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1.3. REMARK. a) Let 4 and the inclusion map from 4 to B be complete.
Then A is relatively complete in B.

b) Suppose A is relatively complete in B and B is complete. Then A
is complete.

2. RELATIVE AUTOMORPHISMS OF FINITE EXTENSIONS

We first give an internal description of a finite extension (B, 4) where
B = A (uy ...u,) and n € . We shall always assume that uy, ..., 4, are the
atoms of the subalgebra of B generated by uy, ..., #,; i.e. that they are
non-zero, pairwise disjoint and u; + ... + u, = 1. Let I, = {a €A la U,
= 0} for 1 <r < n. Clearly, each I, is a proper ideal of 4 and I; N ... N I,
= {0} The family (I, | 1<<r <n) completely characterizes the extension
(B, A):

2.1. REMARK. Suppose C = A4 (v, ...v,) is a finite extension of A4
where v, ..., v, are pairwise disjoint and 1 =v; + ... + v,. Let
B = A (uy ...u,) be as above. There is an isomorphism g from B onto C
satisfying g (@) = a for ae A and g (u,) = v, iff, for each r, {a €A | a-v,
=0} = L.

Proof. By Theorem 12.4 in [7].

2.2. REMARK. A4 is relatively complete in B = A4 (u, ... u,) iff, for each
r, I, is a principal ideal.

Proof. The only—if part follows by the definition of relative completeness.
Now suppose «, € A generates I,; let be B and I = {aeA ]a-b = O}.
There are ay, ..., a,€ A such that b = a; -u, + ... + a, - u,. It follows that
I is the principal ideal generated by o« = (—a; +a;) - ... - (—a,+«,).

Conversely, given any family (7, | 1 <<r <n) of proper idealsin A4 satisfy-
ing Iy n...n 1, = {0}, there is an extension 4 (u; ... u,) of A such that
I = {aeA Ia-u, = 0}: let D = A4 (x;...x,) be the free product of 4
and a finite B4 with atoms xq, ..., x,. Let

K={iy % + . +ix|ijel,. . iel}.

K is an ideal of D; the canonical epimorphism = from D onto B = D/K
is one- one on 4, and for ae 4, n (a) - u, = 0 iff ae I, where u, = 7 (x)).
Now identify 4 with the subalgebra n (4) of B.

For the rest of this section we think, as in section 1, of B as being the set
of global sections of a sheaf & = (S, =, X, u) of Boolean algebras over a
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Boolean space X; we use the abbreviations of section 1. For pe X, B,
= {b(p)lbeB}. Since b(p)e{0,1} for bed and B = A (u; ... u,),
B, is a finite B4 with atoms {u, (p) | 1 <r<n}\{0}.

Let G = Aut,B be the group of those automorphisms of B leaving
A pointwise fixed, i.e. G is the Galois group of B over A. Suppose g € G
and p e X. Since g (a) = a for ae 4, g induces an automorphism of B,
which, in turn, is induced by a permutation of the (at most n) atoms of B,.
This gives rise to the following definitions (S, is the group of permutations
of {1, ..., n}).

Letpe X. Forl <r, I <n,sayu, ~ u; at p if there is a neighbourhood
u of p such that, for geu, u,(q) = 0 iff u;(g) = 0. =e S, is said to be
compatible with p if u, ~ u,yatpforl <r <n.g e Gissaid to be induced
by 7 at p if g () (p) = u,y (p) for 1 <r < n. Note that, if one of these
definitions holds (for fixed u,, u;, n € S,, g € G) for some pe X, then it
holds (for the same u,, u;, ® € S,, g € G) for every g in some neighbourhood
of p. And u, ~ u; at p means that there is a clopen subset ¢ of X such that
p € c and, for a e A4 satisfying a <e(c), ael, iff ael,.

2.3. LEMMA. Suppose pe X and n € S,. Then = is compatible with p
iff there is some g € G which is induced by 7 at p.

Proof. Suppose minduces g at pand 1 < r <n. Letu be a neighbourhood
of p such that g (u,) (q) = u,,y (g) for geu. Thus, for geu, u,,,(q)
= 0iff g (v,) (¢) = Oiff u, (g) = O since g induces an automorphism of B,.

