u application canonique de passage au quotient,
v morphisme de variation ,

qui commutent avec les actions & sur &/ et 4. De plus vou + id et
uov + id sont les morphismes de monodromie sur .« et .# respectivement.

On appelle solution analytique d’un idéal I de @ un élément f de o
annulé par les opérateurs appartenant a I, et on note E(I) = &/ le sous-
espace vectoriel des solutions analytiques de I; on définit de méme le

sous-espace F(I) ¢ .# des solutions micro-fonctions de I. En un mot, on
obtient le couple

E(l) - F()

des solutions de I.
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PROPOSITION 6. Soit I un idéal non nul de 2, d’escalier

{0, P) 55 (g, @)} s {Fpsr Fo}

une base standard de I, E(I) et F(I) les espaces de solutions analytiques
et micro-fonctions de 1I:

a) dim E(I) = p et les solutions analytiques de 1 sont les solutions analy-
tiques de F,.

b) dim F(I) = o, et les solutions micro-fonctions de I sont les solutions

micro-fonctions de F,.

¢) Etant données une base (f,,.., f,) de E(I) et une base

(<gl>9 weey <gaq>)

de F(I), le morphisme canonique

/1 S 9 [(fl, o F (<1 o <gaq>):| c AP M

est un isomorphisme de &-modules.

Preuve. a) Par les théoremes classiques sur les équations différentielles,
nous savons que P'espace des solutions analytiques de F, est de dimension p;
il nous suffit donc de montrer que toute solution analytique de F, est
solution de F, (proposition 5). Par division (lemme 1) nous savons qu’il existe
o entier et Q € 9 tel pue x*F, = Q F,; on en déduit que F,- f = 0 implique
x*F,+f=0donc F,- f = 0pour fe.«.

b) Les relations entre les €léments de la base standard (proposition 3)
peuvent s’écrire:

v

— - ~- - — _
Fp Fp 0
Fp+1 Fp+1 0
DJ|. = A . + .
0

Fq_1 Fq_l x“q“‘_“"Fq

ou A est la matrice a coeflicients analytiques:
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s, x4+ 0
_up+2,p ° 0

. xdq—z Qg-1
—Ugp s o e —Ugq-1

si < g > est une solution micro-fonction de F,, F, g est analytique et:

o m— — — Sy
F, g D‘;p-g 0
, 0
D . = A . + |
0

Fooyg F,_1+9g xPa-1TME . . g

Ce qui signifie que (F,-g, .., F,_;g) est solution du systéme différentiel
analytique au voisinage de 0; donc F,-g est analytique et F, < g > = 0.
C'est-a-dire que toute solution micro-fonction de F, est solution micro-
fonction de I.

Il nous reste a montrer que la dimension de I'espace des solutions micro-
fonctions de F, = x® D? 4 .. est o, ; on a le diagramme commutatif suivant,
dans lequel les lignes et les colonnes sont exactes: |

1) 0 0
K E(F,) F(F)
Lo
0—’C{x} —> of > _/ > ()
S I
| Y ,
00— C{x} > of -/ >0

-+
O -+
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D’apres le théoreme de l'indice de B. Malgrange ([M;] et [M;]) dim K
— dim L = q — a,, et on a vu au point a) que dim E(F)) = g; le lemme du
serpent fournit alors dim F(F,) = a,. '
¢) Si P e 2 non nul donne par passage au quotient par I un élément du
noyau de mn, P a au moins p solutions analytiques indépendantes et o,
solutions micro-fonctions indépendantes; d’aprés les parties a) et b) appliquées
a 9P, l'exposant privilégié de P est dans (o, p) + N?. En divisant par F, on
voit alors que Ker n est un C{x}-module de type fini; d’autre part, il existe
un entier o tel que x*P soit multiple de F »- Le lemme 4 implique Ker np = 0.

On obtient comme corollaire I'inégalité de Bernstein sur la dimension de
la variété caractéristique d’'un 2-module, dans notre cas bien particulier:

COROLLAIRE 7. Si I estunidéalde 2 telque p = dim E(I) = 0 et
«, = dim F(I) = 0, alors I = 9.

COROLLAIRE 8. Si I,,1,, .., I, sont desidéaux de 2 vérifiant
E=ElI)+ ..+ EU)=El,)®EI,)..®EI),
F = F(,) + ..+ F(I,) = F(I,) & F(I,) .. ® F(l,),

alors linjection canonique

9 2 9 7
Q.0

—& — ;
Lal,.nl, 1, 71,7 71,

est un isomorphisme et E(I,nl,..Nnl) = E, F(I;nl,..nl,) = F.

Preuve. Par induction on est ramené a démontrer le corollaire pour
r = 2; on remarque que E(I,+1,) = E(I;) n E(I,) = Oet FI,+1,) = F(I,)
N F(I,) = 0 par hypothése; d’apres le corollaire 7, I, + I, = 2 et de la suite
exacte

7 9 9 9
- — P — -

00— -0

on tire I'isomorphisme cherché.

D’autre part on a toujours E(I,nI;) o E(I;) + E(I,) et F(I,nl,) > F(I,)
+ F(I,). Choisissons A, €1, et A,el, tels que 1 = A; + A,; alors pour
tout ¢ € E(I,nI,), ¢ = A;¢ + A,¢. Si P, est dans I, P, A, = P; — P,;A,
appartient a I, n I, et donc P, 4,¢ = 0 ce qui prouve que A4,¢ € E(I,). On
montrerait de méme que 4, ¢ € E(I,) et en conséquence que E(I,nI,) = E(I,)
+ E(I,). Le raisonnement est identique pour F(I,nI,) = F(I,) + F(I,).
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II. IDEAUX A SINGULARITE REGULIERE

’ . . . l N
Définissons une nouvelle filtration de 2:si P = Y. a,, x*D', ot g, € C,
1

<d
k=0
est un élément non nul de 9,

le poids de P est U'entier p(P) € Z:

p(P) = inf{k—1|a, # 0},
la forme initiale de P est:

inP) = Y ax*D".
| k—1=p(P)
Remarquons que d’aprés B. Malgrange [M,] et [M;], —p(P) est l'indice de
lopérateur formel P: C[x] — C[x], tandis que l'indice de I'opérateur ana-
Iytique P: C{x} - C{x} est d(P) — v(P); et P est a singularité réguliére si
p(P) = v(P) — d(P) (C’est-a-dire si P et in(P) ont méme degré).
On a les formules habituelles de multiplication:

PPy - P) = p(Py) + p(Py), in(P,« Py) = in(Py)-in(Py),
et d’addition:
si p(Py) < p(Py), p(Py+P;) = p(P,) et in(P,+P;) = in(Py)
si p(Py) = p(P,), et in(P;) + in(P,) # 0, p(P,+P;) = p(P,)
et in(P,+P,) = in(P,) + in(P,)
- si p(Py) = p(Py) et in(Py) +in(Py) = 0, p(Py+P;) > p(Py).

