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L'Enseignement Mathématique, t. 29 (1983), p. 209-220

SUR LES SOMMES DE QUATRE CUBES

par Philippe Revoy

In this note, we do a systematic study of first degree identities £ Pi(x)3
i 1

Px + Q, Pi g Z[x], occuring in the four cube problem over Z; we try to

explain the difficulties to get identities for numbers 18/c + 2 which were found

by Demjanenko and we show we can get a lot of similar identities, so that

most integers of that residue class are sum of four cubes unless they are

divisible by certain prime numbers, possibly an infinity, and we settle the

question using second degree identities.

On sait que tout nombre rationnel est somme de trois cubes de rationnels.

Il est conjecturé que tout entier est somme de quatre cubes d'entiers et cela a
été montré pour de nombreuses progressions arithmétiques, si bien que
depuis [2] on sait que le résultat est vrai pour tout entier n non congru à

± 4 modulo 9. Ces résultats se montrent à l'aide des identités ([3]):

(/cTl)3 + (k-1)3 - 2k3 6k,

k3 + (-/c + 4)3 + (2/c —5)3 + (-2/C + 4)3 6k + 3,

(3/c + 30)3 + —3/c —26)3 + (-2/C-23)3 H- (2/c+14)3 18/c + 1

(/c + 2)3 + (6k— l)3 + (8/c-2)3 + (-9/C + 2)3 18/c + 7

(k — 5)3 + (-/c+14)3 + (3/c —30)3 + (-3/C + 29)3 - 18/c + 8

Cela vérifie la conjecture pour n =£ ± 4 mod 9 et n ^ ±2 mod. 18. Pour les
entiers de la forme 9h ± 4, il a été montré ([1], [5]) qu'il n'existe pas d'iden-

4
tités du type ci-dessus : £ P^k)3 Pkavec P, Q entiers, Pt e Z[/c]

i= 1

et Q ± 4 modulo 9 si sup ä P, ^ 6. Dans [2], V. A. Demjanenko montre
qu'il existe des identités convenables pour les nombres de la forme 18/i + 2.
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Nous voulons ici montrer comment on peut obtenir des identités analogues à

celles de [2] et rendre explicite la démarche de cet article. L'auteur remercie
A. Proscynski pour la traduction de [2] qui a permis ce travail. Nous

4
noterons X xt- £ xt et x le vecteur (x1} x2, x3, x4) de Z4.

i — 1

1. Nous voulons d'abord chercher systématiquement les identités du premier
degré du type :

X(ai/c + hI)3 - Pk + Q

On doit avoir Haf Hafbt 0. Alors P 3Hatbf et Q Hbf (des

congruences élémentaires montrent que P est pair donc multiple de 6). On est

amené à étudier la forme bilinéaire symétrique cpa : Z4 x Z4 — Z4, (x, y)

-* Haixiyi dont le vecteur a est un vecteur isotrope qu'on pourra supposer
unimodulaire (les at sont premiers entre eux dans leur ensemble). De plus
cpa(a, b) 0 ; il s'agit donc de partir d'une solution entière de l'équation
HXf 0; ces solutions sont bien connues car c'est l'équation d'une surface

cubique dont les 27 droites sont définies sur Q\_<J — 3]. A chaque solution a,

on associe une forme (pa: l'orthogonal de a dans Z4 est un sous-groupe de

rang 3 contenant a. Soit a' un vecteur de Z4 tel que (p(a, a') 1 (il en existe

car les af sont premiers entre eux). Le plan H Za © Za' est métabolique pour
cpa et la restriction de cpa à ce plan est non dégénérée. Il s'ensuit que Z4 est

somme orthogonale de H et d'un plan H' : l'orthogonal de a est donc le groupe
H' © Za. On voit donc que si {a, ß} est une base de H', b À,a + xa + yß :

quitte à remplacer k par k + X, on voit qu'à une solution a de l'équation
HXf 0, est associée une famille d'identités :

Z^/c + apc + ß/y)3 P(x, y)k + Q(x, y)

où P(x, y) 3 Efl;(aloc + ßty)2 est la forme quadratique 3 (pa(xoc + yß, xa + yß)

et Q(x, y) une forme cubique. On remarquera encore que P(x, y) est divisible

par 6 car Ha^f Haßf 0 mod 2.

