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ON BOOLEAN ALGEBRAS
WITH DISTINGUISHED SUBALGEBRAS *

by Sabine Koppelberg

In this paper, let J? ={+,•,-, 0, 1, £/} be the language of Boolean

algebras (BA's) with an additional unary predicate °U. Rubin has proved

in [6] that the theory in if of Boolean algebras with a distinguished sub-

algebra (given by the interpretation of U) is undecidable. The main result

of this paper is the solution of a problem stated in [6] : let K be the class of
if-structures J4 (B, + 0, 1, A) where (£, is a complete BA

(cBA), A is a complete subalgebra and the inclusion map from A to B is

complete; we show that Th (K), the set of first- order if-sentences which

are true in every structure in K, is decidable. We shall abbreviate BA's

(B, by their underlying set B.

The first idea to do this is to describe explicitly all completions of
Th (K). One could then try to prove the decidability of Th (K) by Theorem 2

in [5]. A well-known example for a decidability proof in this style is given

by the theory of BA's; the main task, to list all completions of this theory,
was achieved by Tarski, see Theorem 5.5.10 in [1]. Before describing the

complete first-order theory of a structure M (B, A) in K, one has to get

some idea how B "lies above A" and which details of the structure of
an extension (B, A) of BA's can be expressed in first-order logic. Now B

can be represented by the set of global sections of a sheaf of BA's over the
Stone space X of A. Although the possibility of this representation is

probably well-known to experts and although it is very easily established,
it seems to give just the right intuition as to what are the relevant facts
about the extension (B, A). We thus get an idea how to obtain a recursive
set T of ^-sentences which looks rather natural and holds in every structure
Jt of K.

It turns out that Comer's Feferman-Vaught-theorem on sheaves over
Boolean spaces applies to the models of T. This establishes rather easily
that a first-order sentence is in Th (K) if and only if it is provable from T

* This article has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Zürich, February 1980. Monographie de
L'Enseignement Mathématique N° 30, Genève 1982.
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and that Th (K) is decidable. It is then possible to describe the completions
of T (which, however, was not necessary in the decidability proof).

As another example for the usefulness of sheaf representations of BA
extensions (B, A), we consider the special case where B is finitely generated
over A and we describe the action of a single automorphism of B leaving A
pointwise fixed. This was motivated by Monk's paper [4] where the Galois

group AutAB is studied in detail for a simple extension B of A and attempts
are made towards finite extensions. The possibility of describing by a

sheaf representation those extensions (S, R) of commutative rings for
which the usual Galois correspondence can be established is, however,
not new- see [8].

In section 1 of this paper, we give a sketch of the sheaf representation
of a BA extension (B, A). We prove that the sheaf is Hausdorff iff A is

relatively complete in B, which means that for be B, there is a largest
a e A such that a < b.

In section 2, we provide a method to construct all automorphisms of B
over A if B is a finite extension of A (2.4). We illustrate this method by
computing the Galois group of B over A if A is relatively complete in
B (2.6) and by proving in 2.7 that A is relatively complete in B iff there is a

single automorphism of B over A moving every element of B \ A. This
means that the finite extensions (B, A) where A is relatively complete in B

are just the extensions called weakly Galois in [8].
Section 3 contains part of the machinery needed for the main result

of the paper: if (B, A) e K, cp (xt xn) is an ^-formula and bu bn e B,

we prove that || cp [b1 bn] ||, the set of points p in the Stone space X of A
such that cp is satisfied by b1 (p), bn {p) in the stalk Bp over p, is a clopen
subset of X. This enables us to apply the Feferman-Vaught theorem in
Comer's version to our sheaf. More precisely, we show that there is an
effective procedure assigning a formula (yx± xn) to cp {x1 xn) such

that the element a of A corresponding to || cp [bl bn\ || is the only element

of A satisfying (abx bn) in (B, A). We then define the theory T in if
and show that each Jt in K is a model of T.

Finally in section 4, we prove that the theorems of T are just the

sentences in Th (K) and that Th (K) is decidable. We characterize elementary

equivalence of F-models, give a list of all completions of T and prove that
each of these completions has a model in K.

I should like to thank E. Engeler and G. Gati for hints (originally due

to P. Gabriel) on literature about sheaf theoretical methods in the Galois

theory of rings.
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1. THE SHEAF REPRESENTATION OF BOOLEAN ALGEBRA EXTENSIONS

Let if be any language for first-order predicate logic. Suppose X is

a non-empty set and for every p e X we have an if-structure 3%p (Bp, ...);

put S u Bp. Suppose cp (xx xn) is an if-formula, u £ X and
peX

fu ...,/„ : u -> S are such that ft (p) e Bp for 1 < i < « and p e u. Then let

Il <P [fi-fn]II {peu\äSp\=cpUi(p) Cp)]} •

We may think of | <p [f\ .../„] || £ Xas being a (Boolean) truth value

of cp [/i .../„] in the power set of X.

A sheaf of if-structures is a sequence

y (S, TT, X, II)

such that a) S and X are topological spaces and n : S -> X is a continuous

open local homeomorphism from S onto X, b) p. is a function assigning to
each pe X an if-structure âSp (2?p, such that the Bp are pairwise

disjoint, S u and 7i (j) p iff s e c) for every open subset u
peX

of X and continuous fl9 : u -> S satisfying (^) e Bp for peu and

every atomic if-formula cp (xx xn), || cp [f± .../„] || is an open subset of u.

