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200 RICHARD M. KARP AND RICHARD J. LIPTON

Then G = S:/ where S e DSPACE ((log n)") and l h (x) I < k log, Ix l,
for some k. Then xe G < dw Vw' Win (w, w', x), where w and w’ range
over all strings of length < k log, | x |. Clearly space 0 ((log n)") suffices to
deterministically enumerate all pairs (w, w') and, for each, to play out
Strat (w) against Strat (w") from position x, with the help of repeated calls
on a deterministic space (log n)' recognizer for S. It follows that

G € DSPACE ((log n)") .

5. THE SELF-REDUCIBILITY METHOD

The “hardest” problems in complexity classes defined by bounds on
nondeterministic time or space often possess a structural property called
self-reducibility. Various formal definitions of self-reducibility can be found
in the literature ([12, 18, 20]). Here is one version of the idea. Let K be a
subset of {0, 1}*. A self-reducibility structure for K is specified by a partial
ordering < of {0, 1}* such that

(i) A, the set of minimal elements in <, is recursive and

(i) A n K is recursive

together with a pair of computable functions G, and G; mapping
{0, 1}* — A into {0, 1}*, such that, for all xe {0, 1}* — A,

(iii) Go(x) <x,G;(x) <x, [Ge(X) [ =[G (X) | = [x]
and xeK < Gy(x)eK or G;(x)ekK.

If K has a self-reducibility structure, then K is called self-reducible.

To illustrate the concept, we give self-reducibility structures for two
important examples. The first example is the satisfiability problem for
propositional formulas, encoded so that the following property holds: Let
F(t,t,, ..., t,) be a formula in which the variables ¢, ¢4, ..., #, appear, and
let F(a,t,, ..., t,) be the same formula with the Boolean constant a sub-
stituted for ¢,. Let < F(ty,1¢,, ..., t,) > and < F(a, t,,...,t,) > denote
the encodings of these two formulas as strings. Then

| < Fty, th o t) > | = | < Fla 1y s 1) > |

Let SAT denote this version of the satisfiability problem. The set SAT has
| a self-reducibility structure in which A is the set of propositional formulas
; containing no variables,
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Go(<F(ty,ty, .. t)>) = <F(0,1,,....1,)> and
Gy (<F(t;,ty, ety >) = <F(1,t5, .., 8)> .

As a second example, let DAG denote the set of encodings of triples
(¥, s, t) such that

(i) ¥ is a directed acyclic graph in which the out-degree of each vertex is
either 0 or 2; if v has out-degree 2 then its successor vertices are de-
noted ¢ (v) and o, (v);

(i1) s is a vertex and ¢ is a vertex of out-degree O;

(iii) there exists a directed path from s to .

Assume that, for any directed acyclic graph G, any vertex ¢ of out-
degree 0, and any two vertices v and w, the encodings of (¥, v, ¢t) and
(¥, w, t) are of the same length. Then DAG is clearly self-reducible. Let A
be the set of triples (¥, s, t) such that s is of out-degree 0, and let

Go ((Z,5,1) = (¥,00(s),t) and G, (¥, 5, 1)) = (¥, 74 (5), 1).

It is possible to relate the uniform complexity of a self-reducible set K
to its nonuniform complexity. Suppose K has a self-reducibility structure
(<, A, Gy, Gy) and K = S: h Foreach we {0, 1}* define reduct,, a total
function over {0, 1{*, by the following recursive definition:

reduct,, (x) = if x € A then x else
if w- G, (x) € S then reduct,, (G, (x)) else
reduct,, (G, (x)).

Then, for all w, reduct, (x) e A. Also, reduct,(x)eK = xeK and
x € K < reduct, |,y (x) e K. These observations imply the following
lemma.

LEMMA 5.1. Let w range over some set which includes % (|x|). Then

x ¢ K <> dw[reduct, (x) e K] .

Lemma 5.1 suggests a uniform way of testing membership in K: for
each w in a suitable set, compute reduct,, (x) and test whether

reduct,, (x) e A n K.

The complexity of this algorithm will depend on the time and space needed
to test membership in A, and in A n K, on the lengths of chains in the
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partial ordering <, and on the number of strings w that need to be con-
sidered.
Now we are ready to give some applications of self-reducibility.

THEOREM 5.2. P = NP < NP < Pllog.
Proof. The implication P = NP = NP < P/log is immediate. Since
SAT is NP-complete, the reverse implication will follow once we prove that

SAT € Pllog = SATeP .

Assume that SAT € P/log. Then SAT = S: h, where S € P and, for some k,
lh(n) | < k log, n.

Using the self-reducibility structure for SAT given above, coupled with
the method of lemma 5.1, we can test whether string x is in SAT. It is
necessary to compute reduct, (x) for each of the polynomially-many
strings w of length < k log, »n and, for each, to test whether

reduct,, (x) e A n K .

Each such computation can be done in polynomial time. Hence we con-
clude that SAT € P. m

By similar methods we can relate the nonuniform and uniform com-
plexities of other self-reducible problems. For example, we can state the
following result.

THEOREM 5.3. Let Factor denote the set of triples of integers <x, y, z>
such that x has a factor between y and z. Then

Factor € P | log <> Factor € P .

As another application of the self-reducibility method, we give the
following theorem.

THEOREM 5.4.
NSPACE (logn)/log < DSPACE (log n) | log
<> NSPACE (logn) = DSPACE (log n) .
Proof. 1t is sufficient to prove

NSPACE (log n)/log = DSPACE (log n)/log
= NSPACE (log n) = DSPACE (log n) .
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Since DAG is logspace complete in NSPACE (log n), it suffices to show that
DAG e DSPACE (log n)/log = DAG € DSPACE (log n) .

Suppose that DAG = S: &, where S € DSPACE (log n) and
| ()| <klogyn.

Then, guided by the self-reducibility of DAG, we can test whether
(P, s, t) € DAG by performing the following computation for each string w
of length < k log, n:

Vi = §,

while v has out-degree 2 do

v:=1if w- (¥, v, t) €S then v, else v;.
If v is ever set equal to ¢ then accept (¥, s, t); otherwise, reject it. It is clear

that this method recognizes DAG deterministically within space 0 (log n).
N

6. THE METHOD OF RECURSIVE DEFINITION

Let K be a subset of {0, 1}*, and let Cy: {0, 1}* — {0, 1} be the charac-
teristic function of K. By a recursive definition of Cx we mean a rule that
specifies Cx on a “basis set” A < {0, 1}*, and uniquely determines Cy on
the rest of {0, 1}* by a recurrence formula of the form

Cx(x) = F(x, Cx (f1 (x)), Ck (fz (x))a oo Cg (ft (x))),
xe{0,1}* — A .

Example 1. Let G be a game, as defined in Section 4, and let G be the
set of positions from which the player to move can force a win. Then G is
uniquely determined by

(1) fxeWthenxeG
(i) ifxe{0,1}* — Wthen xe G <> F, (x) ¢ G or F, (x) ¢ G.

Example 2. Let (<, A, G,, G,) be a self-reducibility structure for the
set K = {0, 1}*. Then K is determined uniquely by its intersection with A,
together with the recurrence

for x¢A,xeK < G,(x)eKu G, (x)eK.
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