2. Deux types d'identités sont obtenus suivant que l'on prend pour a une

solution triviale de l'équation HXf 0, c'est-à-dire après permutation des

indices telle que a x + a2 a3 + a4 0, ou bien une solution qui ne se trouve

pas sur une génératrice rectiligne de la surface. Dans tous les cas, remarquons

que le discriminant de cpa sur Z4 est le produit des discriminants de cpa sur H
et sur H'. En conséquence le discriminant de la forme bilinéaire symétrique (pa

sur H' est égal à — a1a2a3a4 et P(x, y) est définie si trois des at sont de même
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signe ; P sera indéfini dans le cas contraire : 2 des at sont positifs, les deux autres

négatifs. Ainsi à partir d'une solution triviale avec a1 a, a3 b, on obtient

une forme quadratique indéfinie de discriminant —a2b2: ce sera le produit de

deux formes linéaires en x et y. Supposons a et b premiers entre eux et soit

(w0, v0) tel que a2u0 -b b2v0 — 1. On peut prendre pour a et ß les vecteurs

(bv0, —bv0, —au0, au0) et (0, b2, 0, —a2), d'où l'identité

(ak + bv0x)3 -b — ak — bv0x + b2y)3 -b (bk — au0x)3 + — bk + au0x — a2y)3

3k[aby(2x-(a3+ b3)y)~] + Q(x, y)

Comme le coefficient de k est un produit, on obtient seulement un nombre fini
d'identités de second membre Pk -b Q avec | P | borné, car alors a, b et y sont
bornés et donc aussi x. Quatre des cinq identités de l'introduction sont

cependant obtenues ainsi.

Regardons le cas où P est définie positive : les deux plus petites solutions

non triviales de 2,Xf 0 proviennent de

63 53 + 43 -b 33 et 93 83 -f 63 + l3.

De la seconde on obtient :

{k — 2x — 5y)3 -b (6/c + x — 6y)3 -b (8/c + 2x— 13y)3 + —9x —2x+13y)3

- 18/c(x2 + 12y2) — 7(x + y) (x2 — 7xy+ I3y2),

d'où l'identité de l'introduction pour 18/c + 7 avec le couple (—1,0). De la
première solution, on tire :

(5/c + x —y)3 + (4/c-x + y)3 + (3k — x + 5y)3 + (-6k-y)3
18/c(2x2 + 5j;2) — (x — 4y) (x2 — 7x_y + 31_y2).

Ces identités ne donnent chacune qu'un nombre fini d'identités pour une
raison P donnée multiple de 18, la meilleure étant pour les nombres de la
forme 36/c + 1. Il reste à trouver des identités pour les nombres congrus à
2 modulo 18. On peut déjà chercher, P étant divisible par 18, à quelles
conditions 0(x, y) sera congru à 2 modulo 18. Ainsi pour (1,6,8, -9), on
trouve y 0(3), x 1(3) et x y(2) modulo 6, cela donne les couples
suivants (-2, 0) et (1, 3) d'où des identités pour 12k -b 56 18(4/c-b3) -b 2 et
18(109/c— 151) -b 2.

3. Supposons maintenant que ala2a3a4 > 0, c'est-à-dire que P(x, y) est
indéfinie. Les cas les plus simples sont
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123 + l3 103 4- 93; 163'+ 23 - 153 4- 93,

puis 273 + 103 243 + 193.