The if-structure £$p is called the stalk of Sf over p. — Let, if is a

sheaf of ^-structures, T (£?) be the set of all continuous functions/ : X -» S.

satisfying/(p) e Bp for p g X (the set of "global sections" of 9"). So F (S?)

is, if non-empty, (the underlying set of) a substructure of the product
structure @p, hence an if-structure.

peX

For the rest of the paper, let if 0, 1, £/} where U is a

unary predicate. We indicate how, for a given BA extension (.B, A), B may
be represented by T (Sf) where 9* is a sheaf of if-structures over a Boolean

space. We omit most of the proofs which are easy and entirely analoguous
to well-known representation theorems for lattices over Boolean spaces.
Let X be the Stone space of A, i.e. the set of all ultrafilters of A with the
usual topology. For p e X, let < p > be the filter of B generated by p. Let
7ip : B —> B/ < p > Bp be the canonical epimorphism. So Bp is a BA
with at least two elements. For p,qeX and p ^ q,Bp and Bq are disjoint.
Let S u Bp and n : S -» X be defined as stated in b) above. Let,

peX

for pe X9 p (p) be the if-structure (Bp, {0, 1}). For u c X open and
be B, let Mub {tzp (b) | p e u). The set of these Mub constitutes a base

L'enseignement mathém., t. XXVIIf, fasc. 3-4. 16



236 S. KOPPELBERG

for a topology of S, and this makes SP (6", 7r, X, ju) a sheaf of S£-structures.

Furthermore, for b e B, ob : X S defined by ob (p) np (b) is a global
section of SP and

(j : B -> r (50 I
b ab j

is an isomorphism from 5 onto F (<9*). We shall now identify B with F (5^);
so every b e B is a function from X to S. This identifies A with those b e B
such that for every peXb{p) 0 or b {p) 1, i.e. with those è e F
satisfying || F (è) || X Let C be the BA of clopen subsets of X and e (c)
the characteristic function of c for c e C. Thus e is an isomorphism from C

onto A ç B.

In the rest of this section, we show that the property of being a Hausdorff
sheaf for SP is equivalent to a property of the extension (F, A) which reflects,
in a way which is first-order expressible in JP, completeness of the embedding
of A into B. Recall that, for a sheaf SP over a Boolean space X, S is a T2-

space iff, for anyf g e F (^), || / # || is a clopen subset of X; SA is then
said to be a Hausdorff sheaf. Call A relatively complete in B if, for every
b e F, there is a largest element aed such that a < b, equivalently : for
b e B, there is a largest ae A such that a • b 0 or: for b eF, there is a

smallest aed such that è < a.

1.1. Proposition. <9" F a Hausdorff sheaf iff A is relatively complete
in B.

Proof. Suppose SP is Hausdorff and b e B. Let de B such that d(p) 0

for every p e X, let c || b d || and a e (c). Then a is the largest
element of A satisfying a-b 0.

Conversely, let A be relatively complete in B and suppose f g e B.

Let a be the largest element of A such that a </• g + ~ f' ~g- Let
ceC such that « (c). Then || / 0 || c is a clopen subset of X

1.2. Remark. Let A be relatively complete in B. Then the inclusion

map from A to B is a complete homomorphism.

Proof Suppose M is a subset of A having a supremum a in A. We
show that a is the supremum of M in B. Clearly, a is an upper bound for M
in B. Suppose that b is another upper bound for M in B. Let a e A be the

largest element of A such that a < b. For every m e M ç A, we have

m < è, hence m < a and a < a < b.

The following facts are trivial:
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1.3. Remark, a) Let A and the inclusion map from A to B be complete.

Then A is relatively complete in B.

b) Suppose A is relatively complete in B and B is complete. Then A

is complete.

2. Relative automorphisms of finite extensions

We first give an internal description of a finite extension (.B, A) where

B A (u1 un) and neco. We shall always assume that ul9 un are the

atoms of the subalgebra of B generated by ul9 un\ i.e. that they are

non-zero, pairwise disjoint and ux + + un 1. Let Ir {ae A\a - ur

0 } for 1 < r < n. Clearly, each Ir is a proper ideal of A and I± n n In

{0}. The family (7r I l<r<w) completely characterizes the extension

2.1. Remark. Suppose C A(v1...vn) is a finite extension of A
where vl9 vn are pairwise disjoint and I v± + + vn. Let
5 A (u1 un) be as above. There is an isomorphism g from B onto C

satisfying g (a) a for a e A and g (ur) vr iff, for each r, { a e A | a • vr

0} Ir.

Proof. By Theorem 12.4 in [7].

2.2. Remark. A is relatively complete in B A (u1 un) iff, for each

r, Ir is a principal ideal.

Proof. The only—if part follows by the definition of relative completeness.
Now suppose are A generates Ir; let b e B and I 0}.
There are al9..., an e ^4 such that b • Wi + + an • It follows that
J is the principal ideal generated by a { — a1 + ax) • • (-a^ + aj.

Conversely, given any family (Ir 11 <r <«) of proper ideals in A satisfying

f n n /„ {0}, there is an extension A(ui... un) of A such that
Ir { a e A I a • ur 0} : let D A (x± xn) be the free product of A
and a finite with atoms xl9..., xn. Let

^ {4 -*1 + - + v*» I ell, •••> 4 e 4 } •

A' is an ideal of D; the canonical epimorphism tt from D onto 5 D\K
is one- one on A,andfor a eA,it (a) ur0 iff where (xr).
Now identify A with the subalgebra n (A) of B.

