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We have thereby shown that /D is a model of the Peano axioms.
Since g, was chosen minimal, Proposition 2 is false in & /D, and hence
independent of the Peano axioms.

Proposition 1 is also false in &/D. In fact it is provable in Peano arith-
metic that Proposition 1 implies Proposition 2. This is a consequence of
the following lemma, provable in Peano arithmetic (c.f. Lemma 2.9 in [3]).

LEmMMmA 2. Let P, :[NI'i—r, 1 <i<nm, be n partitions. There is a
partition P : [N]° — r such that for all subsets H of N of cardinality > e,
H is homogeneous for P if and only if H is homogeneous for all the P;.

We may also obtain a purely finitary combinatorial principle which
is false in our model.

PROPOSITION 3. For all natural numbers e, r, and k there exists an N,
such that for all partitions P : [N]° — r there exists a subset X of N, with

X >k and + X >22""", which is homogeneous for P.

This result follows immediately from the infinite Ramsey Theorem by an
application of K&nig’s Lemma. If we drop the condition that # X > 27 mn
then we obtain the usual finite Ramsey Theorem. Ramsey [11] gave a proof
of the latter theorem which is formalizable in Peano arithmetic. Propo-
sition 3 directly yields Proposition 1, for if P : [N]®* — r is a partition and k&
is a number then by considering the partition P l [N]°, where N is the
number provided by Proposition 3 we obtain the required homogeneous
set X for P | [N]¢ and hence for P. This proof may be carried out in Peano
arithmetic. Thus, Proposition 3 is false in our model and independent of the
Peano axioms.

VI. A SIMPLER MODEL

The condition in Proposition 1 that # X > 22 "X can be simplified and
so yield a simpler sequence { /; } of functions which define the model &/ D.
In this section we describe such a model by using a combinatorial conse-
quence of Ramsey’s Theorem wich is closer to the proposition proved
independent in [3].

ProOPOSITION 4. Let P : [N]®* — r be a primitive recursive partition. For
every k there exists a finite subset X of N, with #X >k and %X
> min X, which is homogeneous for the partition P.

Proposition 4 implies Proposition 1 via the following result, the proof
of which is the same as the proof of Lemma 2.14 of [3].
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LEMMA 3. Let P :[N]° — r(e >2) be a partition. There is a partition
P* :INJ® - r* (where r* depends only on m, e, and r) such that if X*
is a finite subset of N, homogeneous for P* with % X* >e+1 and #X
> min X, then the set X = [log,log,] (X*) is homogeneous for P, and

#X >e+1 and #X>22™"%,

Moreover, if P is a primitive recursive partition, then P* can be chosen to
be primitive recursive.")

Since this proof that Proposition 4 implies Proposition 1 may be carried
out in Peano arithmetic, it follows that Proposition 4 is also false in our
model &#/D. However, our aim here is not merely to give a simple inde-
pendent statement but to construct a simpler model for Peano arithmetic.
Once again we actually use a version of the combinatorial principle which
applies to several partitions. The following result is implied by Proposition 4
in Peano arithmetic.

PROPOSIION 5. Let P;:[NI'i—r;, 1 <i<mn, be a set of primitive
recursive partitions. For every k there exists a finite subset of N, with
#X >k and #X >min X, which is simultaneously homogeneous for all
the partitions Py, ..., P,.

We now construct a non-standard model via Proposition 5. Let { P;}
again be an effective enumeration of all the primitive recursive partitions
P; :[NI"" > r. Let ¢y, ..., Gy, be an increasing sequence with ¢, the
least number such that ¢4, ..., ¢, 18 homogeneous for all Py, ..., P, with
cr1 <m, and k <m,. Define the functions g; by

go(k) = n, forevery k

and forj > 0

Crj for j <m,

9; (1) = { g1 (K for j >n,.
Let 7 = {f|3jf<g,} -

We shall show that 4 /D is a model of Peano arithmetic by proving that
there is an increasing sequence { /; } which lies in and is cofinal with &
and which satisfies the Stability and Closure Conditions. We set

h; = [log, log, gj] .

