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IDÉAUX DE GERMES D'OPÉRATEURS DIFFÉRENTIELS
À UNE VARIABLE

par J. Briançon et Ph. Maisonobe

Introduction

Notre but dans ce travail est de décrire de la manière la plus explicite

possible les idéaux (à gauche) de l'anneau Q) des germes d'opérateurs
différentiels analytiques d'une variable complexe. Notre apport repose pour
l'essentiel sur le procédé, élémentaire s'il en est, de la division. La plupart des

résultats présentés ici étaient déjà connus ; nous les démontrons de façon simple

en y apportant parfois quelques précisions.
En I.A, nous montrons comment recopier [Br] pour faire des divisions dans

Q et introduisons un système particulier (Fp,...,Fq) de générateurs d'un
idéal / de appelé base standard de F Soit P ad(x)Dd + + a0(x) un
élément de Q) de degré à; appelons valuation de P, la valuation naturelle de

ad(x) dans C{x}; disons seulement que Fp (resp. Fq) est un élément de I de

degré (resp. valuation) minimal quelconque parmi ceux de valuation (resp.

degré) minimale.
En I.B, nous explicitons les relations entre les éléments d'une base standard,

ce qui nous permet de donner une présentation de / sous la forme

0 &*-p _ ^-P+1 _ / _ 0.

En « divisant », on montre I @Fp + @Fq. Nous trouvons donc deux
générateurs promis par l'utilisation du théorème de J.T. Stafford ([Bj] ;

chap. I, th. 8.18).

En I.C, nous examinons les questions sous l'angle des systèmes d'équations
différentielles. On y établit que les solutions analytiques de I, £(/), (resp.
microfonctions, F(I)) dans un disque coupé sont données par les solutions de
l'opérateur Fp (resp. Fq). Les théorèmes de Cauchy et de l'indice de Malgrange
([MJ et [M3]) nous .permettent d'en déterminer le nombre. Toujours en
« divisant », on montre alors que ces deux types de solutions déterminent
l'idéal: si un opérateur P s'annule sur E(I) et F(I\ il appartient à l'idéal L
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En II.A, nous explicitons complètement les idéaux de 9 à singularité
régulière homogène. Cela nous permet de donner « les escaliers possibles » ou,
ce qui revient au même, de retrouver dans le cas local une inégalité de

P. Strömbeck ([S]).
En II.B, nous donnons une démonstration du théorème de structure des

^-modules holonomes à singularité régulière (ou des quotients 9/1, où / est

à singularité régulière) dû à L. Boutet de Monvel ([B.M.]). Nous utilisons pour
cela l'idée essentielle qui nous a été apportée par B. Malgrange, d'étudier les

classes d'isomorphismes E(I) £ F(I) (u morphisme canonique et v morphisme

de variation). E{I) et F(I) sont formés de fonctions de classe de Nilsson et une
fois décomposé le couple (£(/), F(I)), il suffit d'appliquer les résultats de I.C.

En II.C, nous donnons la structure possible des solutions d'un seul

opérateur différentiel à singularité régulière; plus précisément noüs déterminons

les classes d'isomorphismes E(9P) i±F(9P) pour un tel opérateur P (ou

encore des classes d'isomorphismes des quotients 9/9P).
Nous sommes heureux de remercier F. Pham et J.E. Björk de l'aide et des

encouragements qu'ils nous ont prodigués.

I. Base standard d'un idéal de 9

C{x} désigne l'anneau local des séries convergentes d'une variable et v la
valuation naturelle sur C{x} : pour a élément non nul de C{x},

v(a) sup{n e N | ae C{x}x"}

d
D désigne l'opérateur différentiel —. Dans tout l'article, idéal de 9 signifie

dx
idéal à gauche.

I.A. Divisions dans 9

Un élément non nul P de 9 s'écrit de manière unique
P (idDd + ad_1Dd 1

-f- 4- a0

avec d eN ; (ad,ad_j,a0) e C{x}<l+1 ; 0.

Nous définissons l'exposant privilégié de P :

exp(P) (t iP),d{P))e N2



IDÉAUX DE GERMES D'OPÉRATEURS DIFFÉRENTIELS 9

v(P) la valuation naturelle de ad dans C{x},
d(P) d le degré de P

Pour P adDd + ad^1Dd~1 + + a0 et Q beDe + he_lDe~1 + + fe0,

la règle de multiplication dans Qf donne (en prenant d{0) -oo):

QP beadDd + e + S, d(S) < d + e

On en déduit facilement que pour deux éléments P et Q non nuls de # :

exp(ßP) exp(ß) + exp(P), et qu'on a l'algorithme de division :

Lemme 1. Etant donné Ae@, P e Q) non nul d'exposant privilégié (v, d),

il existe un couple unique (ß, R) d'éléments de Q) tel que :

f A QP + R,
| R Yj rk,i xkDl + S ' d(S) < d rkJ e C

0^k<v
d(A)Zl^d

Introduisons maintenant, pour un idéal à gauche non nul / de

l'ensemble Exp(/) des exposants privilégiés des éléments non nuls de /, puis:

a) p le degré minimum des éléments non nuls de I,

b) pour j ^ p, vLj la valuation minimum des éléments de I de degré j.
Du fait que I est un idéal à gauche, en appliquant la règle exp(ßP)

exp(ß) 4- exp(P), on s'aperçoit que Exp(/) + N2 Exp(/) et en particulier
que la suite (oij)j>p est décroissante;

c) q inf{;| (X; a/+1 ...}

En regroupant ces définitions on obtient la caractérisation de l'escalier ES(/)
d'un idéal I :

ES(/) {(<*„, p);(ap+1,p+l)(a,,
Exp(/) u {(a,-,j)+ N x {0}}) u {(a4 N2},

p^j<q

(où u désigne la réunion disjointe).

Nous appelons basestandard de I un système d'éléments
de I tels que p<j<q,exp(F,-) (a jfj).

Proposition 2 (division par un idéal). Etant donné un idéal I non nul
de d'escalier {(ap, p) ;... ; (a4, q)} de base standard {Fp, Fp+1,.., Fq},

et un élément A de 3>, il existe un système unique (Qp.Qq x

eC {x}q~p, Qqe 2>, RsS> tel que:
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f A - QpFp + + QqFq + R,
J d(A) ai - 1

1 RX I 'm xk°l + S, rkJ C.
I — p k 0

De plus A e I si et seulement si R 0.

Preuve. En ce qui concerne l'existence, on commence par diviser A par Fq
suivant le lemme 1, puis en faisant le premier pas de la division du reste obtenu
successivement par Fq _ x,..., Fp.

Pour l'unicité, on constate que les conditions imposées sur le reste

impliquent exp(R) $ Exp(/) pour R non nul ; par conséquent : A e I <=> R 0.

Les détails sont laissés au lecteur.

Une base standard de / forme donc un système de générateurs de / ; comme
d'habitude, une base standard plus belle que les autres s'obtient en faisant la
division de xaj Dj par {Fp,..., Fq} : en notant Rj le reste obtenu,

{Gp x" Dp - Rp,..., Gq x«« Dq - Rq)

est la base standard en question.

Lorsque l'on filtre Q) par le degré, on note gr^ C{x} [^] le gradué
associé et gr/ l'idéal homogène engendré par les symboles principaux des

éléments de /; par définition de Exp(7), gr/ est engendré par les monômes

(xaj^j)p^j^q- Cela permet en particulier de calculer, en fonction de l'escalier

de/:

dimc # {(«.;') e N21 Exp(/) et a + jgr/ + (x, %)"

Ainsi la multiplicité de la variété caractéristique V(ßjl) définie par gr/ au

voisinage de 0 dans C2 est ctq + p: il s'agit de la multiplicité de Çèjl à

l'origine (voir [L]).

