Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	28 (1982)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	NON-STANDARD MODELS OF PEANO ARITHMETIC
Autor:	Kochen, Simon / Kripke, Saul
Kapitel:	V. Construction of the Model
DOI:	https://doi.org/10.5169/seals-52238

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 10.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Proposition 2 may be expressed by a $\prod_{i=1}^{0}$ formula. First it is clear that we can construct a $\sum_{i=1}^{0}$ -formula ϕ_i that expresses the properties that

- 1. $P_i : [\mathbf{N}]^{e_i} \to r_i$ is a primitive recursive partition
- 2. $z_1 < z_2 < \dots < z_{n_k}$
- 3. $\{z_1, ..., z_{n_k}\}$ is homogeneous for P_i
- 4. $k \leq n_k$
- 5. $2^{2^{z_1}} \leqslant n_k$

Proposition 2 asserts that for every k

$$\mathbf{N} \models \exists z_1 \dots \exists z_{n_k} \bigwedge_{i \leq k} \phi_i .$$

V. CONSTRUCTION OF THE MODEL

We now have all the ingredients at hand to construct a non-standard model of Peano arithmetic, and we have only to assemble them according to the specifications of Section II.

Let P_i be an effective enumeration of all primitive recursive partitions $P_i : [N]^{e_i} \to r_i$. By Proposition 2 we have that for every k

$$\mathbf{N} \models \exists z_1 \dots \exists z_{n_k} \bigwedge_{i \leq k} \phi_i$$

where ϕ_i is the \sum_{1}^{0} -formula of Section IV expressing the conditions (1)-(5) satisfied by the partition P_i .

Following the prescription given in Section III we let a_{kn_k} be the smallest number such that $a_{k_1}, \ldots, a_{kn_k}$ is an increasing sequence satisfying the formula $\bigwedge_{i \le k} \phi_i$. Now we define the functions h_j by

 $h_0(k) = n_k$ for every k

and for j > 0

$$h_j(k) = \begin{cases} a_{kj} & \text{for } j \leq n_k \\ h_{j-1}(k)^2 & \text{for } j > n_k \end{cases}$$

Let $\mathscr{F} = \{f \mid f \leqslant h_j\}$.

Since $1 \leq h_o$ the function 1 is automatically in \mathcal{F} .

By Theorem 2 the sequence $\{h_j\}$ satisfies $\bigwedge_{\substack{j < \infty \\ j < \infty}} \phi_j$ in \mathscr{F}/D . We now prove that this implies that the sequence $\{h_j\}$ satisfies the Stability and

Closure Conditions in \mathcal{F}/D . As we saw in Section III it suffices for this purpose to show that for each k

$$\mathbf{N} \vdash \exists z_1 \dots \exists z_{n_k} \bigwedge_{\substack{1 \leq i < j, j' < n_k \\ 1 \leq s < k}} \left[(\forall y < z_i) \left(\psi_s(y; z_j) \right) \\ \leftrightarrow \psi_s(y; z_{j'}) \land z_{j-1}^2 < z_j \right]$$
(*)

Let t_i be the length of the sequence y in $\psi_i(y; z)$. Define the partitions $T: [N]^2 \to 2, Q_i: N \to t_i^2 + 1$, and $S_i: [N]^{2e+1} \to 2$ by :

$$T(a, b) = \begin{cases} 1 & \text{if } a^2 < b \\ 0 & \text{if not} \end{cases}$$
$$Q_i(a) = \min(a, [t_i \log_2 a] + 1)$$

and for $a \in \mathbb{N}$, $c, c' \in [\mathbb{N}]^e$

$$S_i(a, c, c') = \begin{cases} 1 & \text{if } (\forall y < a) (\psi_i(y; c) \leftrightarrow \psi_i(y; c')) \\ 0 & \text{if not.} \end{cases}$$

The partitions T, Q_i , and S_i are clearly primitive recursive since $\psi_i(y; z)$ is a limited formula. Hence T, $Q_1, ..., Q_k, S_1, ..., S_k$ occur in the sequence $\{P_i\}$. Thus by looking sufficiently far in the sequence we can find a set $X_k = \{a_{k_1}, ..., a_{kn_k}\}$ which is homogeneous for T, $Q_1, ..., Q_k, S_1, ..., S_k$ with $n_k \ge k, 2^{2^{a_{k_1}}}$.