Nous disons qu’un élément de 2 est homogene s’il est égal a sa forme initiale,
et quun idéal J de @ est homogéne il admet un systéme de générateurs
homogenes.

A un idéal I de 2 on peut associer son idéal initial in(I) homogeéne
engendré par les formes initiales des éléments de I.

Si J est un idéal homogeéne de 2, tout élément non nul de J a sa forme
initiale dans J; réciproquement si I est un idéal de 2 vérifiant cette pro-
priété, in(I) < I, le reste de la division d’un élément de I par in() ne peut
qu’étre nul: in(I) = I et I est homogene.

LEMME 9. Soit I wun idéal non nul de 9 descalier {(a,,p), ..., (%, )}

et {F,,..,F,} une base standard de 1. Les propriétés suivantes sont équi-
valentes :
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1) il existe un élément P el d singularité réguliére (non nul),

i) les éléments F,,..,F, de la base standard sont a singularité réguliere,
i) in(I) et I ont méme escalier.

Lorsque ces propriétés sont satisfaites, nous dirons que I est un idéal @ singu-
larité réguliere; dans ce cas, nous savons d’aprés [W] par exemple que les
solutions analytiques E(I) = E(F,) de I sont de classe de Nilsson (de déter-

mination finie, a croissance modérée ; I’écriture explicite sera rappelée en 11.B)
ainsi que les solutions micro-fonctions F(I) = F(F).

Démontrons le lemme 9 :

(1) = (i1). Par division (lemme 1) il existe un entier o tel que x*P = QF ;
donc
in(x*P) = in(Q) in(F)), d(inQ) < d(Q), d(inF,) < d(F,) = p

et par hypothese
d(in(x*P)) = d(in(P)) = d(P) = d(Q) + d(F,). 4

Cela prouve que d(inQ) = d(Q) et d(inF,)) = p et en particulier que F, est a
singularité réguliere.

Montrons maintenant que F; est a singularité réguliere pour j > p + 1,
en supposant que F,, .., F;_; le sont; la relation #; (proposition 3) est

x“j_l—aij = (D+uj,j_1)Fj_1 + uj,j_sz_;;_ + — + uj,pr
et les formules d’addition et de multiplication donnent
in(xaj_l_aij) = Dln(Fj__l) "

in(F;) est donc de degré j et par conséquent F; est a singularite réguliére.

(ii) = (iii). De maniére évidente Exp(in(l)) > Exp(I) puisque pour tout
opérateur P de 9, exp(P) € exp(in(P)) + N2.
Prenons alors P dans I; par division (proposition 2), P s’écrit

P=Q,F,+.+0QF, (Qp-0,-)eC{x}*"? Q9.
Par simple considération des degrés, toute relation
R,in(F,) + .. + R,jin(F) =0, (R,,.,R,_))eC{x}*"?, R, eD,

implique Rp = .. = R, = 0; donc en fait in(F p),'..., in(F q) est un systéme de
générateurs de in(I) avec comme base des relations

Rip:x¥-t"%in(F) = Din(F;_;), p+1<j<gq.
Grace a ces relations, un élément P de in(I) peut s’écrire

P = R,in(F,) + .. + R, in(F,),
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(R, s Rg—1) € C{x}*"P, R € Z; Pexposant de P est alors égal a I'exposant
du terme de plus haut degré dans cette somme. Donc in(I) et I ont méme

escalier.
(il = (i). Une application élémentaire des définitions:

exp(in(F,)) = exp(F,) et F,
est & singularité réguliere.
II.A. IDEAUX HOMOGENES

Etant donné un escalier & = {(¢,, p), .. (¢4, )} on note m = m(&) le plus
petit des entiers j tels que (j, j) € Exp(&) = & + N2

(ot D)

On convient de poser a; = «, lorsque j > g et alors m = inf {jlj=pet
J = o;}. A Descalier & nous associons les ensembles d’entiers suivants:

AB) = {0,1,2,.,9 — o} — {m —a,, (Mm+1) — tpiy, g — oy}

lorsque o, < q,%etr A@&) = @ sinon. Les éléments de A(&) sont des entiers > 0
en nombre €gal 4 m — a.

B(&) = {—(ap—p)a _(ap+1_(p+1))’ ooy —(am—l_(m_l))}

lorsque o, > p, et B(&) = (@ sinon. Ce sont des entiers strictement négatifs en
nombre égal a m — p.

LemMME 10. Si m = m(&) = p + o, il existe un unique idéal homogéne
H(&) admettant & pour escalier; H(Q) est défini par ses solutions:
EH®) = & Cx*,

keA(&)

FH&) = & C<x*>.

keB(a)

Preuve. L’espace des ¢léments homogenes de poids 0 s’identifie 4 ’'anneau
commutatif C[xD]; pour P € C[xD] et n e Z on note P le polyndme défini
par P"(xD) = P(xD +n).

Pour n e N on a le formulaire suivant
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X"P = PL-mxn
D"P = P™D",
®, = x"D" = xD(xD—1)..(xD—n+1),
o = D"'x" = (xD+1)(xD+2)...(xD+n).
Il résulte de ce qui précéde qu’un idéal homogéne I de 2 d’escalier &

admet une base standard F,, .., F, formée d’¢léments homogénes liés par les
relations

g;‘:xaj-l—aijzDFj_l, p+1<]<q.
F; admet P’écriture unique:

P; de poids 0 de degré a;,

F; = D"%P;(xD) si j=a
< o P; de poids 0 de degré j .

