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244 S. KOPPELBERG

has the form dx v (xx; ... x,) and that || y [bb, ... b,] | is clopen for fixed
by, ..., b, € B and arbitrary b € B. For the rest of the proof, we omit the
parameters b, ..., b,. Let

u=wv{|viBl||seB}.

By our inductive assumption, u is an open subset of X. Choose, by Zorn’s
lemma, a maximal family F = {(bi, c;) ] z‘e]} such that b;e B, c; is a
clopen subset of u, ¢; = ” W [b;]||, i # j implies ¢; N ¢; = ¢. It follows
that ¢, the closure of U ¢;, includes u (by maximality of F). 4 is a ¢BA,
il

hence X is extremally disconnected and ¢ is clopen. By completeness of B,
there is some b e B such that b-e(c;) = b; for iel. Thus, for iel, c;
= |]1//[b] H So, for € B, xﬁ[ﬂ]” Cuccc ]|lp[b][| = H Hxl//(x)H.

Finally we show that B, is separated for each p e X. Let o (x) be the
Zga-formula stating that x is an atom and let f (x), y (x) be the Lg,-
formulas o (x) v x = 0 resp. Vy(x(y) -y <x). Put M = {feB|
| BLf1]| = 1| and let b be the supremum of M in B. We show that b (p)
is, for each p € X, the supremum of the atoms of B,.

First suppose s € B, is an atom of B,. There is some fe M such that
f(p) = s(note that | « [ f]]| is clopen for each f€ B). Sof < band s = f(p)
< b (p). — On the other hand, suppose € B, and s < ¢ for every atom s
of B,. Choose ge B such that g(p) = t. Then pec = || y[g]|. For
feM, e(c) f<g, since q € ¢ implies that f(g) is zero or an atom of B,
and thus f(g) < g (¢q). By the definition of b, e (c) - b < g. This implies

(bypec)b(p) <g(p) =t

4. DECIDABILITY AND COMPLETIONS OF T7 (K)

Call Typs = Tpyau {0} the theory of separated Bds, where Ty,
is the theory of BAs and o was defined in section 3. We give a short review
of the completions of Tz ,. Let, for n € w, ¢, be the £, -sentence stating
that there are exactly n atoms and  the .#;,-sentence stating that there
is a non-zero atomless element. Let y, = =1 (¢g V ... V @,_1); SO X, says
that there are at least n atoms. Define, for new + 1 and ie2 = {O, 1},
an %, -theory T,; by

TnO =TsBAU{§Dn9——I¢}
Tnl =TSBAU{(/)n>lp}
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for n e w, and

Too = Tps U {tn|neow} v {1y}
To1 = Tpa 0 {sn|neo}u{v}.

Put 7 = {T,,i ]n ew+ 1,ie 2}. It is then clear that each separated BA
satisfies exactly one of the theories in 7, and for each ¢ € 7 there is a ¢BA
satisfying ¢. Moreover, any two models of any ¢ € T are elementarily equiv-
alent by 5.5.10 in [1]. Thus the theories 7 € T are just the completions of
T ;4 and can be thought of as being the elementary equivalence types of
separated BAs or cBAs. Moreover, an % 5 ,~-sentence holds in every separated
BA iff it holds in every c¢BA. The following proposition is essential for

the main theorems of this section:

4.1. PROPOSITION. Let s,te 1. Then there is a structure (B, A) in K
such that A is a model of s and each stalk B, is a model of t.

Proof. By the above remarks, choose cBAs A and F which are models
of s resp. t. Let A4 * F be the free product of 4 and F. Thus A is relatively
complete in A4 * F and each stalk (4 * F),, where p is an ultrafilter of A4,
is easily seen to be isomorphic to F, hence a model of ¢. Unfortunately,
A = F is incomplete unless 4 or F is finite. So let B = (4 % F)* be the
completion of A4 * F; note that 4 * F is a dense subalgebra of B. (B, 4)
€ K, since the inclusion maps from 4 to 4 % F and from A4 * F to B are
complete. For p e X (the Stone space of A), B, is a separated B4 by 3.2
but in general a proper extension of (4 * F),. We show, with the notations
of section 1, that B, is elementarily equivalent to F. For the following proof
of this, recall that, for fe F\ {0} and pe X, n, (f) = f(p) # O since F
is independent from 4 in A4 %« F < B. Thus, the restriction of n,:B— B,
to Fis a monomorphism. The elementary equivalence of B, and F is estab-
lished by the following four claims.