I.B. Relations entre les éléments d'une base standard

7 désigne toujours un idéal non nul de Q) d'escalier {(ap, p) ;... ; (<xq, q)}

et (Fp,...,Fq) une base standard de / que nous supposons désormais
normalisée :

d(Fj-x*J Dj) < j pour 7 p,..., q

Par division de xajFj par {Fj^1,..., Fp} nous obtenons les relations

: x"'1 "'Fj {D + Ujj-1)Fj-l+ + + uJ<pFp(uj<keC{x}),

pour tout p + 1 ^ j ^ q.
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Proposition 3. Les relations (&j)p+i forment une base des relations

entre les éléments de la base (Fp,..., Fq) de I et on a la résolution libre

de I comme @-module à gauche:

o @1-P % -> 0

Preuve. La matrice M des relations (•%),, 1SJ.<„
est la transposée de la

matrice

F ~h Up+ip Up+2,p

— x<Xp~ap+1 D + u

0

p+2,p+ 1

yçaP + 1 aP +2

0

0

0

Uq,q~ 2

D + uq,q- i

_ Yaq-1 "Ctg

et ces relations sont donc libres.

Soit ApFp 4- Ap+1Fp+1 + + AqFq 0,une relation; étant donnés deux

entiers k et /, k ^ 0 ,p ^ l ^ q + 1, nous dirons que la relation sé — (Ap,...,Aq)
est dans Qk l si :

d{Aj) ^ k pour l ^ j ^ q

d(Aj) < k pour p ^ j < l.
Nous allons montrer par récurrence la propriété ce>M: toute relation appartenant

à Qkj est engendrée par les relations Par des considérations

de degré la propriété co0 p
est vraie ainsi que l'implication (ùk_1 p

®k,q+ 1 ®k,q-

Il ne reste donc plus qu'à démontrer que (okJ + 1 entraîne coM pour
p ^ l < q et k ^ 1. Or si sé (Ap,..., Aq) est une relation appartenant à

Qk i on peut écrire Ax b Dk + A\ avec b e C{x) et d(A[) < k ; alors sé — b

Dk'1^l + 1 appartient à QM + 1 .ce qui permet d'appliquer l'hypothèse de

récurrence.

Nous allons maintenant montrer que Fp et Fq engendrent l'idéal I ; pour
cela nous utilisons un lemme classique (voir [P], lemme 10.3.1, p. 95).

Lemme 4. Soit M un Q)-module à gauche tel que le C{x}-module sous-
jacent soit de type fini; alors M est un C {x}-module libre.

Preuve. La démonstration étant très rapide nous nous permettons de la
recopier. Soit (el,..., ep) un système de générateur de M sur C{x} induisant
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une base de l'espace vectoriel M/(x)M (possible par le lemme de Nakayama).
p

Supposons l'existence d'une relation £ ut et 0 entre les générateurs à
i 1

coefficients dans C{x} d'ordre co minimum des valuations des coefficients

Uj non nuls ; en appliquant D on trouve la relation
p p p p

Z (".D+u'i)ei ' Z "! ei+ Z ui( Z vik ek) °
i — 1 i 1 i 1 fc 1

P

(en prenant D et £ vik ek) ; on peut l'écrire sous la forme
fc i

p p

Z ("« + Z vji)ei ° •

i=i j=i
où on s'aperçoit que c'est une relation d'ordre co — 1. Une relation d'ordre 0

étant impossible, le lemme est démontré.

Proposition 5. Soit I un idéal non nul de Q), d'escalier

{(ap,p)i...;(uq,q)},
et soit {Fp,...,Fq} une base standard :

a) q p équivaut à I monogène, et I @Fp;

b) q > P alors I @Fp + FèFq.

Preuve. Introduisons le ^-module M I/{@Fp + @Fq). En appliquant la

proposition 2, tout élément A de / s'écrit

A QpFp + + Qq-1Fq^1 + QqFq,

où (Qp,..., Qq-1) sont dans C{x}; M est donc un C{x}-module de type fini
(engendré par Fp+1,..., F4_ i).

D'autre part, pour tout élément A de /, il existe un entier a et B e @

tels que xa A B Fp : il suffit pour cela de diviser xaA par Fp (lemme 1) et de

se souvenir de la définition de l'escalier de I.
Ainsi M 0 d'après le lemme 4.

I.C. Solutions analytiques et micro-fonctions

Notons, pour 8 > 0 :

De {xe C | | x | < s},
i)e {x e C | 0 < | x | < 8},

DE {xe C | Re(x) < Loge} le revêtement universel du disque pointé muni

j de sa projection n :De-+De : n(y) ey.

î
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On considère les espaces de fonctions analytiques &(De) ci (9(De) comme

sous-espaces (par rr*) de l'espace des fonctions analytiques multiforme 0(DJ

sur Z)e.

Les opérateurs différentiels à coefficients analytiques dans DE opèrent de

manière naturelle sur (9(DZ), (9(DZ) et (9(DZ) :

a(x) • f{y) a(ey)f{y),

D • f(y) f'(y)e-y.

Et cette action commute avec la monodromie :

M -f(y) =f(y + 2in),

monodromie laissant fixe les éléments de (P(De).

Enfin on peut définir le morphisme de variation v: (9(DE)/(9(DE) - &(DZ)

par:
v • f(y) (M-id) • f(y) f(y + 2in) - f(y).

En définitive, en passant à la limite inductive pour e 0, on construit un

couple de ^-modules :

sé — lim 0{De),

M lim (9(De)/(9(Ds)

muni des applications C-linéaires :

sé^Jl
v

u application canonique de passage au quotient,

I v morphisme de variation

qui commutent avec les actions Q) sur sé et Jt. De plus v ° u + id et

u o v + id sont les morphismes de monodromie sur sé et Jl respectivement.
On appelle solution analytique d'un idéal / de ^ un élément / de sé

annulé par les opérateurs appartenant à J, et on note E(I) c= sé le sous-

espace vectoriel des solutions analytiques de /; on définit de même le

sous-espace F(I) a M des solutions micro-fonctions de /. En un mot, on
obtient le couple

E(I) z
V

des solutions de /.
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Proposition 6. Soit I un idéal non nul de d'escalier

{(a„,p);.„;(a q,q)},

une base standard de /, E(I) et F(I) les espaces de solutions analytiques
et micro-fonctions de I :

a) dim E(I) p et les solutions analytiques de I sont les solutions analy¬

tiques de Fp.

b) dim F(I) aq et les solutions micro-fonctions de I sont les solutions

micro-fonctions de Fq.

c) Etant données une base (f1,fp) de E(I) et une base

deF(I), le morphisme canonique

9/1-+ 9 <0« >) CI sép I

est un isomorphisme de B-modules.

Preuve, a) Par les théorèmes classiques sur les équations différentielles,

nous savons que l'espace des solutions analytiques de Fp est de dimension p;
il nous suffit donc de montrer que toute solution analytique de Fp est

solution de Fq (proposition 5). Par division (lemme 1) nous savons qu'il existe

a entier et tel Jjue xa Fq Q Fp; on en déduit que Fp
• / 0 implique

xa Fq - f 0 donc Fq • / 0 pour f e sé.

b) Les relations entre les éléments de la base standard (proposition 3)

peuvent s'écrire :

D

— — "—

FP FP 0

FP+1 Fp+1 0

•

A
•

+
•

0

F9-I F9-1 jçUq - i _ aqp'

_ — _

où A est la matrice à coefficients analytiques :
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~-up + Up x<*p-zP +io0 ~

-"p + 2 ,p • 0

- 2 — Ctg - 1

Hq, p • • • ^q,q~l

si < g > est une solution micro-fonction de Fq, Fq g est analytique et :

Fp-g
1

L5_

é
0

• A • + :

• •

0

Fq-i -g Fg-i-g xCtq-l-(Xqpq g

Ce qui signifie que (Fp • g,..., Fq^x • g) est solution du système différentiel

analytique au voisinage de 0 ; donc Fp • g est analytique et Fp < g > =0.
C'est-à-dire que toute solution micro-fonction de Fq est solution
microfonction de L

Il nous reste à montrer que la dimension de l'espace des solutions
microfonctions de Fq xag Dq + est a?;ona le diagramme commutatif suivant,
dans lequel les lignes et les colonnes sont exactes :

0 0 0

F(Fq)

-*»jK O
F*\,
—Ji 0

0
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D'après le théorème de l'indice de B. Malgrange ([MJ et [M3]) dim K
— dim L q — aq, et on a vu au point a) que dim E(Fq) q; le lemme du

serpent fournit alors dim F(Fq) aq.
c) Si P e 3 non nul donne par passage au quotient par / un élément du

noyau de r\, P a au moins p solutions analytiques indépendantes et aq

solutions micro-fonctions indépendantes ; d'après les parties a) et b) appliquées
à 3P, l'exposant privilégié de P est dans (aq, p) -h N2. En divisant par Fq on
voit alors que Ker r\ est un C{x}-module de type fini; d'autre part, il existe

un entier a tel que xaP soit multiple de Fp. Le lemme 4 implique Ker q 0.

