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always" : clearly there are sets with small circuits that are not even recursive.
The very trivial nature of such "counter-examples" suggests, however, that
a more careful investigation may still yield insight. Indeed, as we will show,

if one considers not arbitrary sets but rather "well behaved ones" it is

possible to achieve our goal. For example, we will show that if SAT has

small circuits, then the Meyer-Stockmeyer [19] hierarchy collapses.
Thus, here is an example of a nonuniform upper bound that has

uniform consequences. The proof, of course, will depend on the fact that SAT
is not a "pathological" set, but is rather well behaved.

Our results also serve to rule out some plausible speculations about the

complexity of problems in NP. For example, one might imagine that
P # NP, but SAT is tractable in the following sense: for every I there is a

very short program that runs in time n2 and correctly treats all instances of
length /. Theorem 5.2 shows that, if "very short" means "of length c log 1",
then this speculation is false.

Finally, we mention that the proof techniques presented here were put
to use by S. Mahaney in his proof that P # NP implies the nonexistence

of sparse AP-complete problems [11], and by S. A. Cook in his proof that

P ç HARDWARE (log n) => P c DSPACE (log n log log n)

[5].

2. Nonuniform Complexity Measures

In this section we will define our basic notion of nonuniform complexity
and relate it to circuit complexity.

Let S be a subset of {0, 1}*. Let h : N -» {0, 1}* where N is the set of
natural numbers. Define S : h {x\h (|x|) • x e S}. Next, let V be any
collection of subsets of {0, 1}* and let F be any collection of functions
from N to N. The key definition is

VIF {S: h I S s V and hsF}

Intuitively, V/F is the collection of subsets of {0, 1}* that can be accepted

by V with an amount of advice bounded by F. The idea behind this
definition is foreshadowed in papers by Pippenger [14] and Plaisted [15].

We are mainly interested in poly, the collection of all polynomially-
bounded functions, and log, the collection of all functions that are
0 (log n). Indeed, many of our results will concern the classes Pjpoly and

P/log.
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If / is a function, V/f is synonymous with V/{/}. Some preliminary
facts are:

(1) for all F, F/0 F;

(2) any subset of {0, 1}* is in P/2n\

(3) if/is infinitely often nonzero, then P/f contains nonrecursive sets;

(4) if g (n) </(/)< 2" (i.o.) then P/f Ç P/g.

The class P/poly can be characterized in terms of classic circuit
complexity. An n-input m-gate Boolean circuit C is a function

satisfying: if C (i) < B,j\ k > then j < i and k < i. The interpretation
of C is that gate i uses the truth table B on inputs j and k to produce its

output. If 1 <y < n then input j is simply the input variable otherwise,

input j is the output of gate j. In the usual way we define what it means for
a circuit C to realize the Boolean function /. Then let L (/) denote the

minimum number of gates in a Boolean circuit realizing the Boolean
function /. Next, as in the introduction, if S is a subset of {0, 1}*, then
S„ : {0, 1}" —> {0, 1} is defined by

Finally, recall that a set S has small circuits if L (SJ is bounded by a
polynomial in n.

The following simple theorem, which is given in [14], characterizes
PIpoly.

Theorem 2.1.LetS be a subset of {0, 1}*. Then the following are
equivalent.

(1) S has small circuits.

(2) S is in P/poly.

Another way we can gain insight into our classes V/F is to use them to
restate other known results. For example, the result in [2] that there are
short universal traversal sequences for undirected graphs can be restated as

C: {n + 1,..., n + m) -» {0, l}4 x {1, n + m}2

1, if x1 x2 xn e S

0, otherwise

UGAP is in DSPACE (log n)/poly
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Here UGAP is the undirected maze problem. As another example, we have

Adleman's [1] result that R (the set of languages accepted in polynomial
time by randomizing Turing machines) has small circuits, which can be

restated as

R is a subset of P/poly

It may be interesting that both these results use the probabilistic method of
Erdös to prove the existence of the required advice bits.

3. Summary of Main Results

We will discuss a variety of complexity classes. These include the basic
time and space classes DTIME (T (n)), DSPACE (S (n)) and NSPACE (S (n))
and the classes:

P the set of languages accepted in deterministic polynomial
time,

R the set of languages accepted in polynomial time by ran¬

domizing Turing machines [1],

NP the set of languages accepted in nondeterministic polynomial
time,

PSPACE the set of languages accepted in polynomial space,

EXPTIME u DTIME (2ni)
i >o

Also important is the polynomial-time hierarchy of Meyer and Stock-

meyer [19]. For i > 1 we let £ ï (respectively fjf) denote those languages

accepted in polynomial time by Turing machines that make i alternations

starting from an existential (respectively universal) state. Note that
NP £? and co- NP f. Finally, note that P, PSPACE and EXPTIME
can be viewed as complexity classes associated with alternating Turing
machines; specifically, P ASPACE (log n), PSPACE AP and

EXPTIME APSPACE [3, 10].

Many of the following theorems take the form

L ç S IF => Le S'

where L and S' are uniform complexity classes and V/F is a nonuniform
complexity class. The proof usually consists of showing that
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