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KeV/|/F =KeS’

where the set of strings K is complete in L with respect to an appropriate
reducibility. The hypothesis tells us that K is of the form S: . where S is a
language in ¥ and a bound on |h (x]) l is known. The proof that Ke S’
consists of giving an appropriate uniform algorithm to recognize K. The
function # (]x|) is not available to this uniform algorithm, but the al-
gorithm can exploit the fact that / (|x|) is consistent; i.e. for all strings y of
the same length as x, y e K <> A (Jx]) - y € S. The algorithm must somehow
filter through all the strings that might be 4 (]x|), and come up with the
right decision about x. The method of doing so depends on the structure
of K. The following section treats the case where K is a “game”. Section 5
considers the case where K is self-reducible. Finally, Section 6 deals with
the case where K has a simple recursive definition.

The main results of this paper are summarized in Figure 1. The rest of
the paper is devoted to supplying proofs and additional comments on these
main results. As promised in the introduction each result demonstrates that
a nonuniform hypothesis can have uniform consequences.

4. THE ROUND-ROBIN TOURNAMENT METHOD

Insight into the nature of a complexity class can often be gained by
identifying “hardest” problems in the class, i.e., problems that are complete
in the class with respect to an appropriate definition of reducibility. For
complexity classes defined in terms of time and space on alternating Turing
machines, these complete problems often take the form of games ([3, 4]).
In this section we explain and apply a proof technique called “the round-
robin tournament method”, which enables us to relate the nonuniform com-
plexity of a game to its uniform complexity. The specific complexity classes

we consider are PSPACE, P and EXPTIME (alias AP, ASPACE (log n)
and APSPACE, respectively ([3, 10])).

A game G is specified by
(i) aset W < {0, 1}* and

(i) a pair of length-preserving functions F, and F, each mapping
{0, 1}* — W into {0, 1}*.
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There is a straightforward interpretation of this structure as a game of
perfect information. Each string x € {0, 1}* is a possible position in the
game. Starting in an initial position, the players move alternately until a
position in W is reached. When a player is to move in position x, he may
move either to Fy (x) or to F, (x). When a position in W is reached, the
player to move is declared the winner. Note that all the positions arising
in a single play of the game have the same length.

We further require that our games be terminating; i.e.,

(iii) there is no sequence of moves leading from a position x back to itself.

Given a game G, let G denote the set of positions from which the first
player can force a win. The set G is specified recursively by

G =Wu{x|F,(x)¢G} u {x|F(x)¢G} .

This specification of G suggests the following method of selecting an
optimal move in any position x ¢ W: move to F, (x) if F, (x) ¢ G; other-
wise move to F; (x). If x € G, then this method of move selection will force
a win against any choice of moves by the opponent.

Let us now apply nonuniform complexity to games. Suppose G = S: A,
where S < {0, 1}* and /4 is a function from N into {0, 1}*. Then

xeG<eh(lx]):xeS .
The optimal move selection rule can be restated as follows:

in any position x ¢ W, move to F, (x) if 2 (|x|) - Fo (x) ¢ S, and other-
wise to F; (x).

We would like to consider situations in which G = S: A, but 4 (|x|) is
not known. If we guess that 4 (]x|) = w, then the following move selection
rule is indicated:

in any position x ¢ W,
if w-x¢S, then move to F (x),
else move to Fy (x).
Call this rule Strat (w).
Given strings w, w' and x, the predicate Win (w, w’, x) is defined as
follows: play out position x with the first player choosing his moves ac-

cording to Strat (w), and the second player using Strat (w'); Win (w, w', x)
is true if the first player wins.
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The following easy lemma is the basis of the round-robin tournament
proof technique.

LemMmA 4.1. Let G be a game, G, the associated set of strings, S a
subset of {0, 1}* and % a function from N to {0, 1}*, such that G = S:h.
Let w and w’ range over some set of strings 7'(x) which includes /4 (|x]).
Then the following are equivalent:

(1) xeG
(2) AwVY w Win (w, w, x)
(3) Vw' dw Win (w, w',x).

Proof. If xe G then the sentence V w'(Win (h(|x]), ', x) is true.
Hence (2) and (3) are true. If x ¢ G then, for all w, Win (w, h (|x]), x) is
false; hence (2) and (3) are false. ]

Lemma 4.1 suggests how to decide if x € G when % (|x|) is not known
but a set T (x) containing A (|x|) is known. Simply play a round-robin
tournament among the strategies associated with all the strings in 7 (x),
starting each game in position x. Then x € G if and only if some strategy
emerges undefeated. A subtle point is that the round-robin tournament
method determines whether x e G without necessarily identifying /4 (]x|).

To prepare for the applications of the round-robin tournament method,
we assert the existence of games with certain properties.

Fact 1. There is a game G such that the associated set G is complete
in EXPTIME with respect to many-one polynomial-time reducibility.
Moreover, the set W is in P, and the functions F, and F, are computable
in polynomial time.

Fact 2. There i1s a game G such that G is complete in PSPACE with
respect to many-one polynomial-time reducibility. For this game, the
set W is in P, and the functions F, and F, are computable in polynomial
time. Moreover, there is a polynomial p (-) such that, for every position x,
every play of G starting at x terminates within p (|x|) moves.

Fact 3. There is a game G such that G is complete in P with respect to
many-one logspace reducibility. For this game W is in logspace and the
functions F, and F,; are computable in logspace. Moreover, each position
x ¢ W consists of the concatenation of a fixed part x, with a variable part x,,
such that Fy (x) and F, (x) have the same fixed part as x does. Also, if

| Xy | = n, then |x,| = f(n), where f(n) is a nondecreasing function
which is < 3 log, n.
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Facts 1 and 3 may be derived by simple modifications and encodings of
games described in [3]. One of the modifications is to encode into each non-
terminal position a “clock” which is decremented at each move; this is
done to ensure termination. Similarly, a game of the type referred to in
Fact 2 can be derived from any of several PSPACE-complete games derived
in [17].