On obtient comme corollaire l'inégalité de Bernstein sur la dimension de

la variété caractéristique d'un ^-module, dans notre cas bien particulier :

Corollaire 7. Si I est un idéal de 3 tel que p dim E(I) 0 et

aq dim F(I) 0, alors I 3.

Corollaire 8. Si I,, I2,Ir sont des idéaux de Q) vérifiant

E Eil,) + + E(Ir) Eil,) © E(I2)... © E{Ir),

F Fil,) + + F(Ir) Fil,) © Fil2) © F(Ir)\

alors F injection canonique

Q) 3) <3 ®
7 — — © — •..© —

^1 ^ ^2 — n Ir ^1 12 h

est un isomorphisme et £(/1n/2... n/r) £, P(/1n/2... n/r) F.

Preuve. Par induction on est ramené à démontrer le corollaire pour
r 2; on remarque que Eil,+I2) EU,) n £(I2) 0 et F(/1 + /2) Fil,)
n Fil2) 0 par hypothèse; d'après le corollaire 7,1, + I2 3 et de la suite

exacte

3 3 3 3
0 -> — © > > 0

I,nl2 I, I2 I, + I2

on tire l'isomorphisme cherché.

D'autre part on a toujours Eil,ni2) =5 Eil,) -h £(/2) et Fil,ni2) Fil,)
+ P(/2). Choisissons A, el, et A2el2 tels que 1 A, + A2; alors pour
tout cp e Eil,nl2\ (p ^4xcp + A2(p. Si P, est dans 1,, P, A2 P, — P,A,
appartient à I, n I2 et donc P,A2<p 0 ce qui prouve que A2(p e Eil,). On

montrerait de même que A,cp g £(/2) et en conséquence que Eil,nl2) Eil,)
+ £(/2). Le raisonnement est identique pour Fil,ni2) F(I,) 4- P(/2)-
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II. Idéaux à singularité régulière

Définissons une nouvelle filtration de ^ : si P £ ak, txkDl, où akf t e C,
l^d
k^O

est un élément non nul de

le poids de P est l'entier p(P) e Z :

p(P) inf{k — l | akJ ^ 0}

la forme initiale de P est :

in(P) X aKiXkVl •

k-l p(P)

Remarquons que d'après B. Malgrange [MJ et [M3], — p(P) est l'indice de

l'opérateur formel P: C[x] C[x], tandis que l'indice de l'opérateur

analytique P: C{x} -+ C{x} est d(P) - v(P); et P est à singularité régulière si

p(P) v(P) - d(P) (c'est-à-dire si P et in(P) ont même degré).

On a les formules habituelles de multiplication :

p(Pi ' P2) P(Pi) + P(p2), in(Pi • P2) in(Pi) • in(P2),

et d'addition :

si p(PJ < p(P2), pCPi+^2) P(^i) et in(P1 + P2) in(pi)
si p(Pi) - P(P2), et in(Pi) + in(P2) ^ 0, p(Pi + P2) p(PJ

et inCPi + P^ in(Px) + in(P2)

si p(Pi) p(P2) et in(Pi) + in(P2) 0, p(Pi + P2) > p(Px).

Nous disons qu'un élément de Q) est homogène s'il est égal à sa forme initiale,
et qu'un idéal J de Q) est homogène s'il admet un système de générateurs

homogènes.
A un idéal I de S) on peut associer son idéal initial in(/) homogène

engendré par les formes initiales des éléments de L
Si J est un idéal homogène de S), tout élément non nul de J a sa forme

initiale dans J; réciproquement si I est un idéal de Q) vérifiant cette
propriété, in(/) c /, le reste de la division d'un élément de / par in(/) ne peut
qu'être nul : in(/) / et I est homogène.

Lemme 9. Soit I un idéal non nul de Q) d'escalier {(ap, p),..., (a9, q)}
et {Fp,..., Fq) une base standard de I. Les propriétés suivantes sont
équivalentes :
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i) il existe un élément Pel à singularité régulière (non nul),

ii) les éléments Fp,...,Fq de la base standard sont à singularité régulière,

iii) in(/) et I ont même escalier.

Lorsque ces propriétés sont satisfaites, nous dirons que I est un idéal à singularité

régulière; dans ce cas, nous savons d'après [W] par exemple que les

solutions analytiques E(I) E(Fp) de / sont de classe de Nilsson (de
détermination finie, à croissance modérée ; l'écriture explicite sera rappelée en II.B)
ainsi que les solutions micro-fonctions F(I) F(Fq).

Démontrons le lemme 9 :

(i) => (ii). Par division (lemme 1) il existe un entier a tel que xaP QFp ;

donc
in(xaP) in(g) in(Fp), d(inQ) ^ d(Q), d(inFp) < d(Fp) p

et par hypothèse

d(in(x«P)) d(in(P)) d(P) d(Q) + d(Fp).

Cela prouve que d(inQ) d{Q) et d(inFp)) p et en particulier que Fp est à

singularité régulière.
Montrons maintenant que Fj est à singularité régulière pour j ^ p + 1,

en supposant que Fp,..., Fj^1 le sont; la relation 0t-} (proposition 3) est

xa/-i «jp. m (D + Ujj-JFj-i 4- ujtj-2Fj-2 + ••• + uj,pFp

et les formules d'addition et de multiplication donnent

in(x"J~l-*JFj) D ir^Fj-i).
in(Fj) est donc de degré j et par conséquent Fj est à singularité régulière.

(ii) => (iii). De manière évidente Exp(in(/)) => Exp(7) puisque pour tout
opérateur P de Q), exp(P) e exp(in(P)) -I- N2.

Prenons alors P dans /; par division (proposition 2), P s'écrit

P QpFp+ + Q<Fq,(Qp, Q„-i) e C{x}"--, es.
Par simple considération des degrés, toute relation

R, in (Fp)+ + Rqin(Fs)0 (Rp,..., R,_x) e C{x}«->, e 9
implique Rp Rq0; donc en fait in(Fp),..., in(F,) est un système de

générateurs de in(/) avec comme base des relations

M'y.in {Fj)D in(F;_!), + 1 < ^
Grâce à ces relations, un élément P de in peut s'écrire

PRPin(Fp)+ + in(Fq),
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(R R J g C{x}q~p, Rq e l'exposant de P est alors égal à l'exposant

du terme de plus haut degré dans cette somme. Donc in(I) et I ont même

escalier.

(iii) => (i). Une application élémentaire des définitions:

exp(in(Ep)) exp (Fp) et Fp

est à singularité régulière.

ILA. Idéaux homogènes

Etant donné un escalier a {(apî p),..., (ag, q)} on note m m(a) le plus

petit des entiers; tels que (j, j) g Exp(à) à + N2.

(a*, 4)

On convient de poser a;- CLq lorsque j ^ q et alors m inf {; | j ^ p et

j ^ a,}. A l'escalier a nous associons les ensembles d'entiers suivants:

A(a) {0, 1, 2,q — ag} — {m — am, (m+1) - am+1,q - aj
lorsque aq ^ g, et A(ôc) 0 sinon. Les éléments de A(a) sont des entiers ^ 0

en nombre égal à m — oiq.

