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MODELS OF PEANO ARITHMETIC 213

Here is a brief description of the simplest model which we construct
later. Let {P } be an effective enumeration of all primitive recursive
partitions P; : [N]’ . It is an immediate consequence of Ramsey’s
Theorem that there ex1sts a finite set X, in N, with # X, >k, min X,
which is homogeneous for Py, ..., P. Let { @iy, -, @y, } DE a0 enumeration
of X, in increasing order. Let the functions /; : N — N be defined by

J<mn

h. (k) = Ukj
J h_ (K2 >

Now let
= {fI13iVif@() <h;@}.

Then, for any non-principal ultrafilter D, the restricted ultrapower & /D
is a non-standard model of Peano arithmetic. If, in addition, we assume
that X, has been chosen so that g, is a minimum, then the above con-
sequence of Ramsey’s Theorem is false in this model.

II. BoUNDED ULTRAPOWERS

In building the model we have endeavoured to motivate each stage of the
construction. Since this is a modification of the ultraproduct construction
it is natural to aim at reproducing (to a degree) the main properties of the
full ultraproduct. The first property of the ultraproduct we mimic is the
Y.o$ property that a formula is satisfied in the ultraproduct if and only if
it is satisfied in a set of factors lying in the ultrafilter. Of course, we wish
to have this true for only a limited set of formulas to avoid constructing
a model elementarily equivalent to N.

By a limited formula we mean one in which every quantifier occurs in
bound form: Vx < zor dx < z

If f, g € N', we write f < g to mean f (i) < g (i) for all i e I. A natural
constraint on our proposed set & is that it be closed under <,ie. f <ge ZF
implies fe#. We call the restricted ultrapower & /D resulting from such
an & a bounded ultrapower. This condition is suﬁﬁc:lent to prove the L.os
property for limited formulas.

The formal language we use for Peano arithmetic has the constant 0 and
two binary relation symbols ¢ (x, y, z) and = (x, y, z) (denoting x+y =
and x -y = z in N). By not having the functions + and - in the language
we avoid having to assume at the outset that % /D is closed under + and -
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THEOREM 1. Assume %D is a bounded ultrapower. Let ¢ (x4, ..., X,)
be a limited formula and f,....f,e F. Then FIDE= ¢ (f1,.0fn) if

and only if {iIN = ¢ (f1 (D), ... f, (i) } € D.

Proof : We proceed by induction on the length of ¢. For atomic formulas
the equivalence is an immediate consequence of the definition of & /D.
That the equivalence is preserved under the logical connectives follows
exactly as in the full ultraproduct case from the properties of the ultra-
filter D.

Now assume that ¢ (xy, ..., x,) has the form (x; < x) ¢ (xy, ..., X, X))
Suppose that

s ={iINE 3x; <))V (f1(),.... [,(D,x;)}eD.

Then for each i e s, there exists in N an element a; < f, (i) such that

N }: ‘ﬁ(ﬂ (l)asfn(l)a ai)'
Define the functions g : N — N by

0 a; for ies
1) =
g 0 for ié¢s.

Since g < f, € F, we have g Z. Now{iIN =Y (f @), s fu (), 9 ()}
= s € D. By the inductive hypothesis
FID = Y (f1serfns9%
or  FID = @x;<fU (f1sees furxy)
ie. FID &= d(fl, s fn).
The other half of the equivalence is immediate.

We can extend this result a little further in one direction. The proof of
the following consequence is obvious. ‘

COROLLARY. Let ¢ (x4, ..., X,) be a Z?-formula. Then

FID = ¢ (f1, . fn) implies {i|N = ¢ (fy @), .. ()} eD.

The second property of ultraproducts we copy is the saturation property.
The w;-saturation property of a structure & is usually formulated as
follows. Let { ¢; (2) } be a countable sequence of formulas with coefficients
in o/ and the indicated free variable z. Then & = dz "\ ¢, (2) for

0 j=n
every n implies o |= dz "\ ¢, (2).

j=i
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An immediate consequence of the saturation property is the following
apparently stronger statement: Let { ¢; (z4, ..., z,,j) } be a countable sequence
of formulas with coefficients in .o/ and with the indicated free variables.
Then

A = dzy o dzy NG (215 s Zag)

Jj<k
for every k implies that
& = Az, .. Az, 00 AN (215 e, Zn) -
ji=1

It is this form of the saturation property which we shall adapt in con-
structing the model &#/D. We shall require the property only for a fixed
sequence { ¢; } of limited formulas which we shall specify later in the
construction of the model. We shall in addition find it useful to add a
condition relating the free variable z; with k£ and n, in the form of a limited
formula ¢ (k, n;, z;). We could here replace z; by a finite sequence of the
free variables but we shall not need this added generality.

Let ¢ (x,y,z;) and ¢ (zq, ..., z,,j), j=1,2,3,.., be limited formulas
with the indicated free variables. We assume that »; increases with j. Suppose
that for each k

N = dz; ... Hznk(ﬁb (ks s 21) A N @5 (215 eens an))

<k
Given k, let a4, ..., a;,, € N be such that
N |= ¢ (k,ny,a11) A /\ ij (A1 5 vees aknj) .
j=k
Define the functions /; by
h, (k) = n, forallk,
and for j > 0,

o) = ay ; for n, >j
d arbitrary fornm, <j.