F; = x%7J P;(xD) si

J

(a)j Pourj — 1> a;_, la relation %3 se traduit par

P.-= @l /tu- 1]P

j—1 aj—1—aj
(b); Pourj < a; on obtient

P, = (xD+cxj_1.—(j—1))Pj_1

J

(c)j Pourjzajetj—1<o;_,

P- = (XD'*‘aJ_l_(J—l))PJ_I

®; j

J—aj

Dans le cas m = p > «a,, seules interviennent les relations (a); pour
p + 1 < j < g et en itérant on obtient:

[—Jjtaj-1]
( 111%, )P
p

L’hypothése du lemme est alors o, = 0, P, = 1 et on trouve
H&) = 2D?"* P, + 9D = $xP~*» D?"*» P, + D"

puisque ces idéaux n’ont pas de solutions micro-fonctions et les mémes solu-
tions analytiques. Il ne reste plus qu’a se convaincre que le polyndme

: q
p—a p—a — : [—Jj+ap-1]
X PD pPP - O)P_“p 1—[ COaJ 1 51
j=p+1

a pour racines les entiers de A(&) et ces racines sont simples.
Dans le cas m = o, > g, de la méme fagon, en utilisant cette fois les for-

mules (b); on trouve

c:]
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P, = (qﬁl (xD+ocj—j)> P,.

i=p
L’hypothése du lemme est alors p = 0, donc P, = 1 et
H@) = 9x* 1P, + 9x** = @D“q Ix%"1 P, + DxF

cet idéal n’ayant que des solutions micro-fonctions. Encore une fois il reste a
vérifier que le polynome

g—1 ,
D™ x*™4 P, = (H (xD+ocj—j)> P,
j=p
a pour racines les entiers de B(&) et que ces racines sont simples.
Dans le cas o, > peta, < g,onap+ 1 <m<geton obtient d’apres

(a) et (b):

q

P, = ( I % ”> Py, d(Py) = 0y,

j=m+1

= (ml:lz (XD"*'CXJ—])) Pp: d(Pp) = D.

En utilisant maintenant (c),, on trouve:

(Dm—uum = (XD+am—1—(m—1))Pm—1

soit encore AP, = BP, ou A est le polyndome unitaire admettant les éléments
de A(&) pour racines simples, et B celui admettant les ¢léments de B(&) pour
racines simples:

dA) = m—o,, dB)=m-—p.
A ;
A et B étant premiers entre eux, on deéduit linégalit¢ d(P,) = o, > d(B)

= m — p, ainsi que l'existence d’un polynome C e C[xD] de degré & =
+ p — mtel que

‘1

P, = BC, P, = AC,

p

F, = Di"*BC, F, = x""PAC.

q p

Le cas d’égalit¢ du lemme donne & = 0, donc C = 1 et H(&) = 9x* P4
+ 2D % B; les solutions analytiques de H(&) sont celles de A4, et les solu-
tions micro-fonctions de H(&) sont celles de B. Enfin il est facile de vérifier

que H(&) a bienles solutions indiquées dans ’énoncé du lemme, et a pour
escalier 4.
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Remarquons que m(&) est toujours supérieur ou égal a p et donc que I'es-
calier translaté a'=° = {(ot,— 8, p—8), ..., (00, — 8, g— )} est bien défini avec
0 = o, + p — m; de plus A(&) et B(&) sont invariants par translation et
m(& %) = m(&) — 8. Nous avons donc obtenu:

ProposiTioN 11. Soit & = {(a,, p), .., (%, q)} un escalier, & = p + «a,
— m(&), #(&) Pensemble des idéaux homogeénes d’escalier G.

Pour 6 < 0, #(a) = Q.

Pour & = 0, # (&) est réduit au seul élément H(Q).

Pour & > 0, si on désigne par C°[xD] [lensemble des polynémes uni-
taires de degré o, [lapplication qui a C e C[xD] associe lidéal H(&!~¥)C
est une bijection sur #(G).

Soit C = [] (xD—2)™ la décomposition de C en convenant de prendre
reA

A o A(a) U B(@) et r(A) = 0 si nécessaire. Avec les notations du lemme 10,
I = HA ™ C = 2x*» " PAC + 9D “BC .
Pour A € A(&), définissons
IA) = D(xD—AyP+1 + GDM 1 (xD—A\)W |
pour A € B(a),
IA) = 2(xD—A) P 4 @x HxD—A)y®

et enfin pour A e A — A(&) — B(&), I(A) = 2(xD—\)™. On constate que E(I)
= @ E(I(M) et F(I) = @ F(I(\); d’aprés le corollaire 8, I = n I(A) et /I

reA AeA AeA

est isomorphe a @ Z/I(A).
’ Aer
Par ailleurs la multiplication a droite par la classe de D* est un iso-

morphisme de 2/2D(xD)™ sur 2/I(\) lorsque A € A(&); et pour A € B(&), il
faut multiplier 4 droite par la classe de x *~! pour obtenir I'isomorphisme
de 2/2x(Dx)® sur 2/I(\). En conclusion, avec A’ = A — A(&) — B(&):

COROLLAIRE 12. Soit I un idéal homogéne d’escalier &, = o, + p — m,
9D/1 est isomorphe d

S ) @ (6 5aer) @ (© sz
2 apeoy) ©\ 2 axer) © & 20— )
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m-—ag m-p
o+ Yo+ Y rh) =3,
=1 =1 AEA’

Nous retrouvons le résultat de P. Strombeck ([S], théoreme 1, p. 120):

COROLLAIRE 13. Soit I un idéal de 2, p = dim(E(I)), o, = dim(F(I))
et m(l) le degré minimum d’un opérateur de 1 ayant autant de solutions
analytiques que de solutions micro-fonctions,; alors m(I) < p + «, et I'égalité
nest possible que si I est a singularité réguliere.

Preuve. Lorsque I est a singularité réguliere, les escaliers de I et de in(I)
sont identiques et le premier point de la proposition 11 donne le résultat
cherche.

Supposons [ non a singul'arité réguliere, et notons (o, —u, p—v) 'exposant
privilegie de in(F,); son poids est

piF,) =a,—u—(p—v)<a,—p

etdoncu > v > 0.
Les relations #; fournissent alors, pour p + 1 <j < g:

{ P(Fj) =0o; —j— (u—v),
x¥-17%ian(F;) = Din(F;_,).