B{à) {-(a p-p),-(ap+1-(p+l1))}lorsque ap > p, et 5(a) 0 sinon. Ce sont des entiers strictement négatifs en

nombre égal à m — p.

Lemme 10. Si m m(a) p + aqi il existe un unique idéal homogène

H(ol) admettant à pour escalier; H(S) est défini par ses solutions:

© Cxk,
< keA(à)

l F(H(à)) © C <x">
keB(à)

Preuve. L'espace des éléments homogènes de poids 0 s'identifie à l'anneau
commutatif C[xD] ; pour P e C[xD] et n e Z on note P[n] le polynôme défini
par P[n](xD) P(xD + n).

Pour n g N on a le formulaire suivant
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x"P p[-"V,
D"PPln]D",

co„ x"D" xD(xD —1)... (x1),

œ[n] Dnxn ^ + ^ ^ + 2) (XD + n)

Il résulte de ce qui précède qu'un idéal homogène / de & d'escalier à

admet une base standard Fp,..., Fq formée d'éléments homogènes liés par les

relations

&j: x*J"1 ~ajFj DFj-x p + 1 < j < q

Fj admet l'écriture unique :

f Fj DJ~aj Pj(xD) si j ^ a,-, Pj de poids 0 de degré a7-,

\ Fj xaj~J Pj(xD) si j ^ a,-, Pj de poids 0 de degré j
(a),- Pour j — 1 ^ la relation 01) se traduit par

p. - p.1 j - 1 «j - i - «j J

(b)j Pour j ^ a,- on obtient

Pj (xD + a^-i-O-l))?^!.
(c)y Pour j ^ a,- et j — 1 < oq_ x

Wj Pj (xD +V-J-(~ Wj-1 •

Dans le cas m p ^ olp, seules interviennent les relations (a)j pour
p + 1 < j < q et en itérant on obtient :

pP n
v-p+i y

L'hypothèse du lemme est alors aq 0, Pq 1 et on trouve

H(ôc) Pp + 0)Dq ^cp'a* Dp_a* Pp + 9Dq

puisque ces idéaux n'ont pas de solutions micro-fonctions et les mêmes

solutions analytiques. Il ne reste plus qu'à se convaincre que le polynôme

Pp n CD^-V1
j p+1

a pour racines les entiers de A(a) et ces racines sont simples.

Dans le cas m aq ^ q, de la même façop, en utilisant cette fois les

formules (b)j on trouve
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Pq + &>]—.j)j Pp-

L'hypothèse du lemme est alors p 0, donc Pp 1 et

H(ol) 9x(tq~qPq 4- @Da«-q xaq~q Pq + @xap

cet idéal n'ayant que des solutions micro-fonctions. Encore une fois il reste à

vérifier que le polynôme

D«q-«xo«,-iPq^Yl

a pour racines les entiers de B{a) et que ces racines sont simples.

Dans le cas ocp > p et aq < q, on a p + 1 ^ m ^ q et on obtient d'après

{a) et (h) :

pm fi <Vr-i;l]W d(Pq) a,,
\j~m+1 /

/m — 2

pm-ln (xD + CLj-j)
\j P

En utilisant maintenant [c)m on trouve :

(xD + am^1-{rn-l))Pm.1

soit encore APq BPp où A est le polynôme unitaire admettant les éléments

de ,4(ôc) pour racines simples, et B celui admettant les éléments de B(à) pour
racines simples :

d(A) m — aq, d(B) m — p
>

A et B étant premiers entre eux, on déduit l'inégalité d(Pq) aq ^ d(B)

m — p, ainsi que l'existence d'un polynôme C g C[xD] de degré 8 CLq

+ p — m tel que

Pq BC, Pp AC,

Fq Dq-°«BC Fp xap~pAC

Le cas d'égalité du lemme donne 8 0, donc C 1 et H(ôc) @x*p~pA

+ @Dq~*q B; les solutions analytiques de H(d) sont celles de A, et les solutions

micro-fonctions de H(ct) sont celles de B. Enfin il est facile de vérifier
que H{ol) a bien les solutions indiquées dans l'énoncé du lemme, et a pour
escalier a.

d(Pp) P
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Remarquons que m(ôc) est toujours supérieur ou égal à p et donc que
l'escalier translaté a[-ô] {(ap — 5, p — 8),(otq — 8, q — 5)} est bien défini avec
ô CLq + p — m; de plus A(vl) et B(a) sont invariants par translation et
m(ôc[-5]) m(a) — 8. Nous avons donc obtenu:

Proposition 11. Soit a =• {(ocp, p),(a^, g)} un escalier, 8 p -h

— m(a), Jf(a) l'ensemble des idéaux homogènes d'escalier a.

Pour 8 < 0, Jf(a) 0.
Pour 8 0, (ôc) est réduit au seul élément H(a).

Pour 8 > 0, si on désigne par C5[xZ)] l'ensemble des polynômes
unitaires de degré 8, l'application qui à Ce C6[xD] associe l'idéal H(ôc[~51)C

est une bijection sur jf(a).

Soit C Yl (xD — X)r{X) la décomposition de C en convenant de prendre
leA

A =5 A(ol) u P(ôc) et r(X) 0 si nécessaire. Avec les notations du lemme 10,

/ tf(a[_ô])C ^x8p"MC 4- ®Dq-««BC

Pour X e A(ôc), définissons

/(X) ^(xD-^)r(X) + 1 + @Dl + 1(xD-X)r(X),

pour X, g 2?(a),

/(2c) ^(xZ)-À,)r(X) + 1 -f 3x-\xD-Xy(X)

et enfin pour ÀeA - A(a) — £(ôc), /(^) ^(xD — X)r(X). On constate que E(I)
© E(I(X)) et F(I) © F(I(X)); d'après le corollaire 8, / n /(X) et £^/J

X.eA XeA XeA

est isomorphe à © @/I(X).
X\

Par ailleurs la multiplication à droite par la classe de Dx est un iso-

morphisme de ^/^D(xD)r(X) sur @/I(X) lorsque X e A(ôc) ; et pour X e B(oî), il
faut multiplier à droite par la classe de x"^_1 pour obtenir l'isomorphisme
de @/@x(Dx)r{l) sur @/I(X). En conclusion, avec A' A — A(u) — B(a) :

Corollaire 12. Soit I un idéal homogène d'escalier ôc, 8 + p — m,

Q)jl est isomorphe à

(m-aq Q \ /m-p 3f \ Q) \
V ifi &D(xD)r'J

0 (S)x(DxY'J ® V®' mxD-Xya>) '

avec
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Z ri + S rj + I 5 •

i 1 7=1 XeA'

Nous retrouvons le résultat de P. Strömbeck ([S], théorème 1, p. 120):

Corollaire 13. Soit I un idéal de p dim(£(/)), a9 dim(F(/))
et m(I) le degré minimum d'un opérateur de I ayant autant de solutions

analytiques que de solutions micro-fonctions ; alors m(I) ^ p + aq et l'égalité
n'est possible que si I est à singularité régulière.

Preuve. Lorsque I est à singularité régulière, les escaliers de I et de in(7)

sont identiques et le premier point de la proposition 11 donne le résultat
cherché.

Supposons I non à singularité régulière, et notons (ap — u, p — v) l'exposant
privilégié de in^) ; son poids est

PiFp) <*p - u -< a

et donc u > v > 0.

Les relations 3tj fournissent alors, pour p + 1 ^ j ^ q:

j P{Fj)Cty — j — (u — v),
1 xaj•••*J int/ ;) - ,|.

La division d'un élément de I par Fp,...,Fq (proposition 2) permet alors de
montrer que sa forme initiale est engendrée par in(Fp),in(Fq). Il résulte de
tout cela que in(/) a pour escalier

{(ap- P— v), (ap+j- u, p+1 - n),(a,
et pour base standard in(Fp),in(F,). La proposition 11 appliquée à l'idéal
homogène in(/) donne :

(*) p — v + (aq — u),p m(in(/)).

