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230 S. KOCHEN AND S. KRIPKE

We now define the functions 4; as before by

Ay for j <k
bk = 4 .
o1 (k) for j > k.

A simple induction argument now shows that (1) holds for the axioms
and hence that #/D is a model of Peano arithmetic. If as in Theorem 3
the g, 1s chosen as the least number so that the sequence a,, ..., q, satisfies
the above conditions then a true statement which is false in # /D may be
constructed via the method of Theorem 3.

The disadvantage of this direct approach is that the model &%/D con-
structed in this manner is dependent in its definition upon logical formulas
and so is not as purely an algebraic construction. Moreover the indepen-
dent statement which results has no simple combinatorial expression as have
those given in Sections 1V, V, and VI. Note that in this approach we have
not used the property peculiar to Peano’s axioms concerning the limited
associates of the axioms which is expressed in the proof of Theorem 4.
This shows that the method outlined here applies to any recursively enu-
merable set of axioms for arithmetic which is sufficient to allow the coding
required for Theorem 3. Thus, we may prove a general form of Gddel’s
Incompleteness Theorem without the use of self-reference techniques. At
the same time the very generality of the approach outlined here indicates
that there is no hope by this method to avoid the use of metamathematics.
It is only the above-mentioned property of the Peano axioms vis-a-vis
limited formulas that allowed us the latitude to define suitable functions /;,
and hence the model /D, by means of a combinatorial principal without
reference to logical formulas.

NOTE (ADDED IN PROOF)

The first sentence of the section entitled “Added in proof” of Kochen and
Kripke [12] p. 294, which was inserted by the second author, is not correct
and should be deleted in favor of the following corrected version. The first
author proposed that the Paris-Harrington statement is false in an initial
segment of any non-standard model, and this was verified jointly by the
two authors. Adapting this idea, the second author defined the set & of
functions which result in the model of Section V. The first author subse-
quently found the new set &% of functions which define the simpler model of
Section VI.
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The devices used in Section T1I are an adaptation of the ideas in Paris-
Harrington [3].

The approach outlined in (d) of Section VII is due to the second author
and leads to a concept of ‘satisfying’ formulas by finite sequences called
fulfillability wich leads to model-theoretic proofs of many theorems (such
as Godel’s and Rosser’s theorems) usually proved proof-theoretically and
to other applications to the model theory and proof theory of arithmetic.
It will be developed in a subsequent paper of the second author.
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