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TURING MACHINES THAT TAKE ADVICE *

by Richard M. Karp ') and Richard J. LipTON ?)

1. INTRODUCTION

Turing machines, random access machines and most of the other
abstract computing devices studied in computational complexity theory
represent uniform algorithms, which can receive arbitrarily long strings of
symbols as input. The time and space needed by such devices to recognize
a set S < {0, 1}* are examples of uniform measures of the complexity of S.
In contrast, Boolean circuits, as well as certain types of decision trees and
straight-line programs, compute functions with a finite domain. To study
the complexity of recognizing the set S = {0, 1}* using such computational
devices, we can view S as determining an infinite sequence of finite functions.
For example, we can introduce, for each n, the Boolean function
S,: {0, 1}* - {0, 1} defined as follows: S, (x4, X, ..., X,) = 1 if and only
if x; x5 ... x,eS. If L (S,) denotes the minimum size of a Boolean circuit
realizing S,, then the growth rate of L (S,) as n — oo is a measure of the
nonuniform complexity of S.

Let us say that S has small circuits if L (S,) 1s bounded by a polynomial
in n. It is well known that every set in P has small circuits [16]. Adleman [1]
has recently proved the stronger result that every set accepted in polynomial
time by a randomizing Turing machine has small circuits. Both these results
are typical of the known relationships between uniform and nonuniform
complexity bounds. They obtain a nonuniform upper bound as a conse-
quence of a uniform upper bound.

The central theme here is an attempt to explore the converse direction.
That is, we wish to understand when nonuniform upper bounds can be
used to obtain uniform upper bounds. The immediate answer is “not

* T _his a}‘ticle has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Ziirich, February 1980. Monographie de L’En-
seignement Mathématique N° 30, Genéve 1982.
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always”: clearly there are sets with small circuits that are not even recursive.
The very trivial nature of such “counter-examples” suggests, however, that
a more careful investigation may still yield insight. Indeed, as we will show,
if one considers not arbitrary sets but rather “well behaved ones” it is
possible to achieve our goal. For example, we will show that if SAT has
small circuits, then the Meyer-Stockmeyer [19] hierarchy collapses.

Thus, here is an example of a nonuniform upper bound that has uni-
form consequences. The proof, of course, will depend on the fact that SAT
is not a “pathological” set, but is rather well behaved.

Our results also serve to rule out some plausible speculations about the
complexity of problems in NP. For example, one might imagine that
P # NP, but SAT is tractable in the following sense: for every / there is a
very short program that runs in time #n* and correctly treats all instances of
length /. Theorem 5.2 shows that, if “very short” means “of length c log 17,
then this speculation is false.

Finally, we mention that the proof techniques presented here were put
to use by S. Mahaney in his proof that P # NP implies the nonexistence
of sparse NP-complete problems [11], and by S. A. Cook in his proof that

P < HARDWARE (logn) == P = DSPACE (log n log log n)
[5].

2. NONUNIFORM COMPLEXITY MEASURES

In this section we will define our basic notion of nonuniform complexity
and relate it to circuit complexity.

Let S be a subset of {0, 1}*. Let ~: N — {0, 1}* where N is the set of
natural numbers. Define S: /2 = {x l h(|x]) - x € S}. Next, let V' be any
collection of subsets of {0, 1}* and let F be any collection of functions
from N to N. The key definition is

VIF ={S:h|SeV and heF}

Intuitively, V/F is the collection of subsets of {0, 1}* that can be accepted
by V with an amount of advice bounded by F. The idea behind this defi-

nition is foreshadowed in papers by Pippenger [14] and Plaisted [15].

We are mainly interested in poly, the collection of all polynomially-

bounded functions, and log, the collection of all functions that are

0 (log n). Indeed, many of our results will concern the classes P/poly and
| Pllog.
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