La division d’un ¢lément de I par F,, .., F, (proposition 2) permet alors de
montrer que sa forme initiale est engendrée par in(F,), .., in(F,). Il résulte de
tout cela que in(I) a pour escalier

{(,—=u, p—0), (s —u, p+1—0), .., (o, —u, g—v)},

et pour base standard in(F ), .., in(F,). La proposition 11 appliquée a lidéal
homogeéne in(I) donne:

(%) P — v+ (0,—u).> mlin(l)).

Or, par translation, (m(in(I))+u, m(In(I)) +v) € Exp(I) d’ou

m(In(I)) tuz= am(ln(]))+u = am(In(I))+u .
(La derniére égalité provenant de u > v), et par définition de m(I):
m(In(D)) + u > m(I) .

En reportant dans (*) on obtient facilement p+ a, = ml) + v > m().
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II.B. DECOMPOSITION D’UN IDEAL A SINGULARITE REGULIERE

Soit un diagramme E T:_’F ou E et F sont des C espaces vectoriels de

dimension finie, u et v des morphismes d’espaces vectoriels. De tels diagrammes
sont les objets d’une catégorie abélienne ® dont les fléches sont naturelles.

u
LEMME 14. Tout objet E < F de © se décompose en une somme
d’objets indécomposables E, ; 2 F r,1 (muni de fleches de restriction) ou E, ,

(resp. F, ;) est un sous-espace irréductible maximal de E (resp. F) stable
par vou (resp.uov) associé a la valeur propre A. D’autre part si A # 0,
ulg, , et vl , sont des isomorphismes, et si L = 0 u lg,, ou vlp, , est
surjective.

Une fois connu ce résultat déja employé par L. Boutet de Monvel ((BM])
et B. Malgrange ([M.2]) sa démonstration facile est laissée au lecteur (on
regarde la correspondance entre les blocs de Jordan de E sous laction de
vou et de F sous l'action de u - v). Reprenons les notations de I.C et choi-
sissons une détermination du logarithme. Une somme

2. (% Jo,i(%) Logix) x*, ouf,;eC{x},
ael \i=0

et ou J est un ensemble fini de nombres complexes ne différant pas d’un
entier relatif, détermine un unique élément de ./ et par action de u un unique
¢lément de .#. De tels éléments sont appelés fonctions de classe de Nilsson et
microfonctions de classe de Nilsson.

Soit I un idéal a singularité réguliére ; nous savons lui associer un élément

de ©: E(I) % F(I). De plus les éléments de E(I) et F(I) sont des fonctions et

des microfonctions de classe de Nilsson (voir la remarque suivant le lemme 9).
Nous allons expliciter la décomposition d’un tel objet de O

(E(I)QF(I)) = & (Ex,t;Fx,l)-
Notation : ,
I, = {P€@|V(f, <g>)ekE,; X Fx,,,sz 0 et P<g> = 0}.

D’aprés le lemme 13, E, ; (resp. F, ;) est un sous-espace vectoriel de E([)
(resp. de F(I)), indécomposable maximal stable par la monodromie M de
(resp. M de .#) et associé a la valeur propre A + 1 de cette monodromie. Un
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calcul simple sur les fonctions de classe de Nilsson permet de déterminer une
base de E, ; et F, ;:

Casn®l: A#0. | y

Une base de E, , = {(M—e*™Y f}ico,...r-13,¢€C —Zeth + 1 = e,
(M—e¥™y =1 f # 0 et (M—e*™) f = 0, ou quitte a ajouter a o un entier,
f sécrit:

r—1

fx) = Y fx)x*Log'x, filx)e C{x},

i=0

dim E, , = r, d’apres le lemme 14: E, ; —» F, ; donc dim F, ;, = r.

LEMME 15. Pour A # 0:9f = @x*Log ~'x, 9/I,, & D/D(xD—o) et
E(Ix,z) = Ex,za F(Ix,z) = Fx,z-

Preuve. Tout d’abord un calcul facile établit :

(1) VpeN, 2x* P Log ~'x
1 1
= C{x} l:—:l x*Log "'x + .. + C{x} [;] x*.
X

On en déduit linclusion 2 f < 2x* Log"~'x. Ecrivons: f,_,(x) = u(x)x*, ou
u(0) # 0, u(x) e C{x} et ke Z.

(xD—a—k) — f(x)
u(x)
= x*"*Log""%x + (xD—a—k) f'l;(Z(x) x*Log " %x + ...

fr—a(x)

u(x)

Mais le terme de « degré » o + k de x* Log" ™ ?x est tué par (xD — o — k),

r—

(xD—o—k) u—(lx—) f(x) = ;z g{x)x* Log 'x ol g{(x) € C{x} et g,_,(x) # 0. Par

récurrence, on montre ainsi que 2x*** Log" ™ 'x est inclus dans 2 f. D’ou le
résultat (en utilisant (1)): 2f = 2x*Log ™ 'x

f engendre par u et v: E, ; et F, ,, de sorte que 9 f = 9/I, ,

x*Log" ™ 'x est annulé par (xD —a)" et engendre par u et v, r solutions ana-
lytiques et r solutions microfonctions indépendantes. En utilisant les propo-
sitions 5 et 6, on obtient: Px* Log" 'x & 2/P(xD—a). On a donc /I,
= 9/D(xD—ay.
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Cet isomorphisme entraine:
dim E(I,, ) = dim E((xD—a)) = r et dim F(I, ) = dim F(xD—o)) = r.

Des inclusions E(I, ;) o E, et F(I, ) o F, ,, on en déduit la derniére égalité
cherchée.

Casn®2: ) = 0etulg, , surjective. : |
Une base de E,; = {(M—1)/f} jet0,r—13, M=1)f =0, M—-1y"'f
# 0, ou f s’écrit
r—1
f(x) = > fix)x"Log'x, meZ et fx)e C{x}.
i=0

Or (M—1y"" f(x) = (r— D! Qim) " fi_4(x) x™,
(M—1y"2 f(x) = (r— 1! Q2im)""? f,_4(x) x" Log x + x"g(x),

1
ou g(x) € C{x} [—} De sorte que:
x

si fi_(x)x"¢C{x}, u:E,, > Fo, estun isomorphisme
Ct dimEO,l = dimFO’l =T,

si fi_(x)x"eC{x}, dimE,, =r et dimF,, =r — 1.