Or, par translation, (m(in(/)) + u, m(In(J)) + t>) e Exp d'où

m(In(/)) + u ^ am(]n u»+^am(in(n) + u-

(La dernière égalité provenant de u>u), et par définition de m(I) :

m(In(/)) + u^m(I).

En reportant dans (*) on obtient facilement a, > m(I) + v > m{I).
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II.B. Décomposition d'un idéal à singularité régulière

u
Soit un diagramme E F où E et F sont des C espaces vectoriels de

dimension finie, u et v des morphismes d'espaces vectoriels. De tels diagrammes
sont les objets d'une catégorie abélienne 0 dont les flèches sont naturelles.

u
Lemme 14. Tout objet E ^ F de 0 se décompose en une somme

d'objets indécomposables Ex z ^ FXJ muni de flèches de restriction où Ex z

(resp. Fxl) est un sous-espace irréductible maximal de E (resp. F) stable

par v o u (resp. u ° v) associé à la valeur propre X. D'autre part si X # 0,

u If, et v If, sont des isomorphismes, et si X 0 u \E ou v |F est
X) l X, l X) l X91

surjective.

Une fois connu ce résultat déjà employé par L. Boutet de Monvel ([BM])
et B. Malgrange ([M.2]) sa démonstration facile est laissée au lecteur (on
regarde la correspondance entre les blocs de Jordan de E sous l'action de

v o u et de F sous l'action de u ° v). Reprenons les notations de I.C et
choisissons une détermination du logarithme. Une somme

et où J est un ensemble fini de nombres complexes ne différant pas d'un
entier relatif, détermine un unique élément de $4 et par action de u un unique
élément de M. De tels éléments sont appelés fonctions de classe de Nilsson et

microfonctions de classe de Nilsson.
Soit I ,un idéal à singularité régulière ; nous savons lui associer un élément

u

de 0 : E(I) ^ F(I). De plus les éléments de E(I) et F(I) sont des fonctions et

des microfonctions de classe de Nilsson (voir la remarque suivant le lemme 9).

Nous allons expliciter la décomposition d'un tel objet de 0 :

hj {Pe0|V(/, <g>)eEXJ x FXJ,Pf= 0 et P<g> 0}

D'après le lemme 13, Ex l (resp. FXJ) est un sous-espace vectoriel de E(I)
(resp. de F(I)), indécomposable maximal stable par la monodromie M de sé

(resp. M de M) et associé à la valeur propre X + 1 de cette monodromie. Un

(£(/); F(I)) F,,,).

Notation :
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calcul simple sur les fonctions de classe de Nilsson permet de déterminer une

base de EXt t et FXt t
:

Cas ri0 1 : X ^ 0

Une base de EXJ {{M — e2lYf}je{a e ^ — Z et À, + 1 e

(.M-e2in*)

/ s'écrit:
/ # 0 et (M — e2ina)rf 0, où quitte à ajouter à a un entier,

/M Z x" Lo§ 'x
- 6 CM >

i 0

u

dim £x_r r, d'après le lemme 14: EXJ- £x>l donc dim £M r.

Lemme 15. Pour £ ^ 0 :2)f£>x"Logr_1x,®/®(xD-a)r et

£(/,.,) £Xi t) F(IX,)£M.
Preuve. Tout d'abord un calcul facile établit:

(1) VpsN, @xa+pLogr

CM !ca Log7" *x + + C{>

On en déduit l'inclusion 0/ c Logr *x. Ecrivons: fr-x{x) u(x)xk, où

«(0) 7^ 0, u(x) g C{x} et k g Z.

(xD-a-k)-— f(x)
u{x)

f _
e= xa+k Log~2x -f (.xD — Oi — k)

2 xaLogr~2x +
u(x)

Mais le terme de « degré » a + k de r~2 xa Logr_ 2x est tué par (xD — a — /c),
u(x)

1 r — 2

(xD-a-fc) —— /(x) £ ^i(x)xa Log 'x où ^(x) g C{x} et gr.2(x) # 0. Par
u{x) i 0

récurrence, on montre ainsi que @xa+k Logr_1x est inclus dans S)f D'où le

résultat (en utilisant (1)): @f ^xaLogr_1x

/ engendre par u et v : Ex l et Fx l, de sorte que Q)f ^/IXi i

xaLogr_1x est annulé par (xD — a)r et engendre par u et v, r solutions
analytiques et r solutions microfonctions indépendantes. En utilisant les propositions

5 et 6, on obtient: ^xaLogr_1x @/<3{xD — a)r. On a donc @/L
@/@{xD- a)r.
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Cet isomorphisme entraîne :

dim E(IX j) dim E((xD — a)r) r et dim F(IX z) dim F((xD — a)r) r

Des inclusions E(IX t) => Ex t et F(IX t) => FXJ, on en déduit la dernière égalité
cherchée.

Cas n° 2: X 0 et u |£q
;

surjective.
Une base de E0J {(M-1)//}W0. (M — 0, (M — l)r_1/

^ 0, où / s'écrit

/M Z /.M xmLog fx, m e Z et //x) 6 C{x}
' ~= 0

Or (Af-ip1 /(x) (r—1)! W1 /„^(x)*",
(M— l)r-2 /(x) (r—1)! (2m)r_2 /r_i(x) xm Log x + xm0(x),

où ^(x) e C{x} — De sorte que:

si X-i(x) xm $ C{x}, u: E0tl-> F0J est un isomorphisme
et dim E0J dimF0J r;

si /r_1(x)xmeC{x}, dim£0,i r et dim F0 z r — 1.

Lemme 16. Pour X 0 et u \Eq
z

surjective deux cas se présentent :

a) dim E0 l dim F0>z, alors /r_ ^x) xm <£ C{x} et

3f 3- Logr_xx 0//o z 3/2{Dx)r,
x

b) dimLoj dimL0>/ + 1, alors /r_ 1(x)xm e C{x} et

2f 3 Logr-1x ®/I0tl @/3>(Dx)r~1D

Dans les deux cas:

E(Io,i) E0,i et F(I0 ù F0j.

Preuve. On établit facilement que

1

V p e N — {0}, 3)-— Logr *x C{x Logr *x + + C{x}

C{x} Logr lx + C{x}

V p e N 3)xp Logr lx
1

Logr 2x + + C{x}
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La démonstration est alors analogue à celle du lemme 15.

Cas n° 3: X 0 v |foj surjective.

Une base de F0J {{M—iy <f>}M0 r-u °ù <f> u(fX et f
s'écrit :

f(x) ï fi(x)XmLog 'x, Z et f,(x) e C{x}.
0

En déterminant les germes de (M—l)j<f >, il vient:

dim F0tl r dim £0, z r - 1 si /r_ x(x) xm C{x}

dim F0 l - r - 1 dim E0fZ si /r_i(x)xm e C{x}

.Lemme 17. Pour X 0 et f |Fq surjective deux cas se présentent:

a) dim F0jî — dim E0J + 1, alors /r_i(x) xm $ C{x}

3 <f> 3 <-Logr_1x> 3/10 i 3/3(xD)r~ 1x
x

b) dim E0,/ dim £0>/, alors /r_i(x)xm g C{x}

3 <f > 3 <Logr_1x> 3/10J 3/3{xD)r~1

Dans les deux cas : E(I0J) E0J et F(I0 l) F0J.

Preuve. Les égalités 3 <f> 3 <-Logr-1x> dans le cas a) et
x

3 <f> =3 <Logr-1x> dans le cas b) se déduisent du lemme 16. La fin
de la preuve est alors analogue à celle du lemme 15.

Proposition 18. Soit I un idéal à singularité régulière, © (EXI;FXJ)
u

une décomposition de E(I) ^ F(I) en sous-espaces indécomposables maximaux.