Conversely, suppose 7 is compatible with p. Choose a clopen neigh-
bourhood ¢ of p such that u, (g) = 0 iff u,,,(g) = 0 for 1 <r <n and
geu. Let a = e(c). By 2.1 and the remark preceding this lemma, there is
some g € G such that g (w,) = —a-u, + a-u,,, for every r. This g is
induced by 7 at p, since a (p) = 1 and hence g (u,) (p) = u,,y (p).

2.4. THEOREM. a) Let X = U {c,t | T E S,,} be a partition of X into
pairwise disjoint clopen subsets such that, for every pec,, n is compatible
with p. Put a, = e(c,) for meS,. Then thereis ge G such that, for
1 <r<n,

g ) = Z {an " Un(ry

b) Conversely, let g € G. Then there is a partition X = U {c, l nesS,}
of X into pairwise disjoint clopen subsets such that, for pec,, © is com-
patible with p, and g () = Y. {a, Uypy [TES,}, where a, = e(c,).

neS,}.
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Proof. First note that g € G, a, = e (c,) where (¢, [ n €.S,) is a partition
of Xand g (1) = Y. {a, ity |m€S,} imply that m is compatible with
pforpec,:bypec,, we get a,(p) = land a,(p) = Ofor pes,, p # 7.
So g (u,) (p) = ey (P), g is induced by 7 at p, and 7 is compatible with p.

To prove a), note that {a, - u, |ne S, 1 <r <n} isa set of pairwise
disjoint elements of B with supremum 1 and generating B over A. The
existence of g follows by 2.1 and the remark preceding 2.3.

To prove b), let g € G. For n e §,, put

v, = {pe X|ninducesgatp} .

Each v, is an open subset of X, and X = U {vn I TE S,,}: suppose p € X.
Define n € S, as follows: let 1 <r <n. If u,(p) = 0, then g () (p) = 0;
put © (r) = r. If u, (p) # 0, u, (p) and hence g (,) (p) is an atom of B,;
let = (r) = [ where g (1) (p) = u, (p). Clearly, p €v,.

Since X is a Boolean space, there is a family (c, In e S,) such that c,
is a clopen subset of v, X = U {cn | T E S,,} and the ¢, are pairwise disjoint.
Put a, = e(c,). Suppose 1 <r <nandpe X, e.g. pec,. Then pev, and

(2 {an ’ un(r) ne Sn}) (p) =4 (ur) (p) .

Theorem 2.4 says that the automorphisms of B over A are completely
determined by certain partitions (a, | ne S, of A resp. (c, ] nesS,) of C.
Unfortunately, for a given g € G, a partition (c, l n € S,) defining g is not
uniquely determined, since there may be different possibilities of choosing
a clopen disjoint refinement of (v, I n € S,). We conclude this section by
illustrating 2.4 by several examples.

If H is any group and 4 a BA, let X be the Stone space of 4 and

H[Al = {f:X> Hlfis continuous }

where H is given the discrete topology. H [A4] is a subgroup of H* and is
usually called the bounded Boolean power of H by A4. Recall that, for
B = A(uy..u,), A and the subalgebra of B generated by uy, ..., u, are
independent iff a-u, # 0 for ae A\ {0}, 1 <r <n. 4 is then relatively
complete in B. Conversely, suppose A4 is relatively complete in B. Then there
is a partition (a, | 1 <k <n) of 4 (some of the g, may equal zero) such
that, for each k, the relative algebra B} g, = {x €eB | x < a,} is generated
over A} a, by k disjoint elements vy, ..., v, which are independent from
Al @y for 1 <r,1 <n, the set of those p e X such that u, (p) = u, (p) is
clopen. Hence, for 1 <k <n, ¢, = {pe Xl B, has exactly k atoms} is
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clopen; put g, = e(¢). By a compactness argument, construct vy, ..., ¥
€ B! a, by patching together some of the u, such that for p € ¢, the atoms

of B, are vy (p), ..., v (p).

2.5. EXAMPLE. Suppose a-u, # 0 for 1 <r <n and aeA4)\{0}.
Then Aut,B = S, [4].

Proof. Our assumption says that u, (p) # O for each r and each p € X.
Hence each n e S, is compatible with each pe X and, for fixed g€ G,
the open sets v, in the proof of 2.4 are disjoint, hence ¢, = v,. An iso-
morphism ¢ : G — S, [4] is established by defining ¢ (g9) (p) = niff pev,.