For the rest of this section we think, as in section 1, of as being the set
of global sections of a sheaf S,n,X, pi) of Boolean algebras over a
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Boolean space X; we use the abbreviations of section 1. For p e X, Bp

{ b (p) I b e £}. Since b {p) e { 0, 1} for b e A and B A (ut un),

Bp is a finite BA with atoms {ur(p) | 1 <r<«}\{0}
Let G Aut^i? be the group of those automorphisms of B leaving

A pointwise fixed, i.e. G is the Galois group of B over A. Suppose g e G

and p e X. Since g (a) a for ae A, g induces an automorphism of Bp

which, in turn, is induced by a permutation of the (at most n) atoms of Bp.
This gives rise to the following definitions (Sn is the group of permutations
of { 1,

Let p e X. For 1 < r, / <n, say ur ~ ut at p if there is a neighbourhood
u of p such that, for q eu, ur (q) 0 iff (q) 0. n e Sn is said to be

compatible with p if ur ~ un(r) at p for 1 < r < n. g e G is said to be induced

by n at p if g (ur) {p) uK(r) (p) for 1 < r < n. Note that, if one of these

definitions holds (for fixed ur, ut, n e Sn, g e G) for some p e X, then it
holds (for the same un ut, n e Sn, g e G) for every q in some neighbourhood
of p. And ur ~ Ui at p means that there is a clopen subset c of X such that

p e c and, for a e A satisfying a < e (c), a e Ir iff a e It.

2.3. Lemma. Suppose p e X and n e Sn. Then n is compatible with p
iff there is some g e G which is induced by n at p.

Proof. Suppose n induces g at/? and 1 < r < n. Let u be a neighbourhood
of p such that g (ur) (q) uK(r) (q) for q e u. Thus, for q eu, un(r) (q)

0 iff g (ur) (q) 0 iff ur {q) 0 since g induces an automorphism of Bq.

Conversely, suppose n is compatible with p. Choose a clopen
neighbourhood c of p such that ur (<q) 0 iff un(r) (q) 0 for 1 < r < n and

q e u. Let a e (<c). By 2.1 and the remark preceding this lemma, there is

some g e G such that g (u^ — a • ur + a • un(r) for every r. This g is

induced by n at p, since a (p) 1 and hence g (ur) (p) un{r) (p).

2.4. Theorem, a) Let X u {cn | n e Sn} be a partition of X into

pairwise disjoint clopen subsets such that, for every p e cn, n is compatible
with p. Put a% e (cn) for n e Sn. Then there is g e G such that, for
1 < r < n,

g (ur) E [an-uK{[7T s }

b) Conversely, let g e G. Then there is a partition X u {cn\n e Sn^

of X into pairwise disjoint clopen subsets such that, for p e c%, n is

compatible with p, and g (uj) £ {an • un(r) | n e 5„}, where an e (cn).
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Proof. First note that g e G, an e (cj where | e5",,) is a partition
of X and g (ur) X {an • wr(r) j tt e 5B} imply that ti is compatible with

p for p e cn : by p e cn, we get an (p) 1 and (p) 0 for p e SB, p # 7t.

So p (wr) (p) w„(r) (p), p is induced by 71 at p, and 71 is compatible with p.

To prove a), note that {an • wr | n e Sn, 1 < r < is a set of pairwise

disjoint elements of R with supremum 1 and generating B over A. The

existence of g follows by 2.1 and the remark preceding 2.3.

To prove b), let g eG. For n e Sn9 put

vn {pel J 7i induces g at p }

Each vn is an open subset of X, and X u {v7Z\n e Snj : suppose p e X.

Define n e Sn as follows: let 1 < r < n. If ur (p) 0, then g (ur) (p) 0;

put 7c (r) r. If ur (p) # 0, (p) and hence p (wr) (p) is an atom of Bp\

let 7i (r) I where p (ur) (p) ig (p). Clearly, pevn.
Since X is a Boolean space, there is a family (cn\ne Sn) such that q

is a clopen subset of vn9 X u { 17r e Sn} and the cn are pairwise disjoint.
Put an e (cn). Suppose 1 < r < n and pel, e.g. p e Then p evn and

Œ { ' UMr)I71 6 Sn})(p)9 (",) (p) •

Theorem 2.4 says that the automorphisms of B over A are completely
determined by certain partitions (an | n e Sn) of A resp. (cn | n e Sn) of C.

Unfortunately, for a given p e G, a partition (cn | % e Sn) defining p is not
uniquely determined, since there may be different possibilities of choosing
a clopen disjoint refinement of (vn | n e Sn). We conclude this section by
illustrating 2.4 by several examples.

If H is any group and A a BA, let X be the Stone space of A and

H [A] {/ : X -» H |/is continuous}

where H is given the discrete topology. H [A] is a subgroup of Hx and is

usually called the bounded Boolean power of H by A. Recall that, for
B A(u1 w„), A and the subalgebra of B generated by uu un are
independent iff a • ur # 0 for a e A \ { 0 }, 1 < r < n. A is then relatively
complete in B. Conversely, suppose A is relatively complete in B. Then there
is a partition (ak | 1 < < «) of A (some of the ak may equal zero) such
that, for each k, the relative algebra B[ ak {x e B | x < ak] is generated
over A [\ ak by k disjoint elements vu vk which are independent from
A\ ak : for I < r, / < n, the set of those pel such that ur (p) ux (p) is
clopen. Hence, for 1 < k < n, ck (p e X | Bp has exactly k atoms} is



240 S. KOPPELBERG

clopen; put ak e (ck). By a compactness argument, construct vt, vk

e B I ak by patching together some of the ur such that for p e ck., the atoms
of Bp are vx (p), vk (p).