Claim 1. For each atom f of F, f(p) is an atom of B, (hence, if F has at
least n atoms, where n € w, then B, has at least n atoms): clearly, f(p) > 0
for p e X. Assume that

u= {pe X|f(p)is not an atom of B,}

is non-empty. By 3.2, u is a clopen subset of X. Choose, by the maximum
principle stated in section 3, b € B such that & (p) = 0forp ¢uand 0 < b(p)
< f(p) for peu. Since b > 0, choose a€ Aand g € F such that 0 < a-g
< b; let pe X such that a(p)-g (p) # 0. Thus peu, a(p) =1, and
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0<g(p) <b(p) <f(p). It follows that 0 < g < f, contradicting the
fact that f was an atom of F.

Claim 2. 1f B, has at least n atoms, where 1 <{n < w, then F has at
least n atoms: assume that M is a subset of 47 (B,), the set of atoms of B,
such that M has exactly n elements but 47 (F) has at most # — 1 elements.
We prove:

(a) Let xe M. Then there is f, € At (F) such that f, (p) = x.

Claim 2 follows from (a), since the assignment of f, to x is injective. And
(a) will follow from

(b) Let xe M, u a clopen neighbourhood of p such that, w.l.o.g., for
q € u, B, has at least one atom. Let b € B such that, forg¢ u, b (g) = 0
and for geu, b(q) is an atom of B, and b (p) = x. Then there are
geu and fe At (F) such that f(q) = b(q). (Hence At (F) is non-

empty).

Proof of (b). By b > 0, choose ae A, fe F such that 0 < a-f <b.
Since b (q) = 0 for g ¢ u, there is some g € u such that a(q) - f(q) # 0,
which implies 0 < f(q) <b(q). f(g) = b(g), since b (g) is an atom of
B,. Finally f'e At (F), since a splitting of fin F into two non-zero disjoint
elements would give rise to a splitting of b (¢) in B,.

Proof of (a). Let xe M and choose u and b as in (b). Assume (a)
is false. Then, for each fe At (F), f(p) # x = b(p); by finiteness of
At (F), there is a clopen neighbourhood v of p such that, for gev and
fe At (F), b(q) # f(q). Let ce B such that ¢(g) = 0 for g¢v and ¢ (q)
= b (gq) for gev. This contradicts (0), applied to v and ¢ instead of u
and b.

Claim 3. If F has a non-zero atomless element f (which means that
F) fis atomless), then each B, has a non-zero atomless element x: let
x = m,(f). x >0, since 7, is one-one on F. F} fand hence, by Claim 2,
(B! f),is atomless. So B, x = n,(B} f) = (B! f),is atomless.

Claim 4. If B, has a non-zero atomless element x, then F has a non-zero
atomless element f : assume that F is atomic. Let

u = {ge X|B,is not atomic} .

u is a clopen neighbourhood of p. By the maximum principle, choose
b e B such that b (¢) = O for g ¢ u, b (¢) is a non-zero atomless element of
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B, for qeu, b(p) = x. Choose ac A, ge F such that 0 < a-g <b;
w.l.o.g., g is an atom of F. Choose g€ X such that a (g) - g (¢) # 0. Thus
geu and g (9) <b(g). By Claim 1, g (9) is an atom of B,, contradicting
the choice of b (gq).

4.2. REMARK. Suppose that, for every i in an index set I, M; = (B A))
is an element of K. Then .# = (B, A), where B = || B;and 4 = [T 4.

iel iel
is in K. Let ¢ (x, ... x,) be an Z-formula and by, ..., bye B, b; = (b;j) icr-
Put a; = e (| @ [biy ... bl | *9). Then

e (H @ [by ... by] “Jﬂ) = (Ap)ier -

Proof. By induction on the complexity of ¢.

We shall need the following Feferman-Vaught theorem about sheaves
over Boolean spaces from [2]:

4.3. THEOREM (Comer). Let % be an arbitrary language. There is an
effective assignment

@ (xl Ll xk) = (@; ‘919 s e 19m)
for PL-formulas ¢ (xy ... x;) Such that

a) 94, .., 9, are Z-formulas having at most the free variables xy ... x,
and

%( NS WA AN TG A

1<=i=m 1=icj=m
b) & is an Lpy.-formula having at most the free variables yi ... V;

c) for each sheaf & = (S,n, X.p) of L-structures such that X Iis
a Boolean space and | W [fy ... f;]|| is a clopen subset of X for every
V(g ..x,) in &L oand fi, ... L€l (£):if by, ....bel (&), then

I'(#) k= @by ..b] iff Ck &lcy..c,l,
where C is the BA of clopen subsets of X and c; = ” 3, 164 ... by] ”

For two separated BAs A and A’, let I be the set of partial functions f
from A4 to A’ such that dom (f) = {al, - a,,} is a finite partition of A
(where some of the g; may be zero), rge(f) = {al’, vevs a,,’} where a;’
= f(a;) is a partition of A’, and every A ) a; is elementarily equivalent
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to A"} a;'. If A, A" are X,-saturated or o-complete, the following conditions
are equivalent:

a) A=A,
b) I is non-empty;
c) I has the back-and-forth property.