Posons:

Li {pe^; v/e£x,i et V

Pf0 et P <g> 0}.
Alors :

I niet S/I© S/IXJ,F(/m) FXjI

De p/u.s chacun des estisomorphe à l'un des Si-modules

S S S S S
S>(xD-a)r' ©(Dx)r '

â>(x£>y ' ' â>(xD)rx
'
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Preuve. Des lemmes 15, 16, 17, on déduit:

E(I) © E(IXj) et F(I') ®F(IXid,

du corollaire 8, la proposition découle facilement.
Un ^-module holonome (d'une variable) est un ^-module de type fini

dont la variété caractéristique est de dimension 1 ([P] chap. 8); on dit qu'il
est à singularité régulière lorsqu'il est engendré sur B par un sous C-module
de type fini stable par xD.

Corollaire 19. Soit M un B-module à singularité régulière holonome.

Alors M est isomorphe à une somme directe finie de B-module de la forme:

B B B B B
B(xD — a)r ' B{Dx)r ' B{xD)r ' B(Dx)rD ' B(xD)rx

'

C'est le résultat donné par L. Boutet de Monvel [BM].

Preuve à partir de la proposition 17. M étant un ^-module holonome,
M est de longueur finie (voir [L], chap. III). Comme B est un anneau simple,
le théorème de J.T. Stafford (voir [Bj] chap. I) dit que M est cyclique; ou
encore il existe un idéal I de B tel que M B/I. On montre à partir de la
définition des ^-modules à singularité régulière holonome (voir [P] chap. 11,

p. 105) que les solutions analytiques et microfonctions de B/I sont de classe de

Nilsson. Or c'est la seule propriété de / que l'on a utilisée pour démontrer la

proposition 18, d'où le corollaire 19. De plus il est facile de construire un
opérateur à singularité régulière annulant E(I) et F(I), donc appartenant à /.
Il résulte de la définition (lemme 9) que I est à singularité régulière.

Corollaire 20. Soit I un idéal à singularité régulière, alors il existe

J idéal à singularité régulière homogène tel que B/I B/J.

Preuve. C'est une conséquence de la proposition 18 et du corollaire 12.

II.C. Les idéaux principaux

L'objet de ce dernier paragraphe est la classification des ^-modules à

singularité régulière de la forme B/BP.

Notation : Etant donné des entiers (p, q, r, s) positifs ou nuls, A une

partie finie de C-Z, et des entiers :
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a (a,,...,ogeN", ß (ßj, -, ß„) 6 N«,

y (y jyr) e (N*)r, 8 (8j,8S) e (N*)s,

s (s(X))XeA e (N*)A

on note ,#(a, ß, y, 5, e) le ^-module :

Il est convenu que si p, q, r ou s est nul, ou si A — 0 le facteur

correspondant est nul. Les facteurs indécomposables qui apparaissent seront dits de

type (I), (II), (III), (IV) ou (V) respectivement.

Définition 21. On dit que Jl' « J((ol', ß', y', 5', s) s'obtient à partir de

M « J((ol, ß, y, 5, s) par adjonction d'une solution « micro-méro » dans l'un

des trois cas suivants :

a) M' « Jl © {ßl@x),

b) un facteur @/@D(xD)ai de M est remplacé par un facteur S}/9{Dxfi + 1

dans Jl',
c) un facteur @/@(xD)yk de Jl est remplacé par un facteur @/@x(Dx)yk

Nous représentons les quatre premiers types de modules indécomposables

par un éclair :

Les points de la colonne de gauche représentent une « base de Jordan de

solutions analytiques », les points de la colonne de droite « une base de Jordan
de solutions micro-fonctions » ; les traits horizontaux de la gauche vers la
droite représentent le morphisme u, et les traits descendants de la droite vers
la gauche le morphisme de variation v.

Avec cette figuration :

dans Jl'.

(I) (II) (III) (IV)
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— l'opération (a) est l'adjonction de l'éclair élémentaire de type II,

— l'opération (b) consiste à remplacer un éclair de type (I) par un éclair de

type (IV) en ajoutant le trait horizontal inférieur:

— l'opération (c) consiste à remplacer un éclair de type (III) par un éclair
de type (II) en ajoutant le trait horizontal inférieur:

Définition 22 : On dit que a, ß, y, 8, e) d'indice p — q — 0 vérifie la

condition (M0) si, quitte à réordonner les facteurs, pour 1 < i ^ p, > ß^.

On dit que Ji(a, ß, y, 8, s) d'indice x p — q < 0 vérifie la condition (MT) s'il
s'obtient à partir d'un ^-module vérifiant la condition (M0) par adjonction
successive de — x) solutions « micro-méro ».

On dit que oc, ß, y, 8, s) d'indice x p — q > 0 vérifie la condition (MT)

si, par adjonction successive de x solutions « micro-méro », on peut obtenir

un ^-module vérifiant la condition (M0). On peut aussi exprimer cette

condition en disant que, quitte à réordonner les facteurs, af > ßf pour
1 ^ i ^ p.

Théorème 23. Etant donné le Q)-module ß, y, 8, e) d'indice

x p — q, les propositions suivantes sont équivalentes :

(i) Jt(öL, ß, y, 8, s) vérifie la condition (MT),

(ii) il existe P e @ à singularité régulière tel que @/!3P & a, ß, y, 8, s).

Les lemmes 24 et 25 suivants ainsi que la proposition 26 vont nous
permettre de démontrer (i) => (ii).
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Lemme 24. Soit des entiers a > ß ^ 0, a ^ 0, b > 0 ; il existe P e

d'indice 0 et de degré d a + ß + 1 vérifiant

@P ~ &D{xDf
®

@x(Dxf

et de polynôme initial in(P) P0 (xD — af+1(xD + byt.

Preuve. Notons Q (xD 4- bf •

{ a+b
• (xD - a) ; par intégration

élémentaire on vérifie que les solutions analytiques de Q)Q sont engendrées par

une fonction :

(p xa(Log xf + (c1xa + d1x~b) (Log x)a_1 + + (caxa + dax b).

D'autre part soit *¥ x~fc(Log xf; calculons Q • :

1

— b — a)x ö(Logx)ß + ßx b(Logx)ß 1 1 +
1 — x.a + b / '

ß-y (xD + fe)*-
_ ^a+b

[(-fr-a)(Logx)ß + ß(Logx)ß x]

car a est strictement supérieur à ß, par hypothèse. Donc

ß.vp — xah0(Logx)ß -h xfl/i1(Log x)ß_1 + + xa/iß,

avec (h0,..., hp) analytiques au voisinage de 0, h0 inversible. On s'aperçoit alors

que (xD — a) — Q-x¥ est de la même forme que Q • *F, ß étant remplacé par
h0

ß — 1, et on peut donc construire un opérateur

R (xD — a) —— (xD — a) —— (xD — a)— (u0,..., u«_x inversibles)
Mß_i wß-2 W0

tel que RQ • soit analytique au voisinage de 0, autrement dit RQ<x¥> =0.
Il résulte de ces calculs que P RQ admet les solutions engendrées par cp

et < > (sous l'action de u et v) et donc, vu leur nombre, que

9P 9D(xDf @x{Dxf '
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Enfin, par construction, on a le résultat annoncé sur la partie initiale:

in(P) in(P)-in(g) (xD — a)ß (xD + bf (xD — a).

Lemme 25. Soit P et P' deux opérateurs à singularité régulière
d'indice 0 et de degré d et d', dont les parties initiales P0 et P '0 n'ont

pas de racine commune. Il existe un opérateur Q d'indice 0 et de degré
d + d' tel que 3P n 3P' 3Q, 3P + 3P' 3), de partie initiale
Qo PoP'o•

Preuve. On note C[xD](d) l'espace vectoriel des polynômes de degré
strictement inférieur à d, et

<D: C[xD](d) x C[xD](d) C[xD](d+d'}

l'application définie par <D((7, U') UP0 — U'P'0; P0 et P'0 étant premiers
entre eux, ® est un isomorphisme.