2.5. Example. Suppose a ur^0for 1 < r < « and ae A \ {0|.
Then Aut^i? s Sn [A].

Proof. Our assumption says that ur (p) # 0 for each r and each peX.
Hence each ne Sn is compatible with each p e X and, for fixed g e G,

the open sets vn in the proof of 2.4 are disjoint, hence cn vn. An
isomorphism cp : G -> Sn [A] is established by defining cp (g) (p) n iffp e vn.

2.6. Example. Suppose A is relatively complete in B. Then there is a

partition (ak | 1 < k < n) of A such that

AutAB s St [A a±] x x Sn [A I an]

Proof. Choose, for 1 < k < n, ake A as indicated above and let Gk

be the Galois group of ^ f ak over A ^ ak. Clearly,

Aut±B s G± x x Gn,

since ak e A. By 2.5, Gk Sk [A f ak].

2.1. Proposition. The following conditions on (B, A) are equivalent :

a) A is relatively complete in B ;

b) there is some g e G such that g (b) =£ b for b e B\A ;

c) there is some finite subgroup H of G such that, for every b e B \ A,
there is some g e H satisfying g (b) ^ b.

Proof. Assume a). There is a finite partition T of C such that, for 1 < r
<n, teT and p, qe t, ur (p) 0 iff ur {q) 0. For teT, let nt e Sn

such that, for pet, nt (r) - riïur (p) 0 and ur (p) f-> uniir) (p) is a cyclic
permutation of the atoms of Bp which moves all these atoms. nt is compatible
with each pet; hence there is some g e G such that g is induced by nt
for pet, te T. Now let b e B\A. Choose p e X, e.g. pet where teT,
such that b (p) $ {0, 1} ; put b' g {b). Let At (Bp) be the set of atoms

of Bp, M {oc e At (Bp) | a < b (/?)}, gp the automorphism of Bp induced

by g, M' {gp (a) | a e M}. By the choice of nt and g,

b' P)gP b(p)) L M ' # L (p)
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which proves b' b - since, if n is a cyclic permutation of a finite set Y

moving every element of Y and M c Y satisfies M { n (m) | m e M},
then M (j) or M Y.

To prove that b) implies c) it is sufficient to know that every finitely
generated subgroup of G is finite. We indicate a construction for finite

subgroups of G. Let fç C be a finite partition of C. A function cp :T -» Sn

is said to be compatible if, for every t e T and pet, cp (t) is compatible
with p. For each compatible cp : T -+ Sn let g(p be the element of G mapping

ur to£{*(0- uq>(t) (r) 11 e T]. It is easily seen that

Gr { g9 I cp : T -» Sn compatible }

is a finite subgroup of G and that every finite subset of G is contained in
some Gt.

Now suppose c), i.e. there is some finite subgroup H of G moving every
b e B\ A. We may assume that H GT for some finite partition T of C.

Assume that A is not relatively complete in B. By 2.2 there is some r such
that Ir is not a principal ideal; w.l.o.g., r 1. Let a {p e X \ u1 (p)

0 j. a is a subset of Xwhich is open but not closed; choose p e X which
lies in the closure of g but not in a. W.l.o.g., for some k satisfying 1 < k
> n,

{r I 1 < r < n and ur ~ ux at/?} {1, k]

Let c be a clopen neighbourhood of p such that, for 1 < r < k and q e c,

ur (#) 0 iff u± (q) 0. W.l.o.g., ceT. There is some / such that k < I
< n and ut (p) #0; otherwise, let c' c c a neighbourhood of p such that
ui (#) 0 for qe c' and k < I < n. Choose q e c' n g (since p lies in the
closure of g). In Bq, which has at least two elements, 1 u± (q) +
+ un (q) 0 + + 0 0, a contradiction. — Put a e (c) and b

a-u± + + a-uk. beB\ A, since 0 < b (p) u1 (p) + + uk (p)
< 1 by our preceding claim. We prove that, for g e H GT, g (b) b,
thus arriving at a final contradiction: there is some compatible cp :T-> Sn
such that g g(p. Consider k <n, ceT and p e c as constructed above.
Since cp is compatible, n cp (c) is compatible with p ; hence n maps the
set { 1into itself, gç (a - ur) a • un{r) for 1 < r < k (where
a e (c)) and g (b) è.
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3. Truth values in A for statements about (B, ^4)

For the rest of this paper, let JPBA { + -, -,0, 1} the language
of BAs and S£ S£BAu { U}. Let TBAU be the theory in ££ such that
the models of TBAU have the form (B, + -, —, 0, 1, A) where (.B, is

a BA and A is a subalgebra of B. We abbreviate a model (.B, y4) of
by (5, .4). We assume the construction and notations of

section 1. For each S£-formula cp (x1 xn) and bu g B, we defined

I V[&1 Al II j= 9» [ôx 0») K (p)}}

where Bp abbreviates (2?p, 2) and 2 is the two-element BA. Our first claim
is that if c || cp [b1 bn] || is a clopen subset of X for every cp, then

e(c)e A is first-order definable in J( (i?, .T) from the parameters bu ...,&„
g B\

3.1. Lemma. There is an effective procedure assigning to each formula
(p (xi xn) of S£ a formula s(p (yxx xn) of S£ (where y is a variable not
occurring in cp) such that for M |= TBAU> properties (i) and (ii) are equivalent
and (ii) implies (iii):

Ö || [^i ••• bn] I is clopen for every (p (xx xn) in S£ and bu bn e B;

(ii) M |= \/x1 \/xn 3y Sy (yx1 xn) for every cp (x1 xn) in S£\

(iii) if bu bn g B, then a e (c) where c || cp [b1 || is the unique
element b of B such that Ji |= s(p [bbx bn].