On en déduit les identités :

(1) (12/c-f 5x —6y)3 4- (k + 4x — 3y)3 4- (-10/c-4x +3y)3 4- (-9k-4x + ly)3

18/c(2x2 — 15y2) 4- (x4-y) (61x2 — 175xy+ 127y2),

(2) (15/c 4-x + 3y)3 4- (9/c + 7x + y)3 + (-16/c-3x-3y)3 4- (-2/c-6x +3y)3

18/c(40x2 —3y2) 4- 101x3 4- 399x2y - 195xy2 4- 28y3,

(3) (27/c —26x + 9y)3 4- (10k-63x-16y)3 4- (-24/c+ lOx- 13y)3

4- (— 19/c + 54x4-7y)3 9/c[19(3x)2 - 5(5x + 4y)2] + Q(x, y).

C'est en utilisant l'identité (3) que Demjanenko a résolu le problème pour les

nombres de la forme 18h 4- 2. Il faut tout d'abord chercher pour quelles
valeurs de x et de y, Q(x, y) 2 mod 18. Cela donne en changeant les noms
des variables et en supposant x non divisible par 3, les seconds membres
suivants :

(1) 18/c[2(2x — 3y)2 — 135y2] 4- 2x(244x2-1782xy 4-3267y2)

(2) 18/c[160x2 —27y2] 4- 808x3 4- 4788x2y - 3510xy2 4- 756y3

(3) 9/c[19(3x)2 — 5(7x — 24y)2] + Qf(x, y).

Etudions le cas (1): le phénomène important est que la forme quadratique
P(x, y) possède une infinité d'automorphismes ; ainsi la forme quadratique
2(2x —3y)2 — 135y2 représente d'une infinité de façon les entiers qu'elle représente.

Si N est un tel entier, supposé premier et plus grand que 3, on
obtient une infinité d'identités dont le second membre est 187V/c + Fn où l'on
sait que Fn 2(18). Pour en déduire que tout entier de la forme 18/z + 2

est somme de 4 cubes, il suffirait de montrer que Fn parcourt un système

complet de résidus modulo N. En fait cela n'est pas vrai, mais pour des choix
convenables de N, on va montrer qu'on obtient tous les résidus modulo N
possibles à l'exception d'un seul, qui est 0, c'est-à-dire que tout entier de la

forme 18/z 4- 2 non divisible par N est de ce fait somme de quatre cubes par
l'identité (1).

4. Soit N un nombre premier supérieur à 5 représenté par la forme
quadratique 2(2x —3y)2 — 135y2; on a alors une infinité de représentations de N
données par (x, y) (x„, yn) avec x„ azn + ùs'", yn — czn + de'" où e est
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l'unité fondamentale de Z[7270] et se' 1. Il s'agit de regarder les résidus

modulo Ndes nombres Q(xn, y„). L'unité fondamentale de Z[%/270] est

e t)3 avec rj 11 + 2^/305291 + 966^/30.

On pose r|3" A„+ 3ßnN/3Ö, d'où les valeurs de A„ et de B„ : portant dans

2(2x„-3 yf - 135 y2„N, on trouve

f y„ Any0 + 2Bn(2x0— 3y0) >

| 2x„ — 3 y„ (2x0 — 3y0)An+ l35B„y0.

[3x/3Ôy0 + 2(2x0-3y0)]ri3" + [3y3Ôy0-2(2x0-3y0)];3"
S01t

6^1 '

_
(2 + 730) [3730yo + 2(2xo-3yo)]n3" + (2 — ^/30) [373Öyo~2(2x0 - 3y0)]n"3"

8730

Mais comme 2(2x0 — 3y0)2 - 135y20 N est premier, l'idéal (N) se décompose

dans Z[^/3Ö] en produit de deux idéaux premiers distincts qui contiennent

l'un 3v/3Öy0 + 2(2x0-3y0) et l'autre son conjugué. On trouve donc que

modulo N, on a l'un des deux systèmes

Si Q(a, ß) est nul, cela signifie qu'on obtient ainsi les multiples de N qui sont
de la forme 18/i + 2. Si Q(a, ß) ^ 0, on ne peut jamais obtenir ces nombres,
mais on peut obtenir tous les nombres de la forme I8/1 + 2 qui sont

congrus à C modulo N si la congruence r|±9n CQ(a, ß)-1 mod. N a une
solution. Si N m 1(3), on ne peut obtenir tous les nombres car tout élément
de Z/NZ n'est pas une puissance neuvième. Par contre si N =£ 1(3) et si p est

racine primitive modulo N, on obtient tous les résidus non nuls C possibles.
On a donc démontré le

ou bien

où a et ß sont des entiers. Ceci montre que, modulo N,

Q(x„,y„) ri ±9"ß(a, ß).