We are now ready to give the main theorems of this section.

THEOREM 4.2. If PSPACE < P/poly then PSPACE = Y 5 n []}.
Proof. Since ) 5 n [[5 = PSPACE, it suffices to prove

PSPACE < P/poly = PSPACE < Zé’ N H§ X
For this it is sufficient to show
GeP/[poly = GeYinT[?

where G is the PSPACE-complete set described in Fact 2. Suppose
G € P/poly. Then there is a set S € P, a positive constant k, and a function
h:N - {0,1}* such that |h(n)| <k +n*, so that G = S:h By
lemma 4.1,

xeG < dwV w Win(w, w,Xx) .

Here each of w and w’ ranges over all strings of length <k + l X I". Since
F, and F; are polynomial-time computable, W is polynomial-time recog-
nizable and play from x terminates within p (|x|) moves, the predicate
Win (w, ', x) is computable in polynomial-time. Thus Ge ) }. Similarly,
since

xeG < Vw dw Win(w, w,Xx) .

it follows that Ge [] 7. [

THEOREM 4.3. PSPACE < PJlog <> PSPACE = P.

| Proof. Since P < PSPACE, and since PSPACE = P implies
~ PSPACE < Pllog, it suffices to prove PSPACE < Pllog == PSPACE < P.
~ For this it suffices to show Ge P/log = G € P, where G is the PSPACE-
complete set described in Fact 2. Again, the round-robin tournament
 method yields the proof. Suppose G e P/log. Then there is a set Se P, a
| positive constant k, and a function 4: N — {0, 1}* such that & (n) <k log, n
so that G = S:h. Then xe G < dw Vw’ Win (w, w', x), where w and
| W’ range over the 0 (|x|)* strings of length < k log, I X | Since Win (w, w', X)
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can be computed in polynomial time, we can decide in polynomial time
whether xe G by actually enumerating the polynomially-many pairs
(w, w"), computing Win (w, w', x) for each pair, and determining whether
some strategy Strat (w) indeed wins from x against all the competing
strategies. Thus G € P. N

THEOREM 4.4. EXPTIME < PSPACE|poly <> EXPTIME = PSPACE.

Proof. The proof is almost a carbon copy of the proof of theorem 4.3.
It suffices to show that

G e PSPACE | poly = Ge PSPACE ,

where G is the game referred to in Fact 1. Suppose G e PSPACE/poly.
Then G = S: h, where S € PSPACE and [ h (|x]) | <k + | X [", for some k.
Then

xeG < dAwVw Win (w, w',Xx)

where w and w’ range over all strings of length <k + |x I". Since W, F,
and F; are computable in polynomial space, it suffices to play out the
game from x, alternately using Strat (w) and Strat (w') for move selection;
this simulation requires repeated calls on the polynomial-space recognizer
for S. Thus the truth of the formula

dwVw' Win (w, w', x)

can be decided in polynomial space by simply running througb the pairs

(w, w'), and evaluating Win (w, w’, x) for each pair. It follows that
G e PSPACE. B

The last in our clone of four theorems proved by the round-robin
tournament method is the following.

THEOREM 4.5. For any positive integer /,
P = DSPACE ((logn))/log n <+ P < DSPACE ((log n)").
Proof. It suffices to prove
G € DSPACE ((log n)'(/log) = G € DSPACE ((log n)"),
where G is the set described in Fact 3. Suppose

G € DSPACE ((log n))}/log .
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Then G = S:/ where S e DSPACE ((log n)") and l h (x) I < k log, Ix l,
for some k. Then xe G < dw Vw' Win (w, w', x), where w and w’ range
over all strings of length < k log, | x |. Clearly space 0 ((log n)") suffices to
deterministically enumerate all pairs (w, w') and, for each, to play out
Strat (w) against Strat (w") from position x, with the help of repeated calls
on a deterministic space (log n)' recognizer for S. It follows that

G € DSPACE ((log n)") .

5. THE SELF-REDUCIBILITY METHOD

The “hardest” problems in complexity classes defined by bounds on
nondeterministic time or space often possess a structural property called
self-reducibility. Various formal definitions of self-reducibility can be found
in the literature ([12, 18, 20]). Here is one version of the idea. Let K be a
subset of {0, 1}*. A self-reducibility structure for K is specified by a partial
ordering < of {0, 1}* such that

(i) A, the set of minimal elements in <, is recursive and

(i) A n K is recursive

together with a pair of computable functions G, and G; mapping
{0, 1}* — A into {0, 1}*, such that, for all xe {0, 1}* — A,

(iii) Go(x) <x,G;(x) <x, [Ge(X) [ =[G (X) | = [x]
and xeK < Gy(x)eK or G;(x)ekK.

If K has a self-reducibility structure, then K is called self-reducible.

To illustrate the concept, we give self-reducibility structures for two
important examples. The first example is the satisfiability problem for
propositional formulas, encoded so that the following property holds: Let
F(t,t,, ..., t,) be a formula in which the variables ¢, ¢4, ..., #, appear, and
let F(a,t,, ..., t,) be the same formula with the Boolean constant a sub-
stituted for ¢,. Let < F(ty,1¢,, ..., t,) > and < F(a, t,,...,t,) > denote
the encodings of these two formulas as strings. Then

| < Fty, th o t) > | = | < Fla 1y s 1) > |

Let SAT denote this version of the satisfiability problem. The set SAT has
| a self-reducibility structure in which A is the set of propositional formulas
; containing no variables,
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