Proof. The inductive definition of s(p will show that (i) is equivalent to (ii)
and (i) implies (iii), the interesting cases being cp atomic or cp existential.

In both cases the fact that || cp [...] || is clopen will be expressed by stating
"a e (|| cp [...] ||) is the largest element of A such that e~x (a) ç || cp [...] ||".
This includes, if cp has the form 3 x\j/, the maximum principle for the
Boolean valuation

xj/,b1 bn-»I \j/ [bj_ bn] ||

of Jt in C: there is some b e B such that

|| * [b'bx... bn] || < fl tfr [bh bn] I

for every b' e B, and hence || xj/ [bbx bn] || || 3 xi/j [xb± bn] || We

now proceed to define the formulas s(p.



BOOLEAN ALGEBRAS WITH DISTINGUISHED SUBALGEBRAS

a) Suppose cpis an atomic formula of ifBA, i.e. has the form ty

t2(xx...x„) where tut2 are terms in &BA. Let stp (yxl xn) be

the formula

u (v) a y ' t± y -12 a V/([/ (/) a y' - ti y ' h y' < y) •

b) Suppose cp has the form U (t (x1 xfj) where t is a term in Let

ij/, x be the atomic jSf^-formulas "t =1" resp. "£ 0". Let be the

formula

3y.i 3y2 [y m JT + JA A ^ (kixi ••• xn) A •••xn)] •

c) Suppose cp has the form —i \j/ (xx xn). Let be the formula

[y "h A (jF1X1 - Xn)l •

d) Suppose (p has the form \j/ (xx... x„) v % (x1... x„). Let ^ be the formula

3ji 3y2 [J yiy2 A s\}/ (yixi ••• xn) A ^ (72xi ••• xn)] •

£j Suppose (p has the form 3x if/ (.xx1 xn). Let sç be the formula

3xs$ (yxxx xn) a W V/ (/x'xi x„) -* y' < j]
Let g be the jSf^-formula stating that the supremum of the atoms of a

exists; gu is the relativization of cr to the one-place predicate U of «£?.

The models of TBA u {cr} are called separated iL4s in [3]. Let T be the

«^f-theory

T u { Vxx Vx„3 >> (yxt x„) I cp (xx x„) in if }
U {<JU,5ff(l)}

The last two axioms of T express, for a model Ji — (B, A) of TBAU,

that A and each stalk Bp are separated iLfs. Let K be the class of ^-structures

Ji (.B, ^4) where B is a and A is relatively complete in B. We
shall prove in section 4 that T is an axiomatization of the first-order theory
of K. The easy part of this is :

3.2. Theorem. Each structure Ji in K is a model of T\

Proof Let Ji (i?, J) e K, i.e. i? is complete and A is relatively complete
in B. Hence Ji r Tbau and A is a separated BA. By 1.1, || cp [b1 bn] ||

is clopen for every atomic formula cp of if and arbitrary è1? ...,bneB.
If || cp [b1 || and || [\jj [b1 bn] || are clopen subsets of X, so are
|| —I cp [b1 bn\ I and || (cp v \j/) [bx bu] ||. Hence we assume that cp
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has the form 3xxj/ (xx± xn) and that || xß [bb1 bn\ || is clopen for fixed

bu bn g B and arbitrary b e B. For the rest of the proof, we omit the

parameters bn. Let

uu {! i/j[I\ße

By our inductive assumption, u is an open subset of X. Choose, by Zorn's
lemma, a maximal family F — {(bh ct) | z e /} such that bteB, ct is a

clopen subset of u, ct ç || xß [bt] ||, z ^ j implies ct n Cj cj). It follows
that c, the closure of u cu includes u (by maximality of F). A is a cBA,

ie/
hence X is extremally disconnected and c is clopen. By completeness of B,
there is some b e B such that b • e (ct) bt for z e /. Thus, for z e /, ct

-1 "A M S- So> for ß eB,\\il/ [ß]|| £ « ç c s || i|r [i]|| || 3# (*) ||.

Finally we show that Bp is separated for each p e X. Let a (x) be the

5£^-formula stating that x is an atom and let ß (x), y (x) be the ££BA-

formulas a (x) v x 0 resp. Yj (a (y) -> y < x). Put M {/e ^ |

1 ß [/] || 1 || an(i Ie* b be the supremum of M in i?. We show that b (p)
is, for each p e X, the supremum of the atoms of Bp.

First suppose s e Bp is an atom of Bp. There is some fe M such that

f(p) s (note that || a [/] || is clopen for eachfe B). So/ < b and s f(p)
< b {p). — On the other hand, suppose t e Bp and s < t for every atom s

of Bp. Choose g e B such that g (p) t. Then pec || y [g] ||. For

f e M, e (c) -f < g, since qe c implies that / (q) is zero or an atom of Bq

and thus f(q) < g (q). By the definition of b, e (c) • b < g. This implies
(by pec) b(p) < g (p) r.