Théorème. Pour tout nombre premier N 2(3) représenté par la forme

quadratique 2(2x — 3y)2 — 135y2 tel que p 11 + 2^/30 est racine pri-
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mitive modulo N, la formule (1 fournit une représentation en somme de

4 cubes de tout entier de la forme 18/z + 2 non divisible par N.

Ce théorème a la conséquence suivante :

Corollaire. S'il existe une infinité de nombres premiers vérifiant les

hypothèses du théorème, l'identité (1 permet d'écrire tout entier de la forme 18/z + 2

comme somme de 4 cubes.

Remarquons que Demjanenko utilise (3) avec N 3323 : on a avec x =11
et y 1: 19(33)2 — 5(53)2 2 x 3323. L'unité fondamentale de Zf-^/95]
est 39 + 4^/95. De plus, comme on peut prendre pour xn et yn : (x„, yn)

± s"(x0, y0), il apparaît que si s n'est pas racine primitive modulo n, on peut
encore trouver le résultat analogue si — s l'est. Ainsi si s2 # 1 modulo N et si

<p(N) 2p, p nombre premier, alors g ou — s est racine primitive modulo N.
On a ainsi la

Proposition. Soit N un nombre premier 2(3) représenté par la

forme quadratique 2(2x —3y)2 — 135y2 et tel que cp(N) 2p avec p
premier : la formule (1 fournit une représentation en somme de quatre cubes de

tout entier de la forme 18/z + 2 non divisible par N.

Comme N 2(3), + q et ± q3 sont simultanément racines primitives
modulo N; comme cp(N) 2p et que q2 =£ 1 (N), F]Ç ~ Z/2 x Z/p et l'image
de + q dans Z/p est non nulle. Il suffit donc que ± q ait son image non nulle
dans Z/2 ce qui équivaut à dire que ± q n'est pas résidu modulo N.

Comme N — 1 2p, N 3(4) de sorte que J — 1 : alors q ou — qN
est non résidu quadratique, ce qui démontre la proposition. La proposition
s'applique à:

N 107 (x09 y0) (7,1), p 53

N 347 (x0, y0) (40,7), p 173

N 923, (x0,y0) (52,9), p 461,

N 1883, (x0,j;0) (127,15), p 941.

Ainsi tout entier non divisible par 107 x 347 x 923 x 1883, de la forme
18/z + 2 est somme de 4 cubes par l'identité (1).

Notons enfin que 3323 est représenté par la forme quadratique 2(2x — 3y)2

— 135y2 par le couple (220,39). Comme (p(3323) 3322 2 x 11 x 151,

pour vérifier que ± s est racine primitive modulo 3323, il suffit de vérifier que
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s11 et s151 sont différents de + 1 modulo 3323. On a ^/3Ô 1312 mod. 3323

et donc 11 + 2^/30 s - 688 mod. 3323. Ainsi on montre que tout non-

multiple de 3323, qui est de la forme 18/c + 2 est somme de 4 cubes. Il reste

les multiples de 3323, pour lesquels V. A. Demjanenko ([2]) utilise plusieurs

identités dont deux du second degré, i.e. ZPf(k)3 Pk + Q avec à Pt 2.

5. Il reste à obtenir des identités pour les nombres de la forme 18/2 + 2

qui sont multiples de l'un des nombres auxquels s'appliquent le théorème et

la proposition du paragraphe 4, par exemple 107, 347, 923,... Nous obtiendrons

ce résultat par des identités du second degré que je vais décrire ici.

