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192 RICHARD M. KARP AND RICHARD J. LIPTON

always”: clearly there are sets with small circuits that are not even recursive.
The very trivial nature of such “counter-examples” suggests, however, that
a more careful investigation may still yield insight. Indeed, as we will show,
if one considers not arbitrary sets but rather “well behaved ones” it is
possible to achieve our goal. For example, we will show that if SAT has
small circuits, then the Meyer-Stockmeyer [19] hierarchy collapses.

Thus, here is an example of a nonuniform upper bound that has uni-
form consequences. The proof, of course, will depend on the fact that SAT
is not a “pathological” set, but is rather well behaved.

Our results also serve to rule out some plausible speculations about the
complexity of problems in NP. For example, one might imagine that
P # NP, but SAT is tractable in the following sense: for every / there is a
very short program that runs in time #n* and correctly treats all instances of
length /. Theorem 5.2 shows that, if “very short” means “of length c log 17,
then this speculation is false.

Finally, we mention that the proof techniques presented here were put
to use by S. Mahaney in his proof that P # NP implies the nonexistence
of sparse NP-complete problems [11], and by S. A. Cook in his proof that

P < HARDWARE (logn) == P = DSPACE (log n log log n)
[5].

2. NONUNIFORM COMPLEXITY MEASURES

In this section we will define our basic notion of nonuniform complexity
and relate it to circuit complexity.

Let S be a subset of {0, 1}*. Let ~: N — {0, 1}* where N is the set of
natural numbers. Define S: /2 = {x l h(|x]) - x € S}. Next, let V' be any
collection of subsets of {0, 1}* and let F be any collection of functions
from N to N. The key definition is

VIF ={S:h|SeV and heF}

Intuitively, V/F is the collection of subsets of {0, 1}* that can be accepted
by V with an amount of advice bounded by F. The idea behind this defi-

nition is foreshadowed in papers by Pippenger [14] and Plaisted [15].

We are mainly interested in poly, the collection of all polynomially-

bounded functions, and log, the collection of all functions that are

0 (log n). Indeed, many of our results will concern the classes P/poly and
| Pllog.
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If fis a function, V/f is synonymous with V/{f}. Some preliminary
facts are:

(1) forall V, V/O = V;

(2) any subset of {0, 1}* is in P/2";

(3) if fis infinitely often nonzero, then P/f contains nonrecursive sets;
4) ifg () < f(n) <2"(.0.) then P/f = P/g.

The class P/poly can be characterized in terms of classic circuit com-
plexity. An n-input m-gate Boolean circuit C is a function

C:{in+1,.,n+m}->{0,1}*x{1,.,n+m)?

satisfying: if C (i) = < B,j, k > thenj < i and k < i. The interpretation
of C is that gate i uses the truth table B on inputs j and k to produce its
output. If 1 <j <n then input j is simply the input variable x;; otherwise,
input j is the output of gate j. In the usual way we define what it means for
a circuit C to realize the Boolean function f. Then let L (/) denote the
minimum number of gates in a Boolean circuit realizing the Boolean
function f. Next, as in the introduction, if S is a subset of {0, 1}*, then
S,: {0, 1}" —» {0, 1} is defined by

1, ifx;x,...x,€8

S, (X1,X5, 000y X,) = {

0, otherwise

Finally, recall that a set S has small circuits if L (S,) is bounded by a poly-
nomial in 7.

The following simple theorem, which is given in [14], characterizes
P/poly.

THEOREM 2.1. Let S be a subset of {0, 1}*. Then the following are
equivalent.

(1) S has small circuits.

(2) Sisin P/poly.

Another way we can gain insight into our classes V/F is to use them to
restate other known results. For example, the result in [2] that there are
short universal traversal sequences for undirected graphs can be restated as

UGAP is in DSPACE (log n)/poly .
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Here UGAP is the undirected maze problem. As another example, we have
Adleman’s [1] result that R (the set of languages accepted in polynomial
time by randomizing Turing machines) has small circuits, which can be
restated as

R is a subset of P/poly .

It may be interesting that both these results use the probabilistic method of
Erdos to prove the existence of the required advice bits.

3. SUMMARY OF MAIN RESULTS

We will discuss a variety of complexity classes. These include the basic
time and space classes DTIME (T (n)), DSPACE (S (n)) and NSPACE (S (n))
and the classes:

p = the set of languages accepted in deterministic polynomial
time,

R = the set of languages accepted in polynomial time by ran-
domizing Turing machines [1],

NP = the set of languages accepted in nondeterministic polynomial
time,

PSPACE = the set of languages accepted in polynomial space,
EXPTIME = u DTIME (2% .

i>0

| Also important is the polynomial-time hierarchy of Meyer and Stock-
| meyer [19]. Fori > 1 we letY ? (respectively [ [F) denote those languages
accepted in polynomial time by Turing machines that make i alternations |
 starting from an existential (respectively universal) state. Note that ‘

I

. NP =) ?and co- NP =]]{. Finally, note that P, PSPACE and EXPTIME
 can be viewed as complexity classes associated with alternating Turing |
machines; specifically, P = ASPACE (logn), PSPACE = AP and
- EXPTIME = APSPACE [3, 10].

| Many of the following theorems take the form

LcS|/F=LcS

. g e s
N it

where L and S’ are uniform complexity classes and V/F is a nonuniform
' complexity class. The proof usually consists of showing that
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