4. Decidability and completions of Th (K)

Call TsBA Tba u {cr} the theory of separated BAs, where TBA

is the theory of BAs and cr was defined in section 3. We give a short review

of the completions of Tsba- Let, for neœ, (pn be the if^-sentence stating
that there are exactly n atoms and xj/ the if^-sentence stating that there

is a non-zero atomless element. Let xn (9o v ••• v i)l so saYs

that there are at least n atoms. Define, for n e œ + 1 and ie 2 {0, 1},
an ifBA-theory Tni by

r„o TsBAu {<pn,-iil/}
TsBA u {<pn, ^ }
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for n e co,and

TaoTsBA U {Xnu I tfr}

u {%„jrceco} u {iA}

Put t J 77 e co + 1, i e 2}. It is then clear that each separated Ä4
satisfies exactly one of the theories in t, and for each t e x there is a cBA

satisfying t. Moreover, any two models of any te x are elementarily equivalent

by 5.5.10 in [1]. Thus the theories tex are just the completions of
TsBA and can be thought of as being the elementary equivalence types of
separated BAs or cBAs. Moreover, an if^-sentence holds in every separated
BA iff it holds in every cBA. The following proposition is essential for
the main theorems of this section:

4.1. Proposition. Let s, t ex. Then there is a structure (B, A) in K
such that A is a model of s and each stalk Bp is a model of t.

Proof By the above remarks, choose cBAs A and F which are models
of s resp. t. Let A * F be the free product of A and F. Thus A is relatively
complete in A * F and each stalk (A * F)p9 where p is an ultrafilter of A,
is easily seen to be isomorphic to F, hence a model of t. Unfortunately,
A * F is incomplete unless A or F is finite. So let B (A * F)* be the
completion of A * F; note that A * F is a dense subalgebra of B. (B, A)
e K, since the inclusion maps from A to A * F and from A * F to B are
complete. For p e X (the Stone space of A), Bp is a separated BA by 3.2
but in general a proper extension of (A * F)p. We show, with the notations
of section 1, that Bp is elementarily equivalent to F. For the following proof
of this, recall that, for fe F\ {0} and p e X, np (/) f{p) ^ 0 since F
is independent from A in A * F c B. Thus, the restriction of np : B -> Bp
to F is a monomorphism. The elementary equivalence of Bp and F is established

by the following four claims.

Claim 1. For each atom/ of F,f (p) is an atom of Bp (hence, if F has at
least n atoms, where n e co, then F^has at least n atoms): clearly, f(p) > 0
for p e X. Assume that

u= {pe XI f{p) is not an atom of Bp }
is non-empty. By 3.2, u is a clopen subset of X. Choose, by the maximum
principle stated in section 3,beB such that b (p) 0 forp $ u and 0 < b (p)
< f (P) for peu. Since b > 0, choose a e A and g e F such that 0 < a • g
<b; let p e X such that a(p)-g (p) # 0. Thus peu, a (p) 1, and
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0 < g (p) < b {p) < f (p). It follows that 0 < g < f, contradicting the

fact that /was an atom of F.

Claim 2. If Bp has at least n atoms, where 1 < n < co, then F has at
least n atoms: assume that M is a subset of At {Bp), the set of atoms of Bp,
such that M has exactly n elements but At (F) has at most n — 1 elements.

We prove:

(a) Let xeM. Then there is fxeAt(F) such that fx (p) x.

Claim 2 follows from (a), since the assignment of fx to x is injective. And
(a) will follow from

(b) Let x g M, u a clopen neighbourhood of p such that, w.l.o.g., for
q eu, Bq has at least one atom. Let b e B such that, for q £ u, b (q) 0

and for q eu, b (q) is an atom of Bq, and b (p) x. Then there are

qEu and f e At (F) such that f(q) b (q). (Hence At (F) is

nonempty).

Proof of (b). By b > 0, choose aEA,fEF such that 0 < a-/<h.
Since b (q) 0 for q$u, there is some qEu such that a (q) •f(q) A 0,

which implies 0 < f(q) < b (q) f (q) b (q), since b (q) is an atom of
Bq. Finally f e At (F), since a splitting of/ in F into two non-zero disjoint
elements would give rise to a splitting of b (q) in Bq.

Proof of (a). Let xeM and choose u and b as in (b). Assume (a)
is false. Then, for each f e At (F), f(p) # x =b(p); by finiteness of
At (F), there is a clopen neighbourhood v of p such that, for qEV and

fe At (F), b (q) # / (q). Let ce B such that c (q) 0 for q £ v and c (q)
b (q) for qEV. This contradicts (b), applied to v and c instead of u

and b.

Claim 3. If F has a non-zero atomless element / (which means that

Fl / is atomless), then each Bp has a non-zero atomless element x: let

x np (/). x > 0, since np is one-one on F. Fl. f and hence, by Claim 2,

{B I f)p is atomless. So Bp I x np(B I f) (B\ f)p is atomless.

Claim 4. If Bp has a non-zero atomless element x, then F has a non-zero
atomless element / : assume that F is atomic. Let

u { q e X I Bq is not atomic }

u isa clopen neighbourhood of p. By the maximum principle, choose

b e B such that b (q) 0 for q$u,b (q) is a non-zero atomless element of
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Bq for qeu, b(p) - x. Choose aeA, geF such that 0 < a-g <b;
w.l.o.g., g is an atom of i7. Choose q e X such that a{q) ' g (q) ^ 0- Thus

q eu and g (q) < b (q). By Claim 1, g (#) *s an at°m °f contradicting

the choice of b (q).