LEMME 16. Pour L = 0 et u|g ,6 surjective deux cas se présentent:
.a) dim E, , = dim F,;, alors f,_i(x)x™¢C{x} et

1
9f = D-Log 'x, DI, = D/9DxY,
X

b) dim E,, = dim Fy, + 1, alors f,_(x)x™e C{x} et
9f = DLog " 'x, 9/l,,= 2/2(Dx)"'D.
Dans les deux cas:
-  E(l,) = Eo, et F(lo) = Fo,.

Preuve. On établit facilement que
1 r—1 C 1 L | r;l C 1
VpeN — {0}, Q'x—p-Log x = C{x} s :og X + ... + C{x} Mk
VpeN, 9x?Log  'x

— C{x} Log'~'x + C{x} E] Log ™ 2x + ... + C{x} E]

i S i
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La démonstration est alors analogue & celle du lemme 15.

Casn°3: A =0 vlp, surjective.
Une base de Fo, = {(M—1Y <f>}iq0
s'écrit :

r—1} ou <f> = u(f): et f

,,,,,

r—1

fx) = ¥ fix)x"Log'x,meZ et f(x)e C{x}.

0

En déterminant les germes de (M — 1Y < f >, il vient:

dimFo, =r, dimEy, =r—1 si f_,(x)x"¢C{x},
dlm FO,I = r — 1 = dlm EO,I Sl f;._l(X)meC{X} "

_LEMME 17. Pour A =0 et vlp, , surjective deux cas se présentent :

a) dimF,, = dim Eq, + 1, alors f,_;(x) x™ ¢ C{x},
1
9 <f> =9 <=Log" x>, 9/l,, = D/9(xD) 'x,
X

b) dim F,, = dim E, ,, alors f,_,(x)x™e C{x},
9 <f> =9 <Log x>, 9/I,,= 9/9(xD) " ".
Dans les deux cas: E(Iy ;) = Ey, et F(y,) = Fo,.

1
Preuve. Les égalités 9 <f> = 9 <—Log "'x> dans le cas a) et
X

2 <f> = P <Log 'x> dans le cas b) se déduisent du lemme 16. La fin
de la preuve est alors analogue a celle du lemme 15.

ProPOSITION 18. Soit I wun idéal a singularité réguliere, @& (E, ;; F, )

u

une décomposition de E(I) 2 F(I) en sous-espaces indécomposables maxi-
v

maux. Posons: '

ILZ={P€@; VfEEl,l Ct V<g> EF}‘,I,
Pf=0 e P<g>=0}.
Alors :
I'=n1l, et 9/I=&9/l,, ElL,)=E, Fl,=F,,
De plus chacun des 2/I, , est isomorphe d I'un des D-modules

9 9 9 9 9
DxD—oa)’ DDxy’ DxDy’ DDxyD’ DxDyx'
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Preuve. Des lemmes 15, 16, 17, on déduit:

ED) = @ E(,,) et F) =@ F(,),
du corollaire 8, la proposition découle facilement.
Un Z-module holonome (d’une variable) est un Z-module de type fini
dont la variété caractéristique est de dimension 1 ([P] chap. 8); on dit qu’il

est a singularité réguliére lorsqu’il est engendré sur & par un sous (¢-module
de type fini stable par xD.

COROLLAIRE 19. Soit M un 2D-module a singularité régulieére holonome.
Alors M est isomorphe a une somme directe finie de 9-module de la forme:

2 9 9 2, 2
DxD—o)’ DDxy’ DDy’ DDxyD’ D(xD)x

C’est le résultat donné par L. Boutet de Monvel [BM].

Preuve a partir de la proposition 17. M étant un 2-module holonome,
M est de longueur finie (voir [L], chap. III). Comme & est un anneau simple,
le théoréme de J.T. Stafford (voir [Bj] chap. I) dit que M est cyclique; ou
encore 1l existe un idéal I de & tel que M = 9/I. On montre a partir de la
deéfinition des Z-modules a singularité réguliére holonome (voir [P] chap. 11,
p. 105) que les solutions analytiques et microfonctions de &/I sont de classe de
Nilsson. Or c’est la seule propriété de I que 'on a utilisée pour démontrer la
proposition 18, d’ou le corollaire 19. De plus il est facile de construire un
opérateur a singularité réguliére annulant E(I) et F(I), donc appartenant a I.
Il résulte de la définition (lemme 9) que I est a singularité réguliére.

COROLLAIRE 20. Soit I wun idéal a singularité réguliere, alors il existe
J idéal a singularité réguliéere homogene tel que /1 = P/J.

Preuve. C’est une conséquence de la proposition 18 et du corollaire 12.

II.C. LES IDEAUX PRINCIPAUX

L’objet de ce dernier paragraphe est la classification des Z-modules a sin-
gularité réguliére de la forme 2/2P.

Notation: Etant donné des entiers (p, g, r, s) positifs ou nuls, A une
partie finie de C-Z, et des entiers:
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o = (A, ..., %) € NP, B = (By,. By €N,
Y = (Y, ¥) € N¥), § = (8;, .., 8) e N*),
g = (eW)hea € N¥)", |

on note #(a, B, v, 5, €) le Z-module:

£ 9 q 17 oy 9
(& o) @ (2 o) @ (8, a)

é 7 ®| D 7
@ I=1 @(Dx)f" reA @(XD—)\.)S(M

Il est convenu que si p, ¢, ou s est nul, ou si A = @ le facteur corres-
pondant est nul. Les facteurs indécomposables qui apparaissent seront dits de
type (I), (IT), (ITT), (IV) ou (V) respectivement.

Définition 21. On dit que A' ~ M(, B, Y, ¥, €) s’obtient a partir de
M ~ Mo, B, 7y, d, €) par adjonction d’une solution « micro-meéro » dans I'un
des trois cas suivants:

a) M ~ M D (2/Dx),

b) un facteur 9/2D(xD)* de . est remplacé par un facteur 2/2(Dx)*"*
dans /',

¢) un facteur 2/2(xD)* de .4 est remplacé par un facteur 2/Px(Dx)’™
dans /' . ’

Nous représentons les quatre premiers types de modules indécomposables
par un éclair:

070 /Q .70
T 'f 'Z:

o/ @ o/
(1) (In) () (1v)

Les points de la colonne de gauche représentent une « base de Jordan de
solutions analytiques », les points de la colonne de droite « une base de Jordan
de solutions micro-fonctions »; les traits horizontaux de la gauche vers la
droite représentent le morphisme u, et les traits descendants de la droite vers
la gauche le morphisme de variation v.

