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218 S. KOCHEN AND S. KRIPKF

Choose k£ > i lying in ¢. Then h; < h,, so that

9gr (k) (k) = :8 (7‘ (k): g (k)) < hk (k) = aknk .
But by (1) the sequence
91 (k)a sy (k) (k)

satisfies the above formula. This contradicts the minimality of a,,.

I111. PEANO ARITHMETIC AND THE STABILITY CONDITION

Theorem 1 suffices to construct a non-standard model of a theory of
arithmetic in which all the axioms are expressed by limited formulas. The
induction axioms of Peano arithmetic however involve arbitrary elementary
formulas. To deal with this problem we shall associate with each formula

¢ () of arithmetic a limited formula ¢ (y; z) V) called the limited associate

of ¢ (¥).

We assume that ¢ (y) has been reduced to prenex normal form. To

obtain the formula ¢ (y; z) we replace each quantifier Ox; in ¢ (y) by
the bounded quantifier QOx; < z;,. The bounding variables z, are to be
distinct from the variables occurring in ¢ () and also distinct from each
other.

Although Theorem 1 allows us to prove the validity of limited associates
of the Peano axioms in the model % /D, we need a provision for inferring
from this the validity of the Peano axioms themselves in &/ D.

To obtain the desired result it would suffice to show that for some

suitable vector i in #, #|/D = ¢ (y; h*)implies /D = ¢ (y). However,

if we consider the case where ¢ (»)is (Vx) (y #x), we find F/D = ¢ (h*, h*)
but #/D &= — ¢ (h*). This example shows that we must restrict the

range of y, i.e. require that for all f<h, F/D = ¢ (f*, h*) implies
FID = ¢ (f*). To prove F/D = ¢ (f*) for all fin & it thus suffices
to construct an increasing sequence { 4, } in &, cofinal in &, such that for
all 7, j with i < j?) and all fe & with f < I,

1) Here and later y and z denote vectors of variables.
2) Here and later j denotes a vector { ji,...,jn ), i <j means i< minj, and Ak;
denotes the vector {k Fy5 wwen fn>’
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FID = ¢ (f*; h%) if and only if F/D = ¢ (f¥). ()

Now the equivalence (1) refers to a formula ¢ (y) with unbounded
quantifiers and so is not a tractable condition to handle via Theorems 1
and 2. We shall accordingly replace (1) by an equivalent condition which
refers only to limited formulas. To see what this condition is consider the
case where ¢ () is a formula of the form (Vx) ¥ (x, y), where y is quantifier
free. Suppose that for some 7, j with i < j and all fe & with f < &; we have

FID & (43
i.e. Z/D = (Vx <h’}f) U (f*,x)
If condition (1) holds then

FID = (Vx) ¥ (f*,%)
and hence

FID = (Vx<hE)Y (f*,%)

for all j* > i.
Thus, for condition (1) to hold it is necessary for the truth value of

the limited formula ¢ (y;z) to eventually stabilize. We formulate this
condition as follows.

We shall assume for the rest of the paper that the sequence
h; = {hj, ..., by, > substituted for the bounding variablesz= (z;, ..., z;,
in the limited formula ¥ (y; z) is an increasing sequence (i.e. » < s implies
J» <Js and hence h; < h; ). Thus, the smaller the scope of the bounded
quantifier (Qx; < z; ) in ¥ (y;z) the larger the substituted element h;r

in the sequence h; = <{hj,, ..., h; >.

Stability Condition. For every limited formula ¢ (y;z) and for all
i,j,j  withi<j, i<]j’

FID = (Vy<h) (Y (y; ) =y (3 1))

We shall now prove that this condition suffices to establish (1) (c.f. [3]
Proposition 2.2).

LEMMA 1. Assume that { h;} is an increasing cofinal sequence in F
which satisfies the Stability Condition. Then for all i < j

FID = (Vy < ) (6 (1) < (v ).
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Proof : We shall assume that ¢ () is already in prenex normal form. We
proceed by induction on the number of quantifiers occurring in ¢ (y). For
quantifier-free formulas the equivalence is clearly true.

Now assume that ¢ (y) has the form (dx;) ¥ (x4, »). Then ¢ (y; 2)
has the form (Ix,<z)) ¥ (x1,y; 25, .o, 2,). F/D = ¢ (f*) if and only if

F|D =  (b*, f*) for some be Z.
By induction it follows that #/D &= ¢ (f*) if and only if #/D

= @(b*,f*, hjys .., i) for all j,,.j,, with i< j, <..<j,. By
cofinality & < h;,, for some j; > i. Hence
FID = ¢ (f%) if and only if F/D = (Fxy < KW Cepa S35y o 1)
Le. #/D = ¢ (f*; i), where j, = (o fa o>
By the Stability Condition, #/D = ¢ (f*; hfﬂ) for this j, > i1s equiva-
lent to #/D = g/; (f*; hj.) for all j > i, completing the induction step.