THEOREM 2. Let F < NN  contain the Sunctions  h;,j=0,1,2, ..,
and 1 (the identity function) and be closed under <. Then

F|D = dx dy 3z, ...Ezn...(qﬁ(x,y,zj)v/\ /m\qﬁj(zl,...,znj))

j=1
Proof : Since the formula ¢,, occurs as a conjunct in ™\ ¢ ; form, >m,

j=<n

we have N f: ¢m (akla L) akm)° le N }:: qsm (hl (k)s e hm (k)) ThUS, by
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Theorem 1
FID |= ¢(hi,...,h,).
Again, for every k
NE ¢ (k,ny, a,), so that
by Theorem 1
FID |= ¢ (A7, ko, hY) ,

proving the theorem.
We shall in the sequel be taking for & the smallest set of functions
closed under < and containing 1 and all the 4,’s. In other words we let

F={fIf<1 or 3Jjf<hy.

As an example of the use of the Saturation Theorem 2 we show how we
can ensure that & is closed under + and - . Since

fog < h; implies f+g,f g <h;

it clearly suffices to assume that A7_; < h;. Thus, if we assume that the
condition z 12 —1< z;occurs in the formula ¢ ;, then, adding &; (k) = & f_ 1 (k)
for j > n, to our definition of #z;, we have that hi_i< h;, so that & is
closed under + and - . We shall call this the Closure Condition on { /; }.

Again, we can guarantee that 1 e % by assuming that ¢ (k, n, z;)
includes the condition z; > k.

Up to this point in our construction of /D there is no guarantee that
the difficulty with the full ultrapower has been obviated. It may happen
that #/D = N, so that % /D cannot be used for independence results.
To obtain a true arithmetical statement which is false in % /D we now add
the condition that the sequence { ¢; } of limited formulas is a recursively
enumerable set. It follows immediately that the sequence { ™\ ¢;} |

Jj=n

is also a recursively enumerable set. Since the satisfaction relation for limited
formulas in N is a primitive recursive relation there is a Z(l’-formula
v (x, ¥, z) such that '

N & y(k,m, z) o ¢ (k,n, z) A /\¢j(z1: ---:an) .

Jj=k

- Here y (k, n, z) holds if and only if z is a code number of a sequence of
~length n, such that ¢ (k,m,z) A /\ @; (2, ..., z,;) holds, where z
Jj=k

.= B (i, z) and B is the G&del f-function (as given e.g. in Shoentfield [8] §6.4.)
: i

IS
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Suppose that, as in the hypothesis of Theorem 2, we assume that for
every k

N |: 3Zl "'Hznk[(p(kanka Zl) A /\¢_] (le °'°’an)]

ji=k
We now construct the functions { /; } of Theorem 2 with greater care. For
each k, we choose the sequence a;, ..., a,, to be the least sequence sat-
isfying
¢ (k,ny, z1) AN ¢j(zla cees an)

i=k
in N. The precise measure of what we mean by least is not critical, but we
shall take it to mean that the largest element of a4, ..., @, is @ minimum
for all possible choices of ayy, ..., a4, satisfying the above formula. We
shall henceforth assume by appropriate re-labeling that a,; < ., < ...
< Gy, SO that gy, is the minimal element. We now claim that

FID = " Vkdndzy ... 3z, [¢(k,n,z) A A\ P; (24, s Zn) ]

j=k
or, more precisely,
FID = = Vkdndzy(k,n,z).

Since N = Vk dzy (k, n, z) we have obtained a true arithmetical state-
ment which is false in %/ D. Note that it follows from Theorem 2 that for all
keN

F|D = dndzy(k,n, z).

THEOREM 3. #/D = — Vkdndz y (k, n, 2).

Proof : Assume that on the contrary
F|D = Vkdndzy(k,n, z).
Choose k = 1*. Then there exist r, g € & such that
FID |k y (1%, 1%, g%).

By the Corollary to Theorem 1 we have for an infinite set ¢ of k’s (lying
in the ultrafilter D)

N v (k, 7 (k), g (k) (D

Now since f (r, g) <r!) e &, there exists an i such that

:B(r:g)<hi'

1) See Shoenfield [8] § 6.4.
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Choose k£ > i lying in ¢. Then h; < h,, so that

9gr (k) (k) = :8 (7‘ (k): g (k)) < hk (k) = aknk .
But by (1) the sequence
91 (k)a sy (k) (k)

satisfies the above formula. This contradicts the minimality of a,,.

I111. PEANO ARITHMETIC AND THE STABILITY CONDITION

Theorem 1 suffices to construct a non-standard model of a theory of
arithmetic in which all the axioms are expressed by limited formulas. The
induction axioms of Peano arithmetic however involve arbitrary elementary
formulas. To deal with this problem we shall associate with each formula

¢ () of arithmetic a limited formula ¢ (y; z) V) called the limited associate

of ¢ (¥).

We assume that ¢ (y) has been reduced to prenex normal form. To

obtain the formula ¢ (y; z) we replace each quantifier Ox; in ¢ (y) by
the bounded quantifier QOx; < z;,. The bounding variables z, are to be
distinct from the variables occurring in ¢ () and also distinct from each
other.

Although Theorem 1 allows us to prove the validity of limited associates
of the Peano axioms in the model % /D, we need a provision for inferring
from this the validity of the Peano axioms themselves in &/ D.

To obtain the desired result it would suffice to show that for some

suitable vector i in #, #|/D = ¢ (y; h*)implies /D = ¢ (y). However,

if we consider the case where ¢ (»)is (Vx) (y #x), we find F/D = ¢ (h*, h*)
but #/D &= — ¢ (h*). This example shows that we must restrict the

range of y, i.e. require that for all f<h, F/D = ¢ (f*, h*) implies
FID = ¢ (f*). To prove F/D = ¢ (f*) for all fin & it thus suffices
to construct an increasing sequence { 4, } in &, cofinal in &, such that for
all 7, j with i < j?) and all fe & with f < I,

1) Here and later y and z denote vectors of variables.
2) Here and later j denotes a vector { ji,...,jn ), i <j means i< minj, and Ak;
denotes the vector {k Fy5 wwen fn>’
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