Nous cherchons des identités de la forme :

P3(/c) - Pl(k) + Pl(k) - Pl(k) S(k)

où les Pf sont des polynômes du second degré et où:

P2(k) A(k), P4(fc) B(k), P^k) A(k) A pk A q et P3(fc)

B(k) — oi2(pk Aq), p, q et a

étant des entiers. De plus, pour que S(k) soit du premier degré, on suppose
que aP(/c) — A(k) &k + s', s et s' étant entiers. Alors P\ — P3 et P3 ~ Pl
sont divisibles par pk + q si bien qu'en général S(k) est le produit de pk A q
et d'un polynôme du troisième degré. On pose B(k) ak2 + bk + c, a, b, c e Z
de sorte que S S(k) dépend des huit paramètres a, b, c, a, p, q, s et s'.

Il suffit maintenant d'annuler les coefficients de /c3, k2 et k dans le quotient
de S par pk A q pour obtenir les trois relations entre les paramètres qui
fourniront les identités voulues.

On obtient les trois équations suivantes :

2s p(l + oc3),

ta[2c'-, + «>): psV +
MC + «')<'-4«\

6

5On remarquera que c n'intervient pas et que par contre est fonction
pk A q

linéaire de c. Résolvant les deux dernières équations en s' et q, on a

P2«2
_

1 + a3
2 (l + a3)(4a3-l)2aq bp —- et ae' bp

"
p2

24a
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Alors

S — (pk + q) [3ca(g(l+ a3) —2e') 4- 3s/2 — 3qs' + q2( 1 —a6)]

c'est-à-dire que S est de la forme (pk + q) (rc + s), où

r — 3a[g(l + a3) — 2e'] et j — 3e'2 — 3 qs! + q2( 1 —a6).

%

6. Exemples. Cherchons des identités avec q 0 ; comme p est non nul, on
pot2 p2( 1 —a6)

a b
~y~

et <28' —— Il faut alors que p soit pair: p 2p0 et cela

donnes p0(l + a3), b p0a2et6aa8' pl(l — a6). Prenant e' letc 0,

on obtient S 6p0k et la relation 6aa Po(l — a6): on peut prendre
a — a7

p0 a tout nombre impair car cela donne a —-—, ce qui donne des
6

identités pour les nombres de la forme 18k, 30/c, 42P, etc. On peut aussi

2(a —
apprendre p0 2a d'où a ce qui donne des identités pour 12k,

24k, 36/c, par exemple

12k (42/c2 + 2/c-h l)3 - (42/c2 —2/c+l)3 + (21/c2-8/c)3 - (21/c2 + 8/c)3

([4] p. 218).

Supposons maintenant g 1 et prenons a 2; p est pair, égal à 2p0.

On obtient 8 9p0 et a bp0 — 8p0; comme 4as' 18ùp0 — 93/?o, Po lui-

même est pair et as' 9b ~ 93 * Avec Po 2px, cela donne

8 18p1? a 2bpl — 32pf et as' 9bpl — 93p2. On prend alors s' 4 et

Pi 1, ce qui donne a et b : a — 102 et h — 35 et S (4k 4-1) (6c — 27) ;

avec c 5, on obtient

(204/c2 ± 84/c - 7)3 - (204/c2 ± 88/c - 6)3 + (102/c2 ± 51/c- l)3 - (102/c2 ± 35/c - 5)3

± 12/c - 3

Cela donne tous les multiples impairs de 3.

Ces identités ne donnent rien de bien neuf; pour obtenir à l'aide de cela

des nombres non multiples de 3, il est nécessaire que s ne soit divisible par 3,

puisque r l'est. Il faut donc que q(l — a6) ^ 0(3) c'est-à-dire que q ^ 0(3) et

a 0(3).

p2(l 4- a3) (1 —4a3)
Comme doit être entier, il faut que p soit divisible par 3 ;

24a

si a est pair, p doit être pair aussi pour la même raison; si a est impair,
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p doit être pair car p2a2 doit l'être. Il faut donc que p 6p0 ; on trouve donc

aq — 3bp0 — l&pla2 et, comme q ^ 0(3), on a a 0(3). On en déduit que
1 + a3 p2

az' — bp est divisible par 3. On en conclut que est lui aussi
4 F 24a

divisible par 3; comme a 0(3), il faut que p soit divisible par 9 et donc

par 18.