THEOREM 4. Assume that { h;} is a cofinal sequence in F with h 3
< h;,y which obeys the Stability Condition. Then % |D is a model of the
Peano axioms.

Proof. The axioms Vx Vy dzo (x, y, z) and VxVydz=n (x, y, 2)
are valid because & is closed under + and -
Every other non-induction Peano axiom qb is a Hl-statement Thus

N = d)(z) By Theorem 1, #/D = (j)(z) Hence /D = ¢.
Now let ¢ () be the induction formula

[ (0,) A (V) (¥ (x, ) =¥ (x+1, )] = (VX) ¥ (x, ) .
We may assume that ¥ (x, y) is in prenex normal form.

Note that for any formula # (x)

N = [7(0) A (Vx<w)(n(x) » 1 (x+D)] = (Vx <w) 1 (x).
Hence, if n (x) is a limited formula then Theorem 1 implies that
C FD e [10) A G<w (1) > G+ D)] > (Vx<w) 1 () |

A
- In particular, taking for u the limited associate ¥ (x, y;z) of ¥ (x, y),
| we have that
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FID &= [@(O,y; z) A (Vx<w) (@(x,y; Z) > Y (x+1,y;2)]
- (Vx<w)y (x,y; 2) (1)
We now assume that #/D = ¢ (0, g*) and #/D = (Vx) (¥ (x, g*))
-y (x+1, g*)) for some vector g of functions in &.

We have g < h; (i.e. max g < h;) for some i. Choose any j, ¢ with
i>t>i By Lemma 1, #/D = ¥ (0, g*; 4;). Assume for x < h, that

FID = Y (x, 9% b)) .

By Lemma 1,
FID = ¥y (x,9%) .

Hence,

FID = Y (x+1,9%
so that, again by Lemma 1,

FID = U (x+1,0% 1)
Thus, by (1),
FID = (Vx <)y (x, y*: ).

It follows from Lemma 1 that

F|D = Vxy(x,g%).

We have thus proved that the induction formula ¢ () is valid in &/D.

It remains for us to construct a suitable sequence { #;} of functions
satisfying the Stability Condition. Let {i;} be an effective enumeration

of all the limited formulas. The Stability and Closure Conditions have the
form

F|D = 3z,...3z,... N [Vz<z) W, (s z;
1zicj,j'<
l=s<ow

=Y, (y; Zj’)) A Z_]?—'l < zj]

Now this condition has precisely the form needed for the conclusion of the
Saturation Theorem 2. Thus, if we can show that for each k

N&3z.3z, A [(Vy<2)(l052)
=i<j,j'<ng
1=s<k

oY (1325)) A 25y < 7] *)
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then we can construct the sequence { #;} and the set & to satisfy the
Stability and Closure Conditions via Theorem 2.

We could now proceed to show that the above condition is indeed
satisfied in N and thus construct a non-standard model of Peano arithmetic.
However, our goal is the construction of a mathematically perspicuous
model which is independent of the logical formulas. The functions { 4; }
given by the above condition require the logical calculus in their definition.
Accordingly, we shall consider a larger class & of functions than those
defined above, which we shall construct independently of logical formulas.
This class will be constructed from combinatorial principles derived from
Ramsey’s Partition Theorem.

IV. RAMSEY-TYPE THEOREMS

The infinite Ramsey Theorem states that for every partition P : [N]°
— r ') there exists an infinite subset X of N such that P | [X]° is constant.
In these circumstances one says that X is homogeneous for the partition P.
This set-theoretic theorem has various combinatorial consequences which
are formalizable in elementary arithmetic. One such immediate consequence
which we shall prove independent of the Peano axioms is the following.

ProrOSITION 1. Let P :[N]® — r be a primitive recursive partition. For
every natural number k there exists a finite subset X of N, with # X >k

and #X >22"" X, which is homogeneous for the partition P.

In order to apply Theorem 2 we require the construction of a set which
is simultaneously homogeneous for several partitions. This is easily done by
the infinite Ramsey Theorem. Suppose P; :[N]' — r; and P, :[N]?
— r, are two partitions. Let X; be an infinite subset of N homogeneous for
| P;. Then P, [ [X]°? is a partition of [X,]2, and hence there is is an infinite
 subset X, of X; which is homogeneous for P, (as well as P;). This proof
- extends immediately to finitely many partitions. A direct consequence is the
~ following generalization of Proposition 1.

PROPOSITION 2. Let P; : [N]*¥ — r;, i <i < n be a set of primitive recur-
& sive partitions. For every natural nu_mber k there exists a finite subset X of N
Cwith #X >k and #X>22"""
for all the partitions Py, ..., P,.

, which is simultaneously homogeneous

1) We identify the number r with the set of all natural numbers < r.
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