4.2. Remark. Suppose that, for every i in an index set /, Jt t — (Bh At)

is an element of K. Then Ji (B, A), where 5 [] Bt and ^ Ü Ai>
iel &

is in K. Let cp (x{xk)bean if-formula and bu bk e B, b} (7>iy) isJ.

Put aie (|| cp[bn...bik]||Mi).Then
e (| (P[bt...bk]|D(ai)ieI.

Proof. By induction on the complexity of cp.

We shall need the following Feferman-Vaught theorem about sheaves

over Boolean spaces from [2] :

4.3. Theorem (Comer). Let if be an arbitrary language. There is an

effective assignment

cp (jq xk) t-> ($; Si, 9m)

for if-formulas cp (xx xk) such that

a) Sl5 Sm are ^-formulas having at most the free variables xx xk,

and
1= \/ 90 A /\ -1 (Si A

b) $ is an ifBA-formula having at most the free variables yx...ym\

c) for each sheaf SP (S,n9 X. fi) of LP-structures such that X is

a Boolean space and || i]/ [fx .../J || is a clopen subset of X for every

\j/(x1...xn) in if and fl9 ...,/„ e T (LP): if bl9 bk e F (LP), then

r(Sf) h cp^-.b,] iff c\= £ [c, cj
where C is the BA of clopen subsets of X and ct || [bx bk] ||.

For two separated BAs A and A\ let I be the set of partial functions /
from A to Ä such that dorn (/) {al5..., is a finite partition of A
(where some of the at may be zero), rge(f) {af9 where af

f(at) is a partition of A', and every A [ at is elementarily equivalent
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to A' [ a/. If A, A' are Ki-saturated or cr-complete, the following conditions
are equivalent:

a) A A' ;

b) I is non-empty;

c) I has the back-and-forth property.

Moreover, if fe I is as above and A, A' are arbitrary separated BAs, then
(A, Cly, a= (T Q i

Let TsBA2 be the -theory

TsbazTsBA u { Vx (t/ (x) <-> X 0 v x 1)}

Since 7^ is decidable, Tsba and TSBA2 are decidable.

4.4. Theorem. There is an effective procedure deciding for every ££-

sentence cp whether T |— (p. Moreover, T cp if and only if (p holds in

every model Ji in K.

Proof Let cp be given. Construct (yt ym); $m) by 4.3.

For every i such that 1 < i < m, decide whether TsBA2 h- ~h W.l.o.g.,
assume that Tsbai u is consistent for 1 <z <r and inconsistent
for r + 1 < i < m. By \- v v we have 1 < r (itis possible that
r m). Next, construct the formula

<*>' Oi -ym)/\ (y.i
r-1- 1^-i-^m

We show the equivalence of

a) T J— (pi

b) M !=• cp for every JeK;
c) TsBA h- Vji Vym(jjyj
Then, by decidability of TsBA, T is decidable and 4.4 is proved, a) implies b)
by 3.2. To prove that c) implies a), assume there is Jt [= T suchthat
Ji cp9 e.g. Ji (.B, A). Put at e (|| \ M). By 4.3 and Ji ^ cp, we

see A <P [a1 am]. By our choice of r < m, we get ar+1 am 0.

Thus ^4 J# <P' [a1 öm] and c)is false. Now assume c) does not hold; we
show that b) is false. Let Ä be a separated BA and ax ',..., am' e ^4' such that
ar+1' am' 0 and ^4' J# # [af... am']. W.l.o.g., a/ ^ 0 for 1 < i
< r. By choice of r, there are f1?..., tr e x such that tt [= for 1 < i < r.
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Let, for these /, ^be the element of t such that Ä ^ aß [= st. By 4.1, there

are J( (B, A) e K and al9 ar e A such that 1 ax + + ar9 • aj
0 for 1 <: / < j < r, ^4 ^ and (£ at)p j= ^ for those pe X

satisfying at (p) 1. So e (|| |j^) ^ by 4.2. Put ar+1 am 0.

It follows that (^4, û1? am) (A', a1/, am'), ^4 |# $ [#i ••• an(*

^ ^ ç by 4.3.

In the next theorem, we characterize elementary equivalence of models

of T. Call the following sentences in S£BA basic sentences : <pn a \j/9 cpn a ~n \j/9

In A In A (where n e œ). It follows by the analysis of the completions

of TsBA given in the beginning of this section that for each S£BA-

sentence S there are basic sentences ßl9 ...9 ßn such that

TsBA h- (5 ~ \/ ßi) A /\ ~1 (ßt A ßj)
i 1 1 ^i<j^n

This fact is easily extended to TsBA2 : by replacing each atomic formula U (t)
where t is a term in SâBA by "t 0 v t 1", we see that for each «£?-

sentence $ there are basic sentences ßl9..., ßn satisfying

a

TSBA2 f- (5 ^ \/ A /\ (ßf A ßj) •

i— 1

Now, if ß, yare basic sentences, let oßybe the following ^-sentence :

°ßy 3y (f A (y)),

where sß (y) is the if-formula assigned to ß in 3.1 and yy is the result of
relativizing the quantifiers 3 xcpin y to 3 x(U (x) a x < a cpy