Moreover, if fe I is as above and A, A" are arbitrary separated BAs, then
(4,ay,..,a) =A4,a,/,..,a,").
Let T 42 D€ the Z-theory

Tpar = Tpa VU {Vx(U(x) o>x=0v x =1)}.

Since T4 is decidable, T 5, and Tz, are decidable.

4.4. THEOREM. There is an effective procedure deciding for every -
sentence ¢ whether T \— ¢@. Moreover, T — ¢ if and only if ¢ holds in
every model M in K.

Proof. Let ¢ be given. Construct (@ (yy ... ¥,); %4, ...s 3,) by 4.3.
For every i such that1 <{i <{m, decide whether T 5,, - —1 93;. W.lo.g.,
assume that T g,, U {Si} is consistent for 1 <7 <r and inconsistent
forr+1 <i<m By 93; v ... v 3,,we have 1 < r (itis possible that
r = m). Next, construct the formula

O (v V) = (N (i =0 O(yy V) -

r+1<i=m

We show the equivalence of

a) T + o;
b) M = ¢ for every M € K;

¢) Tspa = VY1 . VY, & (31 .. Vo)

Then, by decidability of T4, T 1s decidable and 4.4 is proved. a) implies b )
by 3.2. To prove that ¢) implies a), assume there is .# }: T such that
M £ @, e.g. M = (B, A). Put a; = e(| $;|"). By 4.3 and .« ';é ®, we
see A %é @ [a, ... a,). By our choice of r <m, we geta,,; = ... = 0.
Thus A4 };é P’ [a1 ... a,] and c)is false. Now assume c¢) does not hold, we
show that b)is false. Let A’ be a separated B4 and a,, ..., a,,’ € A" such that
Ay = .= a, =0 and A’ };é ¢ [a,'...a,']. Wlo.g.,a'#0 for 1 <i
< r. By choice of r, there are 74, ..., ¢, € T such that #; }: 9; for 1 <i <.
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Let, for these i, s; be the element of ¢ such that A’ | a4;’ }: s;. By 4.1, there
are #// = (B,A)eK and a,,...,a,€ A such that 1 = a; + ... T a,, a;" q;
=0 for 1<i<j<r, A} a; = s;and (B} a), = t; for those pe X
satisfying a; (p) = 1. So e (| 9; | = a; by 4.2. Puta,4; = ... = @, = 0.
It follows that (4, ay,...,aq,) = (4,4, ...,a,"), A };é & [ay ... a,] and
M H @ by 4.3,

In the next theorem, we characterize elementary equivalence of models
of 7. Call the following sentences in ¥, basic sentences: ¢, A ¥, @, A 1Y,
s A Y, %a A 1Y (Where n e w). It follows by the analysis of the comple-
tions of Tz, given in the beginning of this section that for each %, -
sentence & there are basic sentences [, ..., 5, such that

Tps @ e N B) A A T (B ABY -
i=1 1=Zicj<n
This fact is easily extended to T3 ,,: by replacing each atomic formula U (z)
where 7 is a term in £z, by “¢ = 0 v ¢t = 17, we see that for each #-
sentence 3 there are basic sentences f4, ..., 8, satisfying

TsBAzF(SHE/l)A VAN —‘(ﬁi/\ﬁj)-

l<icj=n

Now, if 8, y are basic sentences, let g, be the following % -sentence :

Opy = Hy(')’y A Sg (J’)),

where 54 (y) is the £-formula assigned to f in 3.1 and 9” is the result of
relativizing the quantifiers 3 x¢ ... in y to Ix(U ) A x <y A@p”..).
A model (B, A) of T satisfies a4, iff 4} a |= 9, where a = e(c) and ¢
=8l

4.5. THEOREM. Let M = (B, A), M’ = (B', A') be models of T. Then
M is elementarily equivalent to M' if and only if, for any basic sentences B, 7y,

M ‘= og, iff M IE g, -

Proof. The only-if-part is clear. Suppose that .# and .#' satisfy the
same sentences of the form o,,. Let ¢ be an Z-sentence and .4 F: Q;
we want to show that .#" := @.Let (D (¥ . Yo)s 94, ..o, 9,,) be the sequence
assigned to ¢ by 4.3; every 9; is an Z-sentence. Put a;, = e A9 |
by 4.3 and e : C - A4 being an isomorphism, we have that {ay, ..., @y }
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is a partition of A and A4 ‘: ® [a; ...a,]. In the same way, put
a; = e (|9 {ay’, .., a,'} is a partition of A". It is sufficient to show
that (4, ay, ..., a,) =(4', a,', ..., a,,), for this implies 4’ = & [a," ... a,,]
and finally /' = ¢ by 4.3.