2.6. ExaMPLE. Suppose A is relatively complete in B. Then there is a
partition (a | 1 <k <n) of 4 such that

Aut,B= S, [4}) a] X ... X S, [4A} a,].

Proof. Choose, for 1 <k <n, aq,€ A as indicated above and let G,
be the Galois group of B| a, over A} a,. Clearly,

Aut,B ~ G, X ... X G,,
since @, € A. By 2.5, G, =~ S, [4 ] al.

2.7. PROPOSITION. The following conditions on (B, A) are equivalent:

a) A is relatively complete in B;
b) there is some ge€ G such that g (b) # b for be B\ 4;

C) there is some finite subgroup H of G such that, for every be B\ A,
there is some g € H satisfying g (b) # b.

Proof. Assume a). There is a finite partition 7" of C such that, for 1 <r
<n, teT and p,qet, u,(p) =0 iff u,(q) = 0. For teT, let ©, € S,
such that, for pet, n, (r) = rifu, (p) = 0 and u, (p) = U, (p) isacyclic
permutation of the atoms of B, which moves all these atoms. 7, is compatible
with each p € ¢; hence there is some g € G such that g is induced by =,
for pet, teT. Now let be B\ A. Choose pe X, e.g. pet where teT,
such that b (p) ¢ {0, 1}; put &' = g (b). Let At (B,) be the set of atoms
of B, M = {aeAt(B,)|a <b(p)}, g, the automorphism of B, induced
by g, M' = {g, (@ |aeM}. By the choice of =, and g,

b (p)=g,6(p) =2 M #3 M=b(p)




BOOLEAN ALGEBRAS WITH DISTINGUISHED SUBALGEBRAS 241

which proves b’ # b — since, if 7 is a cyclic permutation of a finite set ¥’
moving every element of Y and M < Y satisfies M = {n (m) ]m eM },
then M = ¢ or M = Y.

To prove that b) implies ¢) it is sufficient to know that every finitely
generated subgroup of G is finite. We indicate a construction for finite
subgroups of G. Let T = C be a finite partition of C. A function ¢ : T — §,
is said to be compatible if, for every teT and pet, ¢ () is compatible
with p. For each compatible ¢ : T — S, let g, be the element of G mapping
, t0 Y {e(t) " uyuy oy |t €T} It is casily seen that

Gr = {g,|¢ : T S, compatible }

is a finite subgroup of G and that every finite subset of G is contained in
some Gy.

Now suppose ¢), i.e. there is some finite subgroup H of G moving every
be B\ A. We may assume that H = G for some finite partition 7" of C.
Assume that A is not relatively complete in B. By 2.2 there is some r such
that 7, is not a principal ideal; w.l.o.g., r = 1. Let ¢ = {pe X|u1 (p)
= 0}. o is a subset of X which is open but not closed; choose p € X which
lies in the closure of o but not in ¢. W.l.0.g., for some k satisfying 1 <k
> n,

{r|t1<r<nandu ~u atp} = {1,.,k}.

Let ¢ be a clopen neighbourhood of p such that, for 1 <r <k and gec,
u.(q) = 01iff u; (g) = 0. W.lo.g., ceT. There is some / such that k < [
< nand y (p) # 0; otherwise, let ¢’ < ¢ a neighbourhood of p such that
U (q) = 0forgec’ and k < I <n. Choose ge ¢’ n o (since p lies in the
closure of ¢). In B,, which has at least two elements, 1 = u,; (q) + ...
+u,(q) =0+ ..+ 0=0, a contradiction. — Put a = e(c) and b
=a-u; +..+au.beB\A4, since 0 <b(p)=u(p)+ ..+ u (p
< 1 by our preceding claim. We prove that, for ge H = G, g (b) = b,
thus arriving at a final contradiction: there is some compatible ¢ : 7' — S,
such that g = g,. Consider k <n, ce T and p € ¢ as constructed above.
Since ¢ is compatible, 7 = ¢ (c) is compatible with p; hence = maps the
set {1, ..., k} into itself, g,(a-u) = a- Uy for 1 <r <k (where
a = e(c)) and g (b) = b.
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