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Since DAG is logspace complete in NSPACE (log n), it suffices to show that
DAG e DSPACE (log n)/log = DAG € DSPACE (log n) .

Suppose that DAG = S: &, where S € DSPACE (log n) and
| ()| <klogyn.

Then, guided by the self-reducibility of DAG, we can test whether
(P, s, t) € DAG by performing the following computation for each string w
of length < k log, n:

Vi = §,

while v has out-degree 2 do

v:=1if w- (¥, v, t) €S then v, else v;.
If v is ever set equal to ¢ then accept (¥, s, t); otherwise, reject it. It is clear

that this method recognizes DAG deterministically within space 0 (log n).
N

6. THE METHOD OF RECURSIVE DEFINITION

Let K be a subset of {0, 1}*, and let Cy: {0, 1}* — {0, 1} be the charac-
teristic function of K. By a recursive definition of Cx we mean a rule that
specifies Cx on a “basis set” A < {0, 1}*, and uniquely determines Cy on
the rest of {0, 1}* by a recurrence formula of the form

Cx(x) = F(x, Cx (f1 (x)), Ck (fz (x))a oo Cg (ft (x))),
xe{0,1}* — A .

Example 1. Let G be a game, as defined in Section 4, and let G be the
set of positions from which the player to move can force a win. Then G is
uniquely determined by

(1) fxeWthenxeG
(i) ifxe{0,1}* — Wthen xe G <> F, (x) ¢ G or F, (x) ¢ G.

Example 2. Let (<, A, G,, G,) be a self-reducibility structure for the
set K = {0, 1}*. Then K is determined uniquely by its intersection with A,
together with the recurrence

for x¢A,xeK < G,(x)eKu G, (x)eK.
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204 RICHARD M. KARP AND RICHARD J. LIPTON

The theme of the present section is that, when Cy has a simple enough
recursive definition, bounds on the nonuniform complexity of K yield
bounds on its uniform complexity. The idea is as follows. Suppose K = S: A,

and Cyg is determined by its values on A, together with the recurrence
formula

Cx(x) = F(x, Cx(fi (X)), ..., Cx (/i (), xe {0, 1}* — A,
where

i@ ] =[f@]=]x].

For any string w, define K,, = {x l wx € S}. Then, for x € A, we can make
the following assertion:

xeK e 3dw[xeK,] A Vy[Ck, ()
= F(yn CKw (fl (y))a cees CKw (ft(y))] .

Here, w ranges over all strings of length lk (le) [, and y ranges over all
strings of the same length as x. The above formula suggests a uniform
algorithm to test membership in K by searching through all choices of w
and y. Further, the quantifier structure of the formula allows us to con-
clude that K lies in ) %, provided that | 4 (n)) | is bounded by a polynomial
in n, S is in P, and F is computable in polynomial time.

As an illustration of this approach, we prove that, if NP has small
circuits, thenu )7 = Y 5, ie., the polynomial-time hierarchy collapses.

Originally we proved this with ) 7 replaced by ) %. The improvement is due
to M. Sipser.

THEOREM 6.1. If NP < P/poly then Y § = u ) P.

i=1

The proof of this theorem requires the following lemma.

LemmA 6.2. If NP < P/poly then u Y P = P/poly.

i=1

Proof. Let E; be the set of encodings of true sentences of the form

" - - - - -
(*) 0:1x10:%X2 .. 0;X; F(X(,X2, ...,

where Q; =3, the Q; are alternately 3 and V, fj is shorthand for the
triple Xjis Xjys e Xjr of Boolean variables, and F is a propositional

J
formula. Let A; be defined in the same way, except that O, = V. It is
known that E; is logspace complete in ) 7, and 4;is logspace complete in

-

X;)




TURING MACHINES THAT TAKE ADVICE 205

[ 7. Also, it is clear that 4;€ P/poly < E; P/poly. 1t suffices for the lemma
to prove that E; € P/poly for all i.

By hypothesis, E, € P/poly. We proceed by induction on i. Assume
E;_, € P/poly; then A;_ € P/poly. Thus there exists a set S € P, a constant
k and a function 4:N - {0,1}* such that |/z (n) | <k + rn* and
xeA;i < h(x])-xeS.

If y is the encoding of a sentence of the form (*), and a is a #,-tuple of
boolean variables, let y7 denote the encoding of the sentence that results
from y by deleting the quantifier Q, and substituting @ for X, in
F(X{, X3, .., %;). We choose our encoding conventions and method of
substitution so that the length of y7 is equal to the length of y.

Since S € P, the following set T is in NP:
T = {wy| for some d, w-y3 €S} .

By hypothesis T € P/polv, so there exist S’ e P, k'€ Nand h': N — {0, 1}*
so that |2’ (n) | <k’ + n* and xe T < /' (|x]) - x€S. Then y e 4; < for
some ¢ , y7 € E;_, < for some a,

h(ly2) - yeeS<h(yzD:-yeT<h (Ih(yzD - yI(-h(yzD-yeS .