A model B, A)of Tsatisfieser» iff A\a\= y, where a e (c) and c

\\ßl

4.5. Theorem. Let Jt(B, A), JtA') be models of T. Then
Jt is elementarily equivalent to Jt'ifand only if, for any basic sentences ß,y,

Jt |= aßy iff Jt' [=

Proof The only-if-part is clear. Suppose that Jt and Jt' satisfy the
same sentences of the form <jßy. Let cp be an ^-sentence and Jt |= cp;
we want to show that Jt' j= cp.Let(<P (yt yJ; Su &m) be the sequence
assigned to cp by 4.3; every is an if-sentence. Put at e (|| 3, \M)-,
by 4.3 and e : C -> A being an isomorphism, we have that {au
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is a partition of A and A |= $ [a1 am]. In the same way, put
ai e' (|| * * • 5 ßm'} is a partition of It is sufficient to show
that (A, al9 am) (A', a1'9..., am'\ for this implies A' |= <P [a±f am']
and finally JC |= cp by 4.3.

For every choose basic sentences ßn,..., ßin. such that

Lb42 j- (9i V ßtj)Ay\ —I A
j j< I

Put a„ e (|| ßu \\J<), a,/e' (| ßtJ for 1 < i < m, 1 <j < nt.
Then at is the disjoint sum of the atj (1 < / < nt), a/ is the disjoint sum
of the oc'jj (1 < j < nß. For every i,j9

A $ aiJ A' cci/ :

let y be any basic sentence of SPBA and assume A\ atj \= y; we want
to show that A' [ at/ j= y. But A f [= y means that Jt f= <rßi.y. By
our main assumption, M' |= aßijy and A' [ af£J j= y.

We have shown that the partial function/mapping afj- to af/ is an element

of the set of back-and-forth-isomorphisms defined after 4.3. Hence,

(A, <xlu ocmnJ (A', an', amnJ)
and

(A, au am) (A', am')

We shall finally describe the completions of T by giving a one-one
correspondance between a set P (consisting of pairs of mappings from
co x 2 to (co +1) x 2) and these completions. For m, m! e œ + 1 and

j,jf e 2, define

('»•./) + <x/)
where ra" is the cardinal sum of m and ra' and j" is the maximum ofj and

/'. Let

P {(a, p) | a, p : co x 2 -> (co+1) x 2 and, for
(zz, 0 g co x 2, p (ft, z) p («+ 1, z) + a (zz, z) }

In the following definition, we refer to the SP^-theories 7^ defined in the

beginning of this section. For (a, p) e P, let Pap the -theory

L,, Tu {3x (x) a y*) | « e © y e T^q)}
u { (ff(Z»A-,w (x) a y*) | ra e © ye rp(lt>0)}

u { 3x (ir(fiAW (x) a y*) I n e © ye ra(B>1)}

u { a(xnM)(*) a y*) ] ra e © y e ,}
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If Ji B,A)is a model of T, then Ji|=Tap iff, for a± e (|| a -1 i ||Jl)

A^ |= ra(„,o), -, for a4e (| x« a ^ ||^), ^ I1 a4 |= rP(M) •

4.6. Theorem. { Tap | (a, p) e P} A /Ae ^ of completions of T. Moreover,

eacA Fap has a model in K.

Proof If (a, p) and (a', p') are different elements of P, then Tap u Ta,p,

is inconsistent (recall that every Tmj, where meco + 1, je 2, is complete
in SPßf). If M is a model of T, there is some (a, p) e P such that Ji |= Tap

(e.g., put al « e (|| cpn a —i \j/ ||^) and let a (w, 0) be the pair (k,j) e (œ+ 1)

x 2 such that A f a1 |= etc.). If (a, p)eP and are models of
Tap, then Ji and Ji' are elementarily equivalent by 4.5, since Tap says which
sentences of the form oßy are satisfied in Ji and Ji'. So it is sufficient to

prove that each Tap has a model which lies even in K.
For simplicity, we construct JeK satisfying the part of Tap which

refers to Ta(nt0) and Tp(Jtt0)- for, if Jf eK satisfies the part of Tap which
refers to Fa(M) and Fp(M), then Ji x jp e K is a model of Tap. Abbreviate
a («, 0) by tm p (n, 0) by sn. We first construct a complete BA A and a

sequence (an)neco in A such that the an are pairwise disjoint and

(*) A1 a„ t„ |=

where rn - (a0 + + aM_1). Let ^4 be a complete which is a model
of s0. Suppose a0, an_t g A are pairwise disjoint and a0,...,an_1, rn

satisfy (*). Since sn sn + 1 + tn, A rn |= sn and A is complete, there are
an and rn+1eA such that rn an + r„+l5 0, ^ Ï [=

and .T [' r„ + 1 |= sn+i. — Finally, let aœ — £ an. By the proof of 4.1,
new

there is, for new, Jin(ß„, ^„) eK such that A„ a„ and each
stalk (B„)pof the sheaf representation of Ji„ is a model of a —nj/.
Moreover there is Jia(BU1, AJe K such that Am A} aa and each
stalk (BJpofthe sheaf representation of is a model of Put Ji

(B, A) where Bisa complete BA which lies over d as [] Bn lies over
neco

A„. By 4.2, e(||cpnai \j/ \M)and e (| x„ A —i t/r IK) r„;so
neco

Ji is a model of the part of 7 \preferringto ra(„j0) and Tß(ni0).

L'Enseignement mathém., I.XXVIII, fasc. 3-4. 17
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