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This indicates that the function C given by C (k) = ¢, is a very rapidly
growing function. In fact the function C majorizes every recursive function
which is a provably total function in Peano arithmetic.

THEOREM 5. Let f be a recursive function. Let  be an elementary

statement expressing the condition that f is a total function. If \y is provable
in Peano arithmetic, f(k) < C (k) for all sufficiently large k.

Proof. Suppose ¢t = { k lf(k) > C (k) } is infinite. Let D be a non-
principal ultrafilter such that ze D. Then f* > C*. On the other hand,
f*=fA*e F/D, so that f* < C*, a contradiction.

It follows a fortiori that if NV is the smallest integer to satisfy Theorem 5
then this function N also majorizes every provably total recursive function
(c.f. Theorem 3.2 in [3]).

We mentioned in the introduction that a by-product of our construction
is a new proof of Specker’s theorem that there exists a recursive partition
with no recursively enumerable infinite homogeneous set. In fact we may
obtain the stronger theorem that for each e > 2, there exists a primitive
recursive partition: P : [N]° — 2 such that P has no infinite homogeneous
set in ZS (c.f. Jockusch [10], Theorem 5.1). We outline the proof of this
result. Let ¢ (¥) be any formula. As in Section III, the limited associate

¢ (y;z) of ¢ (y) defines a partition P : [N]®* — 2 such that every sequence
{ b; } of natural numbers homogeneous for P satisfies the Stability Condition

for ¢ (y; z) in N. Hence, for any vector a in N ¢ (a) holds in N if and only

if ¢ (a; b) does. It follows that the set { a l N |= ¢ (a) } is recursive in the
set { b;}. Thus the set { b; } is not in ) ,.

VII. VARIATIONS

We conclude with a series of remarks on various modifications of our
construction.

(a) It is easily proved that if & is closed under < and contains 1, then
Z | D is non-denumerable, for every non-principal ultrafilter D. Thus, this
construction leads only to non-denumerable models. However, a slight
variation of the basic construction yields denumerable models. Note that
in the proof of Theorem 1 the function g is primitive recursive in f. It
follows that we may define # = {f I djf < h; and fis primitive recursive
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in i;}. The equivalence f = g in & defined by a non- -principal ultrafilter D,
viz { i | f(@) = g (i) } € D, may now be directly defined by a Hz-formula
This shows how to construct || 9-models of Peano arithmetic in the form of
restricted ultrapowers.

(b) We may reduce the size of our models even further. Since in the proof of
Theorem 1 the function ¢ is defined from f by means of a limited formula g
is even elementary recursive in fin the sense of Kalmar (see Kleene [11] §57
for a definition of elementary recursive functions). Thus, we may take & to
consist of all functions which are elementary recursive in and majorized by a
function #4;, for some j. Moreover, since the functions P; from which the
functions 4; are derived (Section IV) are defined by means of limited
formulas, we may also take our sequence of partitions { P; } to consist of
elementary recursive partitions rather than primitive recursive partitions.

(c) It is possible to give the ultrapower a more algebraic appearance by
switching from models of N to models of the ring Z of all integers. Let T
be an axiom system for an ordered ring in which the non-negative elements
obey the Peano axioms. Define the functions /; as in Section V (or the g;
of Section VI). Let & be the ring of all functlons f: N — Z such that,
for some j, l_f | < hj. It is easily seen, as in Scott [6], that the ultrafilters
are in one-one correspondence D «» Pp, with the minimal prime ideals P,
in &, such that #/D = &% /P, Principal ultrafilters correspond to principal
prime ideals. Thus, we may construct non-standard models of Z by dividing
the ring & by a non-principal minimal prime ideal P in %#. A non-standard
model of N may then be selected as the set of those elements in % /P which
are representable as the sum of four squares.

(d) It is possible to by-pass the Stability Condition in defining a non-
standard model #/D. It was condition (1) of Section III that assured us
that #/D was a model of the axioms. We may define the family & to
guarantee that condition (1) holds in a direct manner. We outline this
approach now. Reduce the conjunction of the first k axioms to prenex
normal form ¢,. We may associate with ¢, a sequence f;, ..., Sim, Of Skolem
functions in the usual manner. For each k define the sequence of natural
numbers aq, ..., @ by induction. Let

ayy =k +1
and, for 1 < j < k, let

s 2 .
ayj+1 = any number greater than a;; and the values of f,,, ..., Siony, @S
the arguments range over values < a, I
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We now define the functions 4; as before by

Ay for j <k
bk = 4 .
o1 (k) for j > k.

A simple induction argument now shows that (1) holds for the axioms
and hence that #/D is a model of Peano arithmetic. If as in Theorem 3
the g, 1s chosen as the least number so that the sequence a,, ..., q, satisfies
the above conditions then a true statement which is false in # /D may be
constructed via the method of Theorem 3.

The disadvantage of this direct approach is that the model &%/D con-
structed in this manner is dependent in its definition upon logical formulas
and so is not as purely an algebraic construction. Moreover the indepen-
dent statement which results has no simple combinatorial expression as have
those given in Sections 1V, V, and VI. Note that in this approach we have
not used the property peculiar to Peano’s axioms concerning the limited
associates of the axioms which is expressed in the proof of Theorem 4.
This shows that the method outlined here applies to any recursively enu-
merable set of axioms for arithmetic which is sufficient to allow the coding
required for Theorem 3. Thus, we may prove a general form of Gddel’s
Incompleteness Theorem without the use of self-reference techniques. At
the same time the very generality of the approach outlined here indicates
that there is no hope by this method to avoid the use of metamathematics.
It is only the above-mentioned property of the Peano axioms vis-a-vis
limited formulas that allowed us the latitude to define suitable functions /;,
and hence the model /D, by means of a combinatorial principal without
reference to logical formulas.

NOTE (ADDED IN PROOF)

The first sentence of the section entitled “Added in proof” of Kochen and
Kripke [12] p. 294, which was inserted by the second author, is not correct
and should be deleted in favor of the following corrected version. The first
author proposed that the Paris-Harrington statement is false in an initial
segment of any non-standard model, and this was verified jointly by the
two authors. Adapting this idea, the second author defined the set & of
functions which result in the model of Section V. The first author subse-
quently found the new set &% of functions which define the simpler model of
Section VI.
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