A partir de maintenant, on cherche des nombres S 2 modulo 18; il
faut donc que q{rc + s) soit pair et congru à 2 modulo 9. La première
condition donne q pair ou, comme r est toujours pair, a impair. Comme a est

divisible par 3, r 0(9), et la seconde congruence s'écrit

qs EE 3ge'2 — 3q2z' + q2, (g —e')3 + e'3 2(9).

Cela donne q — z' 1(3) et z! 1(3). En fait comme en changeant k (ou — c)

en — k, on peut négliger le signe, on voit qu'il suffit que q et e' soient non
divisibles par 3 et non congrus modulo 3. On a donc q — 2z! 0(3) et

q(l + a3) — 2e' doit être divisible par 3. En conséquence r 3a[g(l + a3) — 2e']
est divisible par 33 et par 2, donc multiple de 54. On trouve, en utilisant les

relations donnant az' et 2aq, que p lui aussi doit être divisible par 54 et on a,

en prenant a 3 : S (54plk + q) ^54c —— + 3e'2 — 3qz' — 12%q2^ où

P 54pv Posons 14q — z' 3/î; on a alors

9828 3276
s 156pl a —— Pi b 243pi H — pxq

h h

Pi et h pouvant être choisis arbitrairement, pourvu que a et b soient entiers.

Prenons pour simplifier pl h 1 : on a donc p 54, z' 14q — 3,

s 756, a 9828 et b 243 + 3276g et une identité dont le second membre
est (54k + q) (54c + 3e'2 — 3ge' — 728g2). Faisant parcourir à g toutes les valeurs

entières 1, 2,..., 26 non divisibles par 3 et inférieures à 27, on obtient une
famille d'identités

S (54/cH- g) (54c + s(g)),

dans laquelle, quitte à faire une translation sur c, on peut supposer s(g)

e {1,..., 53}. Pour calculer 5(g), il suffit de calculer modulo 54 le polynôme:

3(14g —3)2 - 3g(14g —3) - 728g2 34g2 + 27g + 27

On obtient alors le tableau suivant, avec une colonne pour le produit qs(q)

modulo 54, que nous utiliserons plus tard.

L'Enseignement mathém., t. XXIX, fasc. 3-4 15
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q s{q) qs(q) q s(q) qs(q)

1 34 34 14 49 38

2 1 2 16 37 52

4 31 16 17 52 20

5 40 38 19 16 34

7 46 52 20 19 2

8 43 20 22 13 16

10 25 34 23 4 38

11 10 2 25 28 52

13 22 16 26 7 20

Choisissant q, on pourra obtenir des identités, soit en fixant /c, soit en fixant c :

ainsi fixant k égal à 0 et q égal à 1, on obtient une identité du premier degré

déjà connue, pour les nombres 54n + 34 18(3rc + 2) — 2. Ensuite,
choisissons q 2 et c de sorte que 54c + 1=1 et changeons de signe, on
obtient une identité quadratique pour les nombres 54n — 2 18(3n) — 2.

En ce qui concerne les nombres congrus à ± 2 modulo 18, il ne reste plus que

ceux de la forme 18(3n -h 1) — 2 et leurs opposés, c'est-à-dire les nombres de

la forme.54n + 16 ou 54n + 38. Le tableau nous indique qu'il faut prendre

pour q l'une des six valeurs suivantes: 4, 5, 13, 14, 22 ou 23. Choisissant

pour q l'une de ces six valeurs, on voit que suivant la valeur que l'on donne

à c, on va obtenir une famille d'identités. On obtient ainsi la proposition:

Proposition. Soit N un entier congru à ± 13, ± 31 ou ±49
modulo 54. Alors tout multiple de N de la forme 18n ± 2 est somme de

4 cubes.

