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MODELS OF PEANO ARITHMETIC 223

Proposition 2 may be expressed by a HS formula. First it is clear that
we can construct a Z?-formula ¢, that expresses the properties that

P; : [N]°* — r; is a primitive recursive partition
2y < 2y < .o <2y

1
2
3. {zy, ..., Zy, } is homogeneous for P;
4, k< n

5

22" <,
Proposition 2 asserts that for every &

N & dz,...dz, "\ ¢:.

i<k

V. CONSTRUCTION OF THE MODEL

We now have all the ingredients at hand to construct a non-standard
model of Peano arithmetic, and we have only to assemble them according to
the specifications of Section II.

Let P; be an effective enumeration of all primitive recursive partitions
P; : [N]°* — r,. By Proposition 2 we have that for every k

N = dz, ...z, "\ ¢,

i<k
where ¢; is the Z?-formula of Section IV expressing the conditions (1)-(5)
satisfied by the partition P;.

Following the prescription given in Section IIT we let a;,, be the smallest

number such that @, ..., a,, 1S an increasing sequence satisfying the
formula /~\ ¢;. Now we define the functions %; by

=k

ho (k) = n, forevery k

and forj > 0
. for j <
hj (k) _ { Ay j , or j < ny
h;_y (k) for j > ny.

Let 7 = {f|f<h;}.
Since 1 < &, the function 1 is automatically in £.

By Theorem 2 the sequence { /; } satisfies "\ ¢ ;in F|D. We now
J <o

prove that this implies that the sequence { 4; } satisfies the Stability and
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Closure Conditions in &#/D. As we saw in Section III it suffices for this
purpose to show that for each &

N + dz,..3z, 1 /N [(Vy<z) (¥ (y; 2))
=i<j,j <ng
1=s<k

<> Yy, zp) A Z_?-—1 < z;] (*)
Let ¢; be the length of the sequence y in ¥; (y; z). Define the partitions
T:IN?>2, 0,:N>¢>+1,and S, : [N]***! - 2 by :

1 if a2 <b
T(a,b) = .
0 if not
Q;(a) = min (a, [t;log, a] + 1)
and for ae N, ¢, ¢’ € [N]°

1 if (Vy<a)(h;(y;0) =¥ (y; )
0 if not.

Si (a> c, C’) = {

The partitions 7, Q;, and S; are clearly primitive recursive since ¥; (y; z)
is a limited formula. Hence T, Q4, ..., Ok Si, ..., S, occur in the sequence
{ P;}. Thus by looking sufficiently far in the sequence we can find a set
X. = { &y .-, @4y, } which is homogeneous for T, Qy, ..., Ok, Sys o5 Sk

. ,%h1
with n, >k, 2 .
Since a,, > a,fl, T (a1 > ) = 1. Hence, by homogeneity,

T(a,b) =1, ie. a*<b,

for all a < b in X,.
Since # X > 1, and X, is homogeneous for Q;, a,; > t;log,; a;; .

The number of sequences of numbers < a,, of length 7; is < a;;i. The
ti

number of distinct sequences of truth values of length a;jl is < 2%! Now

¢

a1 a1 L
m > 2*> >2 since a; >t;1og,a, . Thus there are distinct ¢, ¢’ > a
in, X, such that

(Vy < ayy) (‘ﬁ; (y;0) & ¥; (5:¢))
ie. S;(a, ¢ ¢) = 1.

By homogeneity

S;(a,b,b") =1  forall a <b,b' in X, *,
proving (*). h
|
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We have thereby shown that /D is a model of the Peano axioms.
Since g, was chosen minimal, Proposition 2 is false in & /D, and hence
independent of the Peano axioms.

Proposition 1 is also false in &/D. In fact it is provable in Peano arith-
metic that Proposition 1 implies Proposition 2. This is a consequence of
the following lemma, provable in Peano arithmetic (c.f. Lemma 2.9 in [3]).

LEmMMmA 2. Let P, :[NI'i—r, 1 <i<nm, be n partitions. There is a
partition P : [N]° — r such that for all subsets H of N of cardinality > e,
H is homogeneous for P if and only if H is homogeneous for all the P;.

We may also obtain a purely finitary combinatorial principle which
is false in our model.

PROPOSITION 3. For all natural numbers e, r, and k there exists an N,
such that for all partitions P : [N]° — r there exists a subset X of N, with

X >k and + X >22""", which is homogeneous for P.

This result follows immediately from the infinite Ramsey Theorem by an
application of K&nig’s Lemma. If we drop the condition that # X > 27 mn
then we obtain the usual finite Ramsey Theorem. Ramsey [11] gave a proof
of the latter theorem which is formalizable in Peano arithmetic. Propo-
sition 3 directly yields Proposition 1, for if P : [N]®* — r is a partition and k&
is a number then by considering the partition P l [N]°, where N is the
number provided by Proposition 3 we obtain the required homogeneous
set X for P | [N]¢ and hence for P. This proof may be carried out in Peano
arithmetic. Thus, Proposition 3 is false in our model and independent of the
Peano axioms.

VI. A SIMPLER MODEL

The condition in Proposition 1 that # X > 22 "X can be simplified and
so yield a simpler sequence { /; } of functions which define the model &/ D.
In this section we describe such a model by using a combinatorial conse-
quence of Ramsey’s Theorem wich is closer to the proposition proved
independent in [3].

ProOPOSITION 4. Let P : [N]®* — r be a primitive recursive partition. For
every k there exists a finite subset X of N, with #X >k and %X
> min X, which is homogeneous for the partition P.

Proposition 4 implies Proposition 1 via the following result, the proof
of which is the same as the proof of Lemma 2.14 of [3].




	V. Construction of the Model