For every 3;, choose basic sentences By, ..., f;,; such that

Tgar :" (3; < \/ ﬁij) AN T (,Bij A B -

Jj<l

Put o;; = e (| Bi; ), i/ =€ (| Bi; ") for 1 <i<m, 1<j<n,.
Then q; is the disjoint sum of the o;; (1 <j <n;), a;"is the disjoint sum
of the a';; (I <j <n;). For every i, j,

let y be any basic sentence of Zp, and assume A4 | «;; := y; we want
to show that A"} «;; = y. But 4} «;; [: 7 means that .# |= Tpijy- By
our main assumption, ./’ = Op,y and A"} o = 7.

We have shown that the partial function f mapping ;; to «;;" is anelement
of the set of back-and-forth-isomorphisms defined after 4.3. Hence,

(A9 Ligs oves O(mnm) = (A,: O{'1113 b OCmnml)
and
(4,a,,...,a, =A,a,..,a,).

We shall finally describe the completions of T by giving a one-one
correspondance between a set P (consisting of pairs of mappings from
w %X 2 to (w+1) X2) and these completions. For m,m'ew + 1 and
Jj,j' €2, define '

(m,j) + (m',j) = (m",j")
where m” is the cardinal sum of m and m’ and j” is the maximum of j and
j'. Let
P = {(oc,p)loc,p cw X 2 - (w+1) x 2 and, for
mi)ew X 2,p(ni)=pm+l,i)+ami)}.

In the following definition, we refer to the #5,-theories T,; defined in the
beginning of this section. For («, p) € P, let T,, the Z-theory

T,, = T U {3x (0 rmp) ) A7) | nE®, yET 40}
U {3x (0pnmy ) A ¥) [new, €T ,40}
U{Ix(0@pnsy ) AY)|new, yeT,u}
U A{3x(0ury ) AY)|new, yeT,,1}.
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If # = (B, A)isamodel of T, then 4 |= T,,iff, fora; = e(|eunm1 ¥ |
Al ay }: Tymoys s f0r ag = e (| 2 A W 1), 4} a, |= Tynt) -

4.6. THEOREM. {T ap l (o, p) € P} is the set of completions of T. More-
over, each T,, has a model in K.

Proof. If («, p) and (o, p') are different elements of P, then T, U T,
is inconsistent (recall that every T,,; where me w + 1, j€2, is complete
in #3,). If A/ is a model of T, there is some (a, p) € P such that .4 l= ;
(e.g., puta; = e (|| @, A —1 ¢ |#) and let a (n, 0) be the pair (k, j) € (0 + 1)
x 2 such that 4} a; |= Ty, etc)). If (o, p) € P and A, 4’ are models of
T,,» then .4 and /' are elementarily equivalent by 4.5, since T, says which
sentences of the form o, are satisfied in .4 and .#’. So it is sufficient to
prove that each T,, has a model which lies even in K.

For simplicity, we construct .# € K satisfying the part of 7,, which
refers to T, 0y and T, 0y~ for, if A" €K satisfies the part of T, which
refers to T,(,,1y and T, 1), then A4 X A € K is a model of T,,. Abbreviate
o (n,0) by ¢, p(n, 0) by s,. We first construct a complete B4 A and a
sequence (@,),., in A such that the a, are pairwise disjoint and

* A4 a,,}:z‘,,, A D rnl=s,,

where r, = — (aq + ... + a,_,). Let A be a complete BA which is a model
of s,. Suppose ay, ..., a,_1 € A are pairwise disjoint and a, ..., a,_;, 7,
satisfy (*). Since s, = §,4.1 T 1,, A} r, [F s, and A is complete, there are
a, and r,y; €4 such that r, = a, + r,.q, @, 1,0, =0, A} a, }: t,
and Al r,yy E S,4q.— Finally, leta, = — Y @, By the proof of 4.1,

hew

there is, for ne w, 4, = (B,, 4,) €K such that 4, = 4} a, and each
stalk (B,), of the sheaf representation of .#,is a model of @, A —.
Moreover there is #, = (B,, 4,) € K such that 4, = 4} a, and each
stalk (B,), of the sheaf representation of .#, is a model of T,,. Put .#
= (B, A) where B is a complete BA which lies over 4 as [1 B, lies over

Hew®

[14,. By 42, e(| @, A 71y ") = @, and e(| 1, A 71§ || = r,350

new

A is a model of the part of T,, referring to Ty, 0y and T, o).
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