Avec cette figuration:
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— lopération (a) est P'adjonction de I’éclair élémentaire de type II,

— lopération (b) consiste a remplacer un éclair de type (I) par un éclair de
type (IV) en ajoutant le trait horizontal inférieur:

o =
e

« o~

— lopération (c) consiste & remplacer un éclair de type (III) par un éclair
de type (II) en ajoutant le trait horizontal inférieur:

Définition 22: On dit que A#(a, B, v, 0, €) d’indice p — g = 0 vérifie la
condition (M) si, quitte a réordonner les facteurs, pour 1 <i < p, o; > B;.
On dit que #(a, B, v, 0, €) d’indice T = p — g < 0 vérifie la condition (M) s’il
s’obtient a partir d’'un Z-module vérifiant la condition (M,) par adjonction
successive de (—t) solutions « micro-méro ». .

On dit que #(a, B, v, 6, ¢) d’indice T = p — q > 0 vérifie la condition (M)
si, par /adjonction successive de T solutions « micro-méro », on peut obtenir
un Z-module vérifiant la condition (M,). On peut aussi exprimer cette
condition en disant que, quitte a réordonner les facteurs, o; > B; pour
1<i<p.

THEOREME 23. Etant donné le 9D-module M(a, B, 7,9d,¢€) dindice
T = p — q, les propositions suivantes sont équivalentes :

(i) A(a, B, vy, 0, €) vérifie la condition (M.,),
(ii) il existe P e 2 a singularité réguliére tel que /2P =~ M(x, B, v, b, €).

Les lemmes 24 et 25 suivants ainsi que la proposition 26 vont nous per-
mettre de démontrer (i) = (i1).
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LEMME 24.  Soit des entiers o> B = 0,a > 0,b > 0; il existe PP
Lindice 0 et dedegré d = o + P + 1 vérifiant

7 2 & 7
9P~ 9D(xD)* ~ Dx(Dx)?

et de polynéme initial in(P) = Py = (xD—a)’*(xD+b)*.

Preuve. Notons Q = (xD+b)” T (xD—a); par intégration éle-

mentaire on vérifie que les solutions analytiques de ZQ sont engendrées par
une fonction:

© = x%(Log x)* + (c;x*+d;x Y (Log x)* 1 + .. + (cax*+dyx™").

D’autre part soit ¥ = x~’(Log x)®; calculons Q - \¥':

1
r;—xm(XD—a)‘P
xa+b
= [(—b—a)x"’(Log x)* + Px~"(Log x)“‘l} (1 + Tf;Tz»)

a

Q¥ = (xD+b) 5 [(~b—a) (Log 0P + P(Log x)° '],

car o est strictement supérieur a B, par hypothese. Donc
Q0-¥ = x%hy(Log x)® + x®hy(Log x)P ™! + .. + x°hg,
avec (hy, ..., hy) analytiques au voisinage de 0, h, inversible. On s’apergoit alors

1
que (xD —a) " Q - ¥ est de la méme forme que Q - ¥, B étant remplacé par
*0

B — 1, et on peut donc construire un opérateur

1
(xD —a) v (xD—a)— (ug, .., ug_; inversibles)
Ug—1 Ug-2 Uo

R = (xD—a)

tel que RQ - W soit analytique au voisinage de 0, autrement dit RQ<¥ > = 0.
Il résulte de ces calculs que P = RQ admet les solutions engendrées par ¢
et <W¥> (sous l'action de u et v) et donc, vu leur nombre, que

2 D o P
PP "~ DD(xD) ~ Dx(Dx)®
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Enfin, par construction, on a le résultat annoncé sur la partie initiale:

in(P) = in(R) - in(Q) = (xD— a)B‘ (xD+b)* (xD—a) .

LEMME 25. Soit P et P deux opérateurs d singularité réguliére
d’indice 0 et dedegré d et d, dont les parties initiales P, et Pj nont
pas de racine commune. Il ekis{e un opérateur Q dindice 0 et de degré
d+d tel que 9P~ PP = 2Q, DP + PP = 2, de partie initiale
Qo = PoPy. '

Preuve. On note C[xD]“ I'espace vectoriel des polyndmes de degré
strictement inférieur a d, et

®: C[xD]“ x C[xD]“¥ — C[xD]¢*+®

I'application définie par ®(U, U') = UP, — U'Py; P, et Py étant premiers
entre eux, ® est un isomorphisme.
En multipliant a gauche P et P’ par des unités, nous pouvons supposer:

P=Py+ > xX*P,, P =PH+ Y xPj

K>1 K>1
avec, pour k > 1, P, eC[xD]9, P eC[xD]?.
Résolvons formellement I’équation AP = A'P’ en posant:

A=Ay + 3 X4, A=A+ Y x4,

k=21 k=21

Ay = P,, A, = P, et pour k> 1, A, eC[xD]¥, A,eC[xD]?. Le
couple (A4,, A;) est déterminé par récurrence de maniére unique par la for-
mule (k>1):

k-1
O(A,, A) = ) (—AFTIP + AFTTPL).
' 1=0

La notation est celle introduite précédemment: pour B € C[xD], B™ est défini
par B"(xD) = B(xD +n).

Choisissons comme norme d’un polyndéme de C[ xD] la somme des modules
des coeflicients; on a les majorations élémentaires suivantes:

— pour Be C[xD]“ ou C[xD]“’, | B™| < | B (1+n),
avec & = sup(d, d');

— en prenant || (4y, A | = sup(|| 4k, [Ail) ,

k-1
I (4, 4D < @71 I=ZO 201 (A A) I | (Pe—y, o)) | L+ k=11
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Nous pouvons alors montrer la convergence des séries A et A" grace a une
série majorante: nous savons qu'il existe p > 0 et K > 0 tel que, pour tout
entier k, || (Py, Py) | < Kp*; ce qui donne

k-1
(A, A I <2107 1K IZO | (Ay, A) | p* (1 +(k—=D).

+
Soit U = Y wux* la série numérique a coefficients positifs définie par
k=0

ug = | (4o, Ao) || et, pour k > 1:
k-1
w =210 | K Y upt i (1+k—1)°.
150

Cette série est convergente puisque c’est la solution de '’équation

U=u+ 20| KD p1+k°x"U
k=21
et, par récurrence, pour tout entier k, || (Ag, Ai) || < u; les séries 4 et A’
sont donc convergentes.