En multipliant à gauche P et P' par des unités, nous pouvons supposer:

P P0+ £ xkPk,P'P'o + X
k>l k&l

avec, pour k ^ 1, Pke C[xD](d), Pk e C[xD](d).
Résolvons formellement l'équation AP A 'P' en posant :

A A0 + X A' A'o + I JA'k,
kZ1 kèl

A0 P'o, Af0 P0 et pour k ^ 1, Ake C[xD](d), A'k e C[xD](d). Le

couple (Ak, Ak) est déterminé par récurrence de manière unique par la
formule (fc^l):

<HAk, A'k)"f{-A^ri]+ P^,).
Z 0

La notation est celle introduite précédemment : pour B e C[xD], B[n] est défini

par B[n](xD) B(xD + n).

Choisissons comme norme d'un polynôme de C[xD] la somme des modules

des coefficients ; on a les majorations élémentaires suivantes :

— pour B e C[xD](d) ou C[xZ)](d || B[n] fl ^ || B || (1 + n)6,

avec 5 sup(d, d');

— en prenant || (Ak, A'k) || sup(||v4fc, \\Ak ||),

\\(Ak,A'k)\\ < ll^"1 II E2 II (Ai, AÇ) Il II (Pfc_Z3 P^-,) |f (H-/C-/)6.
1 0
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Nous pouvons alors montrer la convergence des séries A et Ä grâce à une

série majorante: nous savons qu'il existe p > 0 et K > 0 tel que, pour tout

entier k,|| {Pk, P'k)\\«SKpk-cequi donne

Il (Ak,A'k)Il< 2 II S»"1 II K *£ Il || p*"'(l
1 0

-r X

Soit U Y, ukxk la série numérique à coefficients positifs définie par
k 0

u0 Il (A0, ri'o) Il et, pour k ^ 1 :

uk 2 H O"1 11 K Uipk~l(l + k — l)d.
1 0

Cette série est convergente puisque c'est la solution de l'équation

U u0 + 2 H O"1 II JE(£p*(l+*)V)l7
k^l

et, par récurrence, pour tout entier k, || (Ak, Ak) || ^ uk ; les séries A et A'
sont donc convergentes.

Nous pouvons donc prendre Q AP A'P' d'indice 0 et de degré à + d\
qui vérifie 3Q c= Q)P n &P' et Q0 P0- P'0.

En ce qui concerne l'affirmation Q)P + BP' — Q), on peut résoudre de

manière analogue à la précédente l'équation AP — A'P' 1. Une autre
méthode consiste à remarquer que si xau(x) (ou <xau(x)> pour a^N) est

solution de @P avec u{x) inversible, nécessairement a est racine de P0; par
hypothèse sur P0 et P'0, Q)P et @P' n'ont donc pas de solution commune, et

par le corollaire 7, @P 4- Q)P' Q). En comptant alors le nombre de solutions

on a Q)P n Q)P'.

Proposition 26. Soit donné le Q)-module a, ß, y, 5, s) d'indice p - q
0, vérifiant la condition (M0), et

— pour 1 ^ i ^ p et 1^/c^r des entiers positifs ou nuls (at) et
{ck) tous distincts ;

— pour 1 ^ j ^ p et 1 ^ l ^ s des entiers (bf et (dt) strictement
positifs distincts.

Il existe P e 3) à singularité régulière d'indice 0 tel que a, ß, y, 8, s)

~ -z— et P a pour partie initiale :
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*>0 [1 (xD-af' + HxD + bf
l^i^p

n (xd ~ ck

n (xD+d,)
1=1

n (xD-xyMX)

Preuve. On peut supposer af > ßf pour 1 ^ i ^ p et le lemme 24 fournit
Pi g @ tel que

0
9Pt <2)D(xDT 9x(Dxfl

et in(P^ (xD - +1(xD + b^

Pour 1 ^ le ^ r on prend Rk (xD — ck)yk, pour 1 ^ U s ^ (xD + dz)6î,

et pour X g A Tx (xD — X)£il}.

On applique le lemme 25 un nombre convenable de fois à partir des

polynômes (Pi)1<i<p5 (Rk)l<k<r> (Si)1<i<s C^)XeAî on obtient ainsi P satisfaisant
à la demande.

Preuve de (i) => (ii). Soit Jt' Jf(a', ß', y', 8', e) d'indice x p' — q' < 0

satisfaisant à la condition (Mx), donc provenant de Ji(a, ß, y, ô, s) satisfaisant
à la condition (M0) par adjonction de — x solutions « micro-méro ».

On a 5' — 5 p — p' ^ 0, r — r' ^ 0, q' — q (r — r') + h, h ^ 0 et

— x (p — p') + (r — r') + h où h désigne le nombre d'opérations de type (a)

effectuées, p — p' le nombre d'opérations de type (b), r — r' le nombre
d'opérations de type (c)). Quitte à réordonner les indices, on peut supposer que les

éclairs de ß, y, Ô, s) touchés par une opération de type (b) sont numérotés

de i 1 à i p — p', ceux touchés par une opération de type (c)

numérotés de k 1 à k r — r'.

Appliquons la proposition 26 à Ji(a, ß, y, ô, e) en prenant at i — 1

pour 1 ^ i ^ p — p', ck p — p' + k — 1 pour 1 ^ k ^ r — r', tous les

autres entiers étant choisis distincts en dehors de {0, 1, 2,..., — x} ; on obtient P

d'indice 0 tel que @/@P % Jl(a, ß, y, ô, s) et il reste à vérifier que P' Px~T

satisfait à @/@P' « Jt(a', ß', y', 8', e) : en effet les solutions de Q)P' s'obtiennent

en divisant les solutions de Q)P par et en ajoutant les h solutions

microfonctions <—>
x

1

< 2 >
X

1

<-h>xh

On traite le cas de M' Jt(ül, ß', y7, ô', e) d'indice x p' — q' > 0 de

manière analogue: si M' satisfait (Mt), en ajoutant x solutions « micro-méro »

on obtient M(a, ß, y, ô, s) vérifiant (M0); toujours d'après la proposition 26,

il existe P tel que @/<2>P « M(a, ß, y, ô, s), les solutions « micro-méro » sup-
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plémentaires étant <-> <^> ,<—> ; l'annuleur de ces solutions étant

Q)x\ on a P P'xx et P' vérifie @/@Pf « M'.
Nous passons maintenant à la démonstration de (ii) => (i), et faisons pour

cela des réductions successives.

Réduction au cas d'indice 0. Soit P un opérateur à singularité régulière

d'indice p — q x > 0 ; les solutions de l'opérateur P' Pxx s'obtiennent en

divisant les solutions de l'opérateur P par xT et en ajoutant les solutions

micro-fonctions < —> ,<—> ; précisons des générateurs des blocs indé-
x xT

composables maximaux des solutions de Q)P du type (I) et (III) :

| (p; (p? (log x)a' + (Pi1 (log x)"'-1 + + (p? 1 < «S

j <Tk> <4*® (log x)yk+ (log x)Yk~1 + + Wl"> 1 < < r,
et notons (at) et (ck) les ordres des fonctions analytiques (indépendantes)
(cp?) et W).

Si par exemple at «=» max(ax,ap; y1,yr), quitte à enlever à (<Pi)2<i<

et (<x¥k>)1^k^r un multiple d'une solution engendrée par <px (sous l'action
de u et v), on peut supposer que (<P?)aÇl.^ et >)i<k<r ne contiennent plus
xfll dans leur développement; on opère de manière analogue lorsque y1

sup(y2,yr) > sup(a1,oep) à partir de <VF1>. Au bout du compte on
s'arrange pour obtenir les ordres (<zf) et (ck) tous distincts. Pour 0 < at

^ x — 1 (resp. 0^cfe^x-l) le bloc engendré par cpf (resp. <x¥k>) est
remplacé dans les solutions de P' par un facteur de type III (resp. II) engendré

(p; ¥
par -4 (resp. <-->). Il reste à adjoindre les solutions micro-fonctions

x xT

1

< —> pour 1 < 5 < x, s distinct des (a&t^p et des (ck)^k^r Ainsi, si @/@F

satisfait (M0), Qj/QjP satisfait (MT).