1) Here, as is customary, [x] is the greatest integer < x.
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Since h; < g, h;e #. It follows from Lemma 2.13 of [3] that there i1s a
prlmltwe recursive partition R such that if X is homogeneous for R, with

4 X > min X and # X > 3, then for every x, y, € X, x < y implies 22 < .

Since this partition appears in the enumeration { P;} at some point %, it

g5 (D . .
follows that, for all i > k and j < n;,2*" < g;4+1 (). Thus, if for a

(i)
given j we choose an m > k such that n,, > j, then, for all i > m, 2297t <

j @
gj+1 (i). For every i < m choose an s; with 22" o gs,(i). Let

s = max (S1, -y Sy—1,J T 1)
Then
2" < gs .

Thus /1, = [log,log,g,] > g, proving that { /; } is cofinal in &#.

For each partition P, in the sequence { P; } there exists another partition
P, (= P,) satisfying the conditions of Lemma 3. By the definition of the
functions g ;, the set { gy (¢), ..., g,, (¢) } is homogeneous for P, and n, > 1,
n, > ¢, (¢). Hence, by Lemma 3, the set

{ hl (Z)a vy hnt (t)} = { logzlogzgl (I)L a0y [1Og210g29nt (t)]}

is homogeneous for P, and n, > > 221 Thus, as in the previous section,
the sequence { /; } fulfills the conditions which ensure the satisfaction of the
Stability and Closure Conditions. This proves that &#/D is a model of the
Peano axioms. Once again, since ¢, was chosen as minimal, it follows that
Proposition 5, and hence Proposition 4, is false in &% /D, and therefore
independent of Peano arithmetic.

As before we may formulate a finite version of this combinatorial
principle.

PROPOSITION 6. For every e, r, and k there exists an N such that for
every partition P : [N]® — r there exists a subset X of N, with # X >k
and # X > min X, which is homogeneous for P.

Again it is provable in Peano arithmetic that Proposition 6 implies
Proposition 4, so that Proposition 6 is false in our model. Proposition 6
was first proved independent of Peano arithmetic in [3] by showing that it
implies the consistency of Peano arithmetic and then applying Gd&del’s
Theorem.

Let C, = {i I [ < Cyy, ;- The model #/D is an initial segment not only

of the ultrapower N'/D but also of the smaller ultraproduct [T CdD.
keN
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This indicates that the function C given by C (k) = ¢, is a very rapidly
growing function. In fact the function C majorizes every recursive function
which is a provably total function in Peano arithmetic.

THEOREM 5. Let f be a recursive function. Let  be an elementary

statement expressing the condition that f is a total function. If \y is provable
in Peano arithmetic, f(k) < C (k) for all sufficiently large k.

Proof. Suppose ¢t = { k lf(k) > C (k) } is infinite. Let D be a non-
principal ultrafilter such that ze D. Then f* > C*. On the other hand,
f*=fA*e F/D, so that f* < C*, a contradiction.

It follows a fortiori that if NV is the smallest integer to satisfy Theorem 5
then this function N also majorizes every provably total recursive function
(c.f. Theorem 3.2 in [3]).

We mentioned in the introduction that a by-product of our construction
is a new proof of Specker’s theorem that there exists a recursive partition
with no recursively enumerable infinite homogeneous set. In fact we may
obtain the stronger theorem that for each e > 2, there exists a primitive
recursive partition: P : [N]° — 2 such that P has no infinite homogeneous
set in ZS (c.f. Jockusch [10], Theorem 5.1). We outline the proof of this
result. Let ¢ (¥) be any formula. As in Section III, the limited associate

¢ (y;z) of ¢ (y) defines a partition P : [N]®* — 2 such that every sequence
{ b; } of natural numbers homogeneous for P satisfies the Stability Condition

for ¢ (y; z) in N. Hence, for any vector a in N ¢ (a) holds in N if and only

if ¢ (a; b) does. It follows that the set { a l N |= ¢ (a) } is recursive in the
set { b;}. Thus the set { b; } is not in ) ,.

VII. VARIATIONS

We conclude with a series of remarks on various modifications of our
construction.

(a) It is easily proved that if & is closed under < and contains 1, then
Z | D is non-denumerable, for every non-principal ultrafilter D. Thus, this
construction leads only to non-denumerable models. However, a slight
variation of the basic construction yields denumerable models. Note that
in the proof of Theorem 1 the function g is primitive recursive in f. It
follows that we may define # = {f I djf < h; and fis primitive recursive
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