Nous pouvons donc prendre Q = AP = A'P’ d’indice 0 et de degré d + d/,
qui vérifie 20 <« 2P n 9P et Q, = P,y Py,.

En ce qui concerne l'affirmation 2P + 2P = &, on peut résoudre de
maniere analogue a la précédente I'’équation AP — A'P’ = 1. Une autre
méthode consiste a remarquer que si x*u(x) (ou <x"u(x)> pour ag¢N) est
solution de P avec u(x) inversible, nécessairement o est racine de P,; par
hypothése sur Py et P, 2P et 2P’ n’ont donc pas de solution commune, et
par le corollaire 7, P + 2P = %. En comptant alors le nombre de solu-
tions on a 2Q = P n 9P’ .

PROPOSITION 26.  Soit donnéle &-module M(a, B, v, d,€) dindice p — g
= 0, vérifiant la condition (M), et

— pour 1 <i<p et 1< k<r desentiers positifs ou nuls (a;) et
(cx) tous distincts;

— pour 1 <j<p et 1<I<s desentiers (b;) et (d) strictement
positifs distincts.

Il existe Pe€ 9 a singularité réguliére d’indice 0 tel que (o, B, Y, 5, €)

9
X — et P a pour partie initiale :
Y D p
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P, =[ 1 (xD—ai)B*“(xmb,-)“fJ [fl (xD—ck)*k]

k=1

| eprar | | eo-n|
=1

reA

Preuve. On peut supposer o; > B; pour 1 < i < p et le lemme 24 fournit
P; e 9 tel que
g 9 9

N t in(P) = (xD—a)¥ YxD+b.) .
7P~ o060y © g o P = (D—a)THxD+b)

Pour 1 < k <ronprend R, = (xD—c¢)™ pour 1 <1 <s S, = (xD+d)?,
et pour Ae A T, = (xD—A)*W,

On applique le lemme 25 un nombre convenable de fois & partir des poly-
nomes (Pi)1$iSp’ (R, cic,> 81, ¢,c, €t (T),_, s on obtient ainsi P satisfaisant
a la demande.

Preuvede (1) = (11). Soit /4 = M, P, 7,0,¢e)d’'indicer = p' — g <0
satisfaisant a la condition (M,), donc provenant de .#(a, B, v, d, €) satisfaisant
a la condition (M) par adjonction de —t solutions « micro-meéro ».

Onas—s=p—p=20r—r=0,¢g—q=@F—r)+h h>0 et
—1t = (p—p) 4+ (r—r") + h ou h désigne le nombre d’opérations de type (a)
effectuées, p — p’ le nombre d’opérations de type (b), r — ' le nombre d’opé-
rations de type (c)). Quitte a réordonner les indices, on peut supposer que les
éclairs de (o, B, v, 0, €) touchés par une opération de type (b) sont numé-
rotés de i = 1 a i = p — p', ceux touchés par une opération de type (c)
numérotésde k = 1ak =r — r.

Appliquons la proposition 26 a #(a, B, v, d,€) en prenant a; = i — 1
pour 1 <i<p—p,c=p—p +k—1pour l<k<r—r, tous les
autres entiers étant choisis distincts en dehors de {0, 1, 2, .., —1}; on obtient P
d’indice O tel que /9P ~ M(a, B, v, d, €) et 1l reste a vérifier que P' = Px™°
satisfait 8 /2P ~ M (o, B, Y, &, €): en effet les solutions de Z P’ s’obtiennent
en divisant les solutions de 2P par x™* et en ajoutant les h solutions micro-

, 1 1 1
fonctions <—>, <—=>,.., <—5>.
X X X

On traite le cas de 4’ = M (&, B,7,0,¢) dindice T = p" — ¢ > 0 de
maniére analogue: si /' satisfait (M), en ajoutant t solutions « micro-méro »
on obtient (o, B, v, 9, €) vérifiant (M,); toujours d’aprés la proposition 26,
il existe P tel que 2/9P ~ M#(a, B, v, d, €), les solutions « micro-méro » sup-
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1 1 3 . r
plémentaires étant <—> , <—>, .., <> : ’annuleur de ces solutions etant
X

X X
9x',ona P = P'x* et P’ vérifie /9P =~ M'.
Nous passons maintenant a la démonstration de (ii) = (i), et faisons pour
cela des réductions successives.

Réduction au cas dindice 0. Soit P un opérateur a singularité réguliere
dindice p — q = 1t > 0; les solutions de I'opérateur P’ = Px" s’obtiennent en
divisant les solutions de Popérateur P par x* et en ajoutant les solutions

. 1 1 ’ - ’ ’ - 14
micro-fonctions <—> , .., <—> ; précisons des genérateurs des blocs inde-
X X »

composables maximaux des solutions de ZP du type (I) et (I1I):

@, = @) (log x)* + @f logx)* ' + .. + ¢f, 1<i<p,
<¥,> = <¥?(log x)™ + ¥} (logx)™* ' + .. +¥r>, 1<k<r,

et notons (a;) et (c,) les ordres des fonctions analytiques (indépendantes)
(@) et (Fy).

Si par exemple o; = max(a,, ..., 0,; ¥y, -, ¥, ), quitte a enlever a (o;)
et (<W¥;>),_, ., un multiple d’une solution engendrée par ¢, (sous l'action
de u et v), on peut supposer que (¢ ?)Kisp et(<¥?{> ). <. <, € contiennent plus
x* dans leur développement; on opere de maniére analogue lorsque vy,
= sup(Yz, -, ¥,) > sup(ey, ..., o,) a partir de <¥,;>. Au bout du compte on
sarrange pour obtenir les ordres (a;) et (¢,) tous distincts. Pour 0 < g;
<1 — 1 (resp. 0<¢,<1—1) le bloc engendré par o; (resp. <¥,>) est rem-
place dans les solutions de P’ par un facteur de type III (resp. II) engendré

2<isp

O; ¥ . .. i : :
par — (resp. <—Tk>). Il reste a adjoindre les solutions micro-fonctions
X X

<;C;> pour 1 < s < 1, s distinct des (a),

satisfait (M), 2/2 P satisfait (M ).