But the prefix A’ (|A(|y3]) -y ]( ~h (|y7]) is a polynomial-bounded function
of l y l; also S" € P. These two facts together establish that 4, € P/poly. H

Proof of Theorem 6.1. It suffices to prove that NP < P/poly= [FEE=D N+
for this it is sufficient to prove that the set 43is in ) 2. Our proof is based on
the fact that 4; has an easty-to-evaluate recursive definition of the form
Ca3 () = R(p, Cyy (), Cyy (¥"). Consider a sentence y of the form

Q1X1Q2%5 .. QX F(xy,%,, ..., X,
where the string of quantifiers Q; @, ... O, is contained in V* 3* V*,

Let

y' = Q2 X2 e Qn Xn F(09 X2y eees xn)
and

y” = QZ x2 Qn xn F(la x23 seey xn) .
Then .

Cys (J’) = (if @; = Vthen Cy45 () A Caz (¥") else Cy3 (V) U C 5 (") -
C4, 1s uniquely determined by this recursive definition which is of the form
Cyy () = R((3, Cyy ), C 43 (»")), coupled with its values on the “basis
set” consisting of sentences without quantifiers.
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By Lemma 6.2, A;eP/poly. Thus A; = S:h where SeP and
Ih (n) ] <k + n*. For each we{0,1}* define f,:{0, 1}* —» {0,1} by
fw(x) = 1 & wxeS. Then membership of y in A5, in the case where y
contains at least one quantifier, is expressed by the following formula:

% IwVz[£,0) =1 A £u(D) = R(z. £, (2). £ (2")] .

Here w ranges over all strings of length <k + | ¥ I" and z ranges over all
strings of length l y | Also, with the help of a polynomial-time algorithm
to test membership in S, the property £, () = 1 and

fv @ = R(z, £, @), f, (")

can be tested in polynomial time. Thus the 3 V form of (**) establishes
that A5 € ) 5. =

Theorem 6.1 has a number of corollaries.

COROLLARY 6.3. If R = NPthenu ) F =>7%.

This follows immediately from the observation [1] that every set in R has
small circuits.

The next corollary concerns sparse sets. A set S is sparse [6, 7] if

deVn>2,|Sn{0,1}"| <n

CoroLLARY 6.4. If there is a sparse set S that is complete in NP with
respect to polynomial time Turing reducibility (cf. Cook [4]), then

vyr=21%.
1

This corollary follows immediately from Theorem 6.1 once it is noted
that the existence of such an S implies that every set in NP has small cir-
cuits. Corollary 6.4 should be compared with results of Mahaney [11] and
Fortune [6] which show that, if there exists a sparse or co-sparse set which
is complete in NP with respect to many-one polynomial-time reducibility
(Karp [8]) then P = NP. Note that Corollary 6.4 has a weaker conclusion
than the results of Mahaney and Fortune, but also a weaker hypothesis.

Let ZEROS denote the following decision problem: given a prime g
and a set {p; (x), py (x), ..., p, (x)} of sparse polynomials with integer
coefficients, to determine whether there exists an integer x such that, for
i=1,2,..,np;(x) = 0mod q.
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COROLLARY 6.5. If ZEROS € Pjpoly, then v ).F = > 7.

This is based on Plaisted’s result [15] that every problem in NP can be
solved in polynomial time with the help of an oracle for ZEROS together
with a polynomial-bounded number of advice bits. Thus NP < P/poly if
ZEROS € P/poly.

THEOREM 6.6. (Meyer) EXPTIME < P/poly <> EXPTIME = ) 3.

Proof. Let G be the set of strings representing positions from which
the first player can win in the EXPTIME-complete game mentioned in
FACT 1. It suffices to prove that

GeP/poly = Ge) }.
Suppose G = S: & where S € P and / is polynomial-bounded. Then

xeGedwVz[xeWuzeWu(wzeS <« wF,(2)
¢S U WF(z)¢9S)]

Here w ranges over all strings of length | h (|x|) and z ranges over all strings
of the same length as x. Since membership in S or membership in W can
be tested in polynomial time, it tollows that Ge ) 5. -]

COROLLARY 6.7. EXPTIME < P/poly = P # NP.

Proof. Assume for contradiction that EXPTIME < P/poly and P = NP.
The first hypothesis implies that EXPTIME = ) %, and the second implies
that P = ) . Hence P = EXPTIME. But this contradicts the result that
P G EXPTIME, which is easily proved by diagonalization. .|

Figure 1. MAIN RESULTS

PSPACE < P|poly = PSPACE = Y5~ Y%
PSPACE < P|/log <~ PSPACE = P
EXPTIME < PSPACE | poly < EXPTIME‘= PSPACE
P = DSPACE ((log n)’)[log < P = DSPACE ((log n)')
NSPACE (logn) = DSPACE (log n) [ log

<> NSPACE (logn) = DSPACE (log n)
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NP < P/log <P = NP (Y

NP < Pl/poly = uY? =32 (®
EXPTIME < P|poly = EXPTIME = Y2 =P # NP (%
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