Traitons maintenant le cas de P d'indice x p — q<0:P P'x~x où P'
est d'indice 0; la démonstration précédente montre que le diagramme de @/@P
s'obtient à partir de celui de 9/S)P' par adjonction de (-x) solutions « micro-
méro » et donc, si @/@P' vérifie (M0), Q)/Q)P vérifie (MT) par définition.

Réduction au cas s 0, A 0. Soit cp une fonction de classe de Nilsson
de la forme :

cp xx[u0(\ogxf + ^(logx)8-1 + + vj
u0,vi,..., vs uniformes, u0 inversible
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Nous allons préciser l'opérateur d'indice 0 et de degré minimum annulant cp ;

soit cp (xD — X) — cp ; un calcul évident donne :

"o

cp xx[u0(log x)8-1 + îTj^log x)e~2 + + pe-i], avec u0 s + x( —W
Lorsque vx est holomorphe ü0 est inversible; lorsque v1 a un pôle d'ordre V{1,

u0 a également un pôle d'ordre r\ 1 et (p s'écrit :

cp a ^"^[^(log x)8"1 + COx(log x)£~~ 2 + +

u1, ©1}..., coe_ uniformes ; ux inversible

On obtient, au bout de e + 1 pas

(*) (xD-^ + ru) —
wE

0 < ru < rj2... < riE

Lorsque cp engendre un bloc de type (IV) ou (V), ÇèS9 est exactement l'annu-
lateur de ce bloc puisque le nombre de solutions analytiques et

microfonctions de ÇiïSy est e + 1.

Revenons alors à P d'indice 0 et cp générateur d'un bloc de type (IV) ou
(V) de solutions de @P; P s'écrit P ßS9 avec Q d'indice 0 et de degré

d(P) — d(S9) et on a :

E(ßP) © F(ßP) IE(SJ@F(S9]] 0 [F©F]
F © F étant la somme directe des autres blocs de solutions de Q)P \ en

appelant J l'annulateur de E' © F, @P n J et + J Q) ; d'après
le corollaire 8, @/@P ^/^S9 © <3/3.

Remarquons que le morphisme de multiplication à droite par S9 de

i^/i^ß dans @/J est bien défini et surjectif ; il est injectif car et J ont
même nombre de solutions analytiques et de solutions micro-fonctions, donc

même multiplicité; en conséquence @/J & i^/^ß et @/@P vérifie (M0) si et

seulement si @/@Q vérifie (M0).

On enlève ainsi tous les blocs de type (IV) et (V) et on est ramené au

cas voulu 5 0 et A 0.

Fin de la preuve de (ii) => (i). Soit donc P d'indice 0 dont la décomposition

ne comporte que des blocs de type (I), (II) et (III). Précisons des

générateurs de type (II) :

<x¥j> < (log xfj + *Fj- (log x)ßj_1 + + ^> 1 ^ j ^ p;

(xD — X + rj i) — (xD — X) —
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et notons bj les ordres des fonctions méromorphes indépendantes Lorsque

ßj max(ß1,..., ßp), par exemple, nous pouvons enlever à {<^j>)tWp
un multiple d'une solution engendrée par <lF1> de manière que ne

comporte plus de terme en dans son développement. Ainsi, on peut arriver

à un système de générateurs <x¥j> pour lesquels les ordres bj correspondants

soient tous distincts — ce que nous supposons par la suite.

Soit cPi (p?(logx)ai + cplilogxf1'1 + + cpï1 un générateur d'un

bloc indécomposable maximal de solutions de de type (I); lorsqu'on fait
la division de P par SÇl de degré oc1 + 1 (*) on trouve un reste nul puisque
les (ax +l)-solutions analytiques de S(pi sont solutions de P: P Les

solutions de S9l se composent du bloc engendré par cpx et d'une solution

microfonction supplémentaire définie par une fonction méromorphe h d'ordre

(i : par construction de S(pi (voir (*)), p est l'ordre de la première fonction

méromorphe cp rx (t — 1,..., ocx) apparaissant dans le développement de cpx (si

toutes les fonctions cp étaient holomorphes au voisinage de 0 les solutions de

S9l forment un bloc de type III).
Appelons encore J' l'ensemble des indices j e {1, 2,..., p} pour lesquels

ß;- ^ a1 et J" les autres; on peut modifier cpt en enlevant un multiple d'une
solution engendrée par (<xPj>)jeJ, (en suivant l'ordre des (bj)jeJI décroissants)
et supposer p égal à l'un des {bj)jj„. Alors <h> + c2xF% +
+ CpW p et l'un des scalaires c-} pour j e J" est non nul.

Choisissons j0 e J" vérifiant ßJ0 inf{ß/c,- # 0}; toujours en enlevant à

<x¥jo> une combinaison linéaire des fonctions (u0vYj~^Jo(<x¥j>) pour j
vérifiant Cj # 0 et j ^ j0, on se ramène à < h > cjo<x¥j0>.

Nommons E' © F' la somme directe formée de tous les blocs de solutions
de <3)P à l'exception des blocs engendrés par cpx et <XFJ0>, et du sous
espace vectoriel de solutions engendré par v ° (u ° v)v<x¥jo> et (i/o vY<>
pour 0 ^ v ^ ßio — 1 ; ^S(?l n'a dans E' © F' que la solution triviale 0, et par
conséquent S9l opère injectivement sur E' © F' ; S9l(F) © S9l(F) sont des solutions

de Q (car P gS9i) en nombre exactement égal aux nombres de solutions

de Q: E(ßQ) S9l(F) et F(@Q) S9l(F). Enfin, comme u et u

commutent à l'opérateur S9i, le diagramme d'éclairs de @/@Q se déduit de celui
de $I2)P en supprimant l'éclair de type (I) engendré par cpx, l'éclair de type (II)
engendré par <x¥jo>i et en ajoutant un éclair de type (III) (de longueur ßJo).

Puisque j0eJ", a1 > ßJO, et par induction, si @/S)Q vérifie (M0) il en est
de même de &/Ç&P.



38 J. BRIANÇON ET P. MAISONOBE

BIBLIOGRAPHIE

[BJ] Björk, J. E. Rings of differential operators. North-Holland, Mathematical Li¬

brary (1979).

[BM] Boutet de Monvel, L. Séminaire E.N.S. (1979-80), Appendice II, à l'exposé n° 3.

[Br] Briançon, J. Description de Hilb" C{x, y}. Inventiones mathematicae 41 (1977),
45-89.

[L] Lejeune, M. Opérateurs différentiels et pseudo-différentiels. Séminaire de Gre¬

noble, exposé n° 3 (1975-76).

[Ml] Malgrange, B. Remarques sur les points singuliers des équations différentielles.
C.R. Acad. Sei. Paris 273 (8 déc. 1971), 1136-1137.

[M2] (Article à paraître.)
[M3] Sur les points singuliers des équations différentielles. L'Enseignement

Math. 20 (1974), 146-176.

[P] Pham, F. Singularités des systèmes différentiels de Gauss-Manin. Progress in
Math. 2, Birkhäuser (1979).

[S] Strömbeck, P. On left ideals in Al and their associated graded ideals, Journal
of Algebra 55_ (1978), 116-144.

[W] Wasow, W. Asymptotic expansions for ordinary differential equations. Interscience,
Publ. (1965).

(Reçu le 6 septembre 1982)

Joël Briançon
Philippe Maisonobe

Département de Mathématiques
Faculté des Sciences, IMSP
Parc Valrose
F-06034 Nice Cedex
(France)


	IDÉAUX DE GERMES D'OPÉRATEURS DIFFÉRENTIELS À UNE VARIABLE
	Introduction
	I. Base standard d'un idéal de D
	II. Idéaux à singularité régulière
	...