Traitons maintenant le cas de P d’indice T = p — q<0:P=Px "ouP
est d’indice 0; la démonstration précédente montre que le diagramme de 9/2P
sobtient 4 partir de celui de 2/2 P’ par adjonction de (— 1) solutions « micro-
mero » et donc, si Z/PP' vérifie (M,), 2/2P vérifie (M) par définition.

, Ct des (c;) . Ainsi, s1 /9P’

<is 1sk<r

Réductionaucass = 0, A = . Soit ¢ une fonction de classe de Nilsson
de la forme:

¢ = x'uollog x)° + vy(log x)"* + .. + v,]

Ug, vy, ..., U, uniformes, u, inversible .
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Nous allons préciser 'opérateur S, d’indice 0 et de degré minimum annulant @;

soit = (xD—A)— @; un calcul évident donne:
Uo

y - _ - _ . . vy \’
¢ = x*[iolog X'~ + Fylog X2 + ... + 5,_;], avec € = & + x<—1)-.

Uo
Lorsque v, est holomorphe #, est inversible; lorsque v, a un pole d’ordre n,,
U, a également un pdle d’ordre n, et ¢ s’écrit:

~

¢ = x*""[uy(log xI" ! + o,(log xf"? + .. + ©._],

U;, O, ..., ®,_, uniformes; u, inversible .

On obtient, au bout de € + 1 pas:

1 1 1
(%) Se = xD—=A+m)—..(xD—A4+1;) —(xD—-1) —,
U Uy Uo

O<mny<ny.. <M.

Lorsque ¢ engendre un bloc de type (IV) ou (V), 4§, est exactement 'annu-
lateur de ce bloc puisque le nombre de solutions analytiques et micro-
fonctions de S, est € + 1.

Revenons alors a P d’indice O et ¢ générateur d’un bloc de type (IV) ou
(V) de solutions de ZP; P sécrit P = QS avec @ d’indice 0 et de degré
d(P) — d(S,) et on a:

E(2P) @ F(2P) = [ES,)DF(S,)] © [E'DF]

E' @ F' étant la somme directe des autres blocs de solutions de ZP; en
appelant J annulateur de E' @ F', 9P = 9S,n Jet DS, + J = D ; d’apres
le corollaire 8, /PP = D/9S, D 2/J.

Remarquons que le morphisme de multiplication a droite par S, de
2/9Q dans Z/J est bien défini et surjectif; 1l est injectif car 2Q et J ont
méme nombre de solutions analytiques et de solutions micro-fonctions, donc
méme multiplicité; en conséquence I/J = D/29Q et D/YP vérifie (M,) si et
seulement si 2/2Q vérifie (M ). -

On enléve ainsi tous les blocs de type (IV) et (V) et on est ramené au
casvoulus = 0Oet A = Q.

Fin de la preuve de (ii) = (i). Soit donc P d’indice 0 dont la décompo-
sition ne comporte que des blocs de type (I), (II) et (III). Précisons des géneé-
rateurs de type (II): .

<¥.> = <¥(logx)P + Pl(log )" ' + .. + WE>, 1<j<p;
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; , . , 0
et notons b; les ordres des fonctions méromorphes indépendantes ¥; . Lorsque
B, = max(B,, .. B,), par exemple, nous pouvons enlever a (<‘Pj>)2<j$p

. s . 4 - 0
un multiple d’une solution engendrée par <¥,> de maniére que ‘¥; ne

1 , .y .
comporte plus de terme en —- dans son développement. Ainsi, on peut arriver
X

a un systéme de générateurs <¥;> pour lesquels les ordres b; correspondants
soient tous distincts — ce que nous supposons par la suite.

Soit @, = ¢ (log x)* + (pm)’g X1 + ..+ ¢% un générateur d’un
bloc indécomposable maximal de solutions de 2P de type (I); lorsqu’on fait
la division de P par S,, de degré oy + 1(*) on trouve un reste nul puisque
les (ot; + 1)-solutions analytiques de S, sont solutions de P: P = QS . Les
solutions de S,, se composent du bloc engendré par ¢, et d’'une solution
microfonction supplémentaire définie par une fonction méromorphe h d’ordre
w: par construction de S,, (voir (x)), p est 'ordre de la premiere fonction
méromorphe @ (t=1, .., ot,) apparaissant dans le développement de ¢, (si
toutes les fonctions @ étaient holomorphes au voisinage de O les solutions de
S,, forment un bloc de type III).

Appelons encore J' I'ensemble des indices je {1, 2, .., p} pour lesquels
B; = o, et J” les autres; on peut modifier @, en enlevant un multiple d’une
solution engendrée par (<Y¥ j>)jej’ (en suivant 'ordre des (bj)jeJ’ décroissants)
et supposer p égal a l'un des (b)), . Alors <h> = ¢, ¥{ + ;¥ + ..
+ ¢, ¥ et I'un des scalaires ¢; pour j € J” est non nul.

Choisissons j, € J” vérifiant B; = inf{B;/c; # 0}; toujours en enlevant a
<W¥, > une combinaison linéaire des fonctions (uov)ﬁi_5f0(<‘{’j>) pour j
vérifiant ¢; # O et j # j,, on se raméne a <h> = ¢; <¥$ >.

Nommons E' @ F’ la somme directe formée de tous les blocs de solutions
de ZP a l'exception des blocs engendrés par ¢, et <¥; >, et du sous
espace vectoriel de solutions engendré par v o (uov)'<W¥; > et (uov)’<¥, >
pour0 < v < B;, — 1; 25, n'adans E' @ F' que la solution triviale 0, et par
conséquent S,, opére injectivement sur E' @ F'; S, (E') @ S,,(F') sont des solu-
tions de Q (car P=QS,,) en nombre exactement égal aux nombres de solu-
tions de Q: E(2Q) = S,,(E) et F(2Q) = S, (F'). Enfin, comme u et v com-
mutent a Popérateur S, , le diagramme d’éclairs de 2/20Q se déduit de celui
de 2/2 P en supprimant Iéclair de type (I) engendré par o, , ’éclair de type (II)
engendré par <W¥; >, et en ajoutant un éclair de type (III) (de longueur Bjo)-
Puisque j, € J”, a; > B;,, et par induction, si 2/2Q vérifie (My) il en est
de méme de 9/9P.
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