Since $a_{kn_k} > a_{k_1}^2$, $T(a_{k1}, a_{kn_k}) = 1$. Hence, by homogeneity,

T(a, b) = 1, i.e. $a^2 < b$,

for all a < b in X_k .

Since # X > 1, and X_k is homogeneous for Q_i , $a_{k1} \ge t_i \log_2 a_{k1}$. The number of sequences of numbers $< a_{k1}$ of length t_i is $< a_{k1}^{t_i}$. The

number of distinct sequences of truth values of length a_{k1}^{i} is $< 2^{a_{k1}}$. Now $n_k > 2^{2^{a_{k1}}} > 2^{a_{k1}}$ since $a_{k1} \ge t_i \log_2 a_{k1}$. Thus there are distinct c, c' > a in. X_k such that

$$(\forall y < a_{k1}) (\psi_i(y;c) \leftrightarrow \psi_i(y;c')),$$

i.e. $S_i(a_{k1}, c, c') = 1$.

By homogeneity

 $S_i(a, b, b') = 1$ for all a < b, b' in X_k

proving (*).

We have thereby shown that \mathcal{F}/D is a model of the Peano axioms. Since a_{kn_k} was chosen minimal, Proposition 2 is false in \mathcal{F}/D , and hence independent of the Peano axioms.

Proposition 1 is also false in \mathcal{F}/D . In fact it is provable in Peano arithmetic that Proposition 1 implies Proposition 2. This is a consequence of the following lemma, provable in Peano arithmetic (c.f. Lemma 2.9 in [3]).

LEMMA 2. Let $P_i : [\mathbf{N}]^{e_i} \to r_i$, $1 \leq i \leq n$, be *n* partitions. There is a partition $P : [\mathbf{N}]^e \to r$ such that for all subsets H of \mathbf{N} of cardinality > e, H is homogeneous for P if and only if H is homogeneous for all the P_i .

We may also obtain a purely finitary combinatorial principle which is false in our model.

PROPOSITION 3. For all natural numbers e, r, and k there exists an N, such that for all partitions $P : [N]^e \to r$ there exists a subset X of N, with $\# X \ge k$ and $\# X \ge 2^{2^{\min X}}$, which is homogeneous for P.

This result follows immediately from the infinite Ramsey Theorem by an application of König's Lemma. If we drop the condition that $\# X \ge 2^{2^{\min X}}$, then we obtain the usual finite Ramsey Theorem. Ramsey [11] gave a proof of the latter theorem which is formalizable in Peano arithmetic. Proposition 3 directly yields Proposition 1, for if $P : [\mathbf{N}]^e \to r$ is a partition and k is a number then by considering the partition $P \mid [N]^e$, where N is the number provided by Proposition 3 we obtain the required homogeneous set X for $P \mid [N]^e$ and hence for P. This proof may be carried out in Peano arithmetic. Thus, Proposition 3 is false in our model and independent of the Peano axioms.

VI. A SIMPLER MODEL

The condition in Proposition 1 that $\# X \ge 2^{2^{\min X}}$ can be simplified and so yield a simpler sequence $\{h_i\}$ of functions which define the model \mathscr{F}/D . In this section we describe such a model by using a combinatorial consequence of Ramsey's Theorem wich is closer to the proposition proved independent in [3].

PROPOSITION 4. Let $P : [\mathbf{N}]^e \to r$ be a primitive recursive partition. For every k there exists a finite subset X of N, with $\# X \ge k$ and $\# X \ge \min X$, which is homogeneous for the partition P.

Proposition 4 implies Proposition 1 via the following result, the proof of which is the same as the proof of Lemma 2.14 of [3].