En effet, il suffit de s'intéresser à ceux qui sont de la forme 18n — 2

et donc de la forme 54n — 2, 54n -h 16 ou 54n + 34. Les deux extrêmes sont

donnés par les identités vues plus haut :
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(1) (3c +14)3 - (3c +13)3 + (c-1)3 - (c + 8)3 54c + 34,

(2) (29484/c2 —2157fc + 4)3 - (29484/c2 — 221 lfc + 43)3

+ (9828/c2 — 97lfc + 22)3 - (9828/c2-485/c + 4)3 - 2.

Pour les nombres de la forme 54n + 16, il suffit tout d'abord de choisir

q 4 pour Ns ± 31, q14 si IV + 49 et q22 si ± 13

modulo 54. Alors on choisit c de sorte que 54c + s(q) ou — suivant

le cas et on obtient une identité

± N{54k + q) est somme de quatre cubes avec

± N(54k + q) S4(Nk -h t) ± 16 ce qui achève la démonstration

Corollaire 1. Tout multiple de 347 resp. 923 de la forme 18n ± 2

est somme de quatre cubes.

En effet 347 7.54 - 31 et 923 18 x 54 - 49 et la proposition
précédente s'applique à ces nombres.

Corollaire 2. Tout entier de la forme 18n ± 2 est somme de quatre
cubes.

En effet, c'est vrai s'il est multiple de 347 (ou de 923) d'après le corollaire

1 ; c'est vrai s'il n'est pas divisible par 347 (ou 923) d'après la partie 4.

Remarques. 1) Les identités pour q 5,13 ou 23 sont moins intéressantes

pour nous car le facteur de 54k + q est 54c -h s(q) avec s(q) pair. En
conséquence, on obtient des identités avec des progressions arithmétiques de

raison N x 108, avec N impair ; ainsi 3323 x 2 54c -h 4 avec c 123 d'où
l'identité indiquée par Demjanenko mais elle ne rend compte que pour la
moitié des entiers multiples de 3323 et de la forme 54n ± 16. Il faut donc des

identités supplémentaires :

2) L'identité pour N 347 s'obtient ainsi :

Pfk) 29484/c2 + 39339/c + 3c - 49 ;

p2 29484/c2 + 39285k + 3c - 53 ;

P3 - 9828k2 + 12861/e + c - 36;

P4 « 9828/c2 -h 13347/c + c

On trouve S(k) (54/c + 4) (54c-3857); prenant c 65, on trouve une
identité pour les nombres — 347(54/c + 4) 54( —347/c —26) H- 16.
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3) Dans [4], Mordell donne des identités où les Pt sont du second degré :

(/c2 + 5/c-/2 + 6/-4)3 + —/c2 + 3/c + /2 — 14/+ 12)3

+ (2k2 + 2k — 2l2 + 22/ — 10)3 + (-2/c2-4/c + 2/2-20/+10)3 Pk + Q

Pour de petites valeurs de /, il en déduit des identités où P est relativement

petit ; il remarque ensuite que si / et k sont pairs, tous les cubes sont pairs et

on peut en déduire d'autres identités en divisant par 8. En fait, il suffit que l

soit pair car k2 + 5k et k2 — 3k sont pairs quel que soit k: posons / 2h

2h2 + 6h-2

k(k — 3)

k(k + 5) ^3

+ 2h2 - 14/z + 6)3 + (k2 + k-4h2 + 22h-5
3

2

+ — /c2 — 2/c + 4/i2 — 20h + 5)3 3/c(84/z2 — \32h + 39) + P(h),

où P(h) - 504h3 + 2244h2 - 1290/z + 208

Ainsi pour h 0, on a une identité de second membre

pour h 1

pour h 2

pour h 3

13(9/c+16) 9(13/c + 23) + 1;

27( — /c + 24) + 10;

37(9/c + 69) + 19 9(37/c + 285) + 7;

9(113/c + 325) + 1, etc.
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