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1. THE SHEAF REPRESENTATION OF BOOLEAN ALGEBRA EXTENSIONS

Let % be any language for first-order predicate logic. Suppose X is
a non-empty set and for every p € X we have an Z-structure %, = (Bpy -+)s

put S= uU B, Suppose ¢ (xy..X,) Is an P-formula, u = X and
peX

fis v fo s u— S are such that f; (p) € B, for 1 <i <n and p € u.. Then let

lolfyfil] = {peu|B,|= o [fi(® .- fi (D]} .

We may think of | ¢ [f;.../;]| S X as being a (Boolean) truth value
of ¢ [f1 ... f,] in the power set of X.
A sheaf of #-structures is a sequence

S = (S, 7, X, 1)

such that a) S and X are topological spaces and 7 : § — X is a continuous
open local homeomorphism from .S onto X, b) u is a function assigning to
each pe X an ¥-structure %, = (B,, ...) such that the B, are pairwise

disjoint, S = u B, and n (s) = p iff se B,, ¢) for every open subset u
peX

of X and continuous fi, ..., f, : u — S satisfying f; (p) € B, for peu and
every atomic &Z-formula ¢ (xq ... x,.), | @ [ f1 --- /3] H is an open subset of u.

The #-structure 4, is called the stalk of & over p. — Let, if & is a
sheaf of &-structures, I' (&) be the set of all continuous functionsf: X - §
satisfying f'(p) € B, for p € X (the set of “global sections” of &). So I' (&)
is, if non-empty, (the underlying set of) a substructure of the product

structure || 4,, hence an #-structure.
peX

For the rest of the paper, let & = {+, - —,0,1, U} where U is a
unary predicate. We indicate how, for a given B4 extension (B, A), B may
be represented by I' (&) where & is a sheaf of #-structures over a Boolean
space. We omit most of the proofs which are easy and entirely analoguous
to well-known representation theorems for lattices over Boolean spaces.
Let X be the Stone space of A, i.e. the set of all ultrafilters of 4 with the
usual topology. For p € X, let < p > be the filter of B generated by p. Let
n,:B—> B/<p > = B, be the canonical epimorphism. So B, is a BA
with at least two elements. For p,qe X and p # g, B, and B, are disjoint.
Let S= U B,and n:S5— X be defined as stated in b) above. Let,

peX

for pe X, 1t (p) be the L-structure (B, ..., {0,1}). For u = X open and
beB,let M, = {np (b) ] pE u}. The set of these M, constitutes a base
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for a topology of S, and this makes & = (S, n, X, ) a sheaf of #-structures.
Furthermore, for b€ B, 0, : X — S defined by g, (p) = 7, (b) is a global
section of & and
g:B->T (%)
b+ g, }

is an isomorphism from B onto I" (). We shall now identify B with I" (¥);
so every b € B is a function from X to S. This identifies 4 with those b € B
such that for every pe Xb(p) = 0 or b(p) = 1, i.e. with those be B
satisfying | U (b) || = X. Let C be the B4 of clopen subsets of X and e (c)
the characteristic function of ¢ for ¢ € C. Thus e is an isomorphism from C
onto 4 < B.

In the rest of this section, we show that the property of being a Hausdorff
sheaf for & is equivalent to a property of the extension (B, 4) which reflects,
in a way which is first-order expressible in %, completeness of the embedding
of A4 into B. Recall that, for a sheaf ¥ over a Boolean space X, Sis a T,-
space iff, for any f, g e I' (¥), || f = g || is a clopen subset of X; & is then
said to be a Hausdorff sheaf. Call A4 relatively complete in B if, for every
b € B, there is a largest element a € A such that a < b, equivalently: for
b € B, there is a largest ae 4 such that a-b = 0 or: for b € B, there is a
smallest a € 4 such that b <a.

1.1. ProrvosiTiON. & is a Hausdorff sheaf iff A is relatively complete
in B.

Proof. Suppose & is Hausdorff and b € B. Let de B such that d(p) = 0
for every pe X, let ¢ = | b = d| and a = e(c). Then a is the largest
element of A satisfying a-b = 0.

Conversely, let 4 be relatively complete in B and suppose f, g € B.
Let a be the largest element of A4 such that a <f-g + — f- —g. Let
ce Csuch thata = e(c). Then || f = g | = cis a clopen subset of X.

1.2. REMARK. Let A4 be relatively complete in B. Then the inclusion
map from A4 to B is a complete homomorphism.

Proof. Suppose M is a subset of 4 having a supremum a in 4. We
show that a is the supremum of M in B. Clearly, a is an upper bound for M
in B. Suppose that b is another upper bound for M in B. Let « € A be the
largest element of A such that o <{b. For every me M < A4, we have
m < b, hence m <o and a <o < b.

The following facts are trivial:
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1.3. REMARK. a) Let 4 and the inclusion map from 4 to B be complete.
Then A is relatively complete in B.

b) Suppose A is relatively complete in B and B is complete. Then A
is complete.

2. RELATIVE AUTOMORPHISMS OF FINITE EXTENSIONS

We first give an internal description of a finite extension (B, 4) where
B = A (uy ...u,) and n € . We shall always assume that uy, ..., 4, are the
atoms of the subalgebra of B generated by uy, ..., #,; i.e. that they are
non-zero, pairwise disjoint and u; + ... + u, = 1. Let I, = {a €A la U,
= 0} for 1 <r < n. Clearly, each I, is a proper ideal of 4 and I; N ... N I,
= {0} The family (I, | 1<<r <n) completely characterizes the extension
(B, A):

2.1. REMARK. Suppose C = A4 (v, ...v,) is a finite extension of A4
where v, ..., v, are pairwise disjoint and 1 =v; + ... + v,. Let
B = A (uy ...u,) be as above. There is an isomorphism g from B onto C
satisfying g (@) = a for ae A and g (u,) = v, iff, for each r, {a €A | a-v,
=0} = L.

Proof. By Theorem 12.4 in [7].

2.2. REMARK. A4 is relatively complete in B = A4 (u, ... u,) iff, for each
r, I, is a principal ideal.

Proof. The only—if part follows by the definition of relative completeness.
Now suppose «, € A generates I,; let be B and I = {aeA ]a-b = O}.
There are ay, ..., a,€ A such that b = a; -u, + ... + a, - u,. It follows that
I is the principal ideal generated by o« = (—a; +a;) - ... - (—a,+«,).

Conversely, given any family (7, | 1 <<r <n) of proper idealsin A4 satisfy-
ing Iy n...n 1, = {0}, there is an extension 4 (u; ... u,) of A such that
I = {aeA Ia-u, = 0}: let D = A4 (x;...x,) be the free product of 4
and a finite B4 with atoms xq, ..., x,. Let

K={iy % + . +ix|ijel,. . iel}.

K is an ideal of D; the canonical epimorphism = from D onto B = D/K
is one- one on 4, and for ae 4, n (a) - u, = 0 iff ae I, where u, = 7 (x)).
Now identify 4 with the subalgebra n (4) of B.

For the rest of this section we think, as in section 1, of B as being the set
of global sections of a sheaf & = (S, =, X, u) of Boolean algebras over a
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