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194 RICHARD M. KARP AND RICHARD J. LIPTON

Here UGAP is the undirected maze problem. As another example, we have
Adleman’s [1] result that R (the set of languages accepted in polynomial
time by randomizing Turing machines) has small circuits, which can be
restated as

R is a subset of P/poly .

It may be interesting that both these results use the probabilistic method of
Erdos to prove the existence of the required advice bits.

3. SUMMARY OF MAIN RESULTS

We will discuss a variety of complexity classes. These include the basic
time and space classes DTIME (T (n)), DSPACE (S (n)) and NSPACE (S (n))
and the classes:

p = the set of languages accepted in deterministic polynomial
time,

R = the set of languages accepted in polynomial time by ran-
domizing Turing machines [1],

NP = the set of languages accepted in nondeterministic polynomial
time,

PSPACE = the set of languages accepted in polynomial space,
EXPTIME = u DTIME (2% .

i>0

| Also important is the polynomial-time hierarchy of Meyer and Stock-
| meyer [19]. Fori > 1 we letY ? (respectively [ [F) denote those languages
accepted in polynomial time by Turing machines that make i alternations |
 starting from an existential (respectively universal) state. Note that ‘

I

. NP =) ?and co- NP =]]{. Finally, note that P, PSPACE and EXPTIME
 can be viewed as complexity classes associated with alternating Turing |
machines; specifically, P = ASPACE (logn), PSPACE = AP and
- EXPTIME = APSPACE [3, 10].

| Many of the following theorems take the form

LcS|/F=LcS

. g e s
N it

where L and S’ are uniform complexity classes and V/F is a nonuniform
' complexity class. The proof usually consists of showing that

e
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KeV/|/F =KeS’

where the set of strings K is complete in L with respect to an appropriate
reducibility. The hypothesis tells us that K is of the form S: . where S is a
language in ¥ and a bound on |h (x]) l is known. The proof that Ke S’
consists of giving an appropriate uniform algorithm to recognize K. The
function # (]x|) is not available to this uniform algorithm, but the al-
gorithm can exploit the fact that / (|x|) is consistent; i.e. for all strings y of
the same length as x, y e K <> A (Jx]) - y € S. The algorithm must somehow
filter through all the strings that might be 4 (]x|), and come up with the
right decision about x. The method of doing so depends on the structure
of K. The following section treats the case where K is a “game”. Section 5
considers the case where K is self-reducible. Finally, Section 6 deals with
the case where K has a simple recursive definition.

The main results of this paper are summarized in Figure 1. The rest of
the paper is devoted to supplying proofs and additional comments on these
main results. As promised in the introduction each result demonstrates that
a nonuniform hypothesis can have uniform consequences.

4. THE ROUND-ROBIN TOURNAMENT METHOD

Insight into the nature of a complexity class can often be gained by
identifying “hardest” problems in the class, i.e., problems that are complete
in the class with respect to an appropriate definition of reducibility. For
complexity classes defined in terms of time and space on alternating Turing
machines, these complete problems often take the form of games ([3, 4]).
In this section we explain and apply a proof technique called “the round-
robin tournament method”, which enables us to relate the nonuniform com-
plexity of a game to its uniform complexity. The specific complexity classes

we consider are PSPACE, P and EXPTIME (alias AP, ASPACE (log n)
and APSPACE, respectively ([3, 10])).

A game G is specified by
(i) aset W < {0, 1}* and

(i) a pair of length-preserving functions F, and F, each mapping
{0, 1}* — W into {0, 1}*.
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