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TURING MACHINES THAT TAKE ADVICE *

by Richard M. Karp ') and Richard J. LipTON ?)

1. INTRODUCTION

Turing machines, random access machines and most of the other
abstract computing devices studied in computational complexity theory
represent uniform algorithms, which can receive arbitrarily long strings of
symbols as input. The time and space needed by such devices to recognize
a set S < {0, 1}* are examples of uniform measures of the complexity of S.
In contrast, Boolean circuits, as well as certain types of decision trees and
straight-line programs, compute functions with a finite domain. To study
the complexity of recognizing the set S = {0, 1}* using such computational
devices, we can view S as determining an infinite sequence of finite functions.
For example, we can introduce, for each n, the Boolean function
S,: {0, 1}* - {0, 1} defined as follows: S, (x4, X, ..., X,) = 1 if and only
if x; x5 ... x,eS. If L (S,) denotes the minimum size of a Boolean circuit
realizing S,, then the growth rate of L (S,) as n — oo is a measure of the
nonuniform complexity of S.

Let us say that S has small circuits if L (S,) 1s bounded by a polynomial
in n. It is well known that every set in P has small circuits [16]. Adleman [1]
has recently proved the stronger result that every set accepted in polynomial
time by a randomizing Turing machine has small circuits. Both these results
are typical of the known relationships between uniform and nonuniform
complexity bounds. They obtain a nonuniform upper bound as a conse-
quence of a uniform upper bound.

The central theme here is an attempt to explore the converse direction.
That is, we wish to understand when nonuniform upper bounds can be
used to obtain uniform upper bounds. The immediate answer is “not

* T _his a}‘ticle has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Ziirich, February 1980. Monographie de L’En-
seignement Mathématique N° 30, Genéve 1982.
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20409, An earlier version of this paper was presented at the Twelfth Annual ACM
Symposium on Theory of Computing, 1980 [9].
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always”: clearly there are sets with small circuits that are not even recursive.
The very trivial nature of such “counter-examples” suggests, however, that
a more careful investigation may still yield insight. Indeed, as we will show,
if one considers not arbitrary sets but rather “well behaved ones” it is
possible to achieve our goal. For example, we will show that if SAT has
small circuits, then the Meyer-Stockmeyer [19] hierarchy collapses.

Thus, here is an example of a nonuniform upper bound that has uni-
form consequences. The proof, of course, will depend on the fact that SAT
is not a “pathological” set, but is rather well behaved.

Our results also serve to rule out some plausible speculations about the
complexity of problems in NP. For example, one might imagine that
P # NP, but SAT is tractable in the following sense: for every / there is a
very short program that runs in time #n* and correctly treats all instances of
length /. Theorem 5.2 shows that, if “very short” means “of length c log 17,
then this speculation is false.

Finally, we mention that the proof techniques presented here were put
to use by S. Mahaney in his proof that P # NP implies the nonexistence
of sparse NP-complete problems [11], and by S. A. Cook in his proof that

P < HARDWARE (logn) == P = DSPACE (log n log log n)
[5].

2. NONUNIFORM COMPLEXITY MEASURES

In this section we will define our basic notion of nonuniform complexity
and relate it to circuit complexity.

Let S be a subset of {0, 1}*. Let ~: N — {0, 1}* where N is the set of
natural numbers. Define S: /2 = {x l h(|x]) - x € S}. Next, let V' be any
collection of subsets of {0, 1}* and let F be any collection of functions
from N to N. The key definition is

VIF ={S:h|SeV and heF}

Intuitively, V/F is the collection of subsets of {0, 1}* that can be accepted
by V with an amount of advice bounded by F. The idea behind this defi-

nition is foreshadowed in papers by Pippenger [14] and Plaisted [15].

We are mainly interested in poly, the collection of all polynomially-

bounded functions, and log, the collection of all functions that are

0 (log n). Indeed, many of our results will concern the classes P/poly and
| Pllog.

4
/
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If fis a function, V/f is synonymous with V/{f}. Some preliminary
facts are:

(1) forall V, V/O = V;

(2) any subset of {0, 1}* is in P/2";

(3) if fis infinitely often nonzero, then P/f contains nonrecursive sets;
4) ifg () < f(n) <2"(.0.) then P/f = P/g.

The class P/poly can be characterized in terms of classic circuit com-
plexity. An n-input m-gate Boolean circuit C is a function

C:{in+1,.,n+m}->{0,1}*x{1,.,n+m)?

satisfying: if C (i) = < B,j, k > thenj < i and k < i. The interpretation
of C is that gate i uses the truth table B on inputs j and k to produce its
output. If 1 <j <n then input j is simply the input variable x;; otherwise,
input j is the output of gate j. In the usual way we define what it means for
a circuit C to realize the Boolean function f. Then let L (/) denote the
minimum number of gates in a Boolean circuit realizing the Boolean
function f. Next, as in the introduction, if S is a subset of {0, 1}*, then
S,: {0, 1}" —» {0, 1} is defined by

1, ifx;x,...x,€8

S, (X1,X5, 000y X,) = {

0, otherwise

Finally, recall that a set S has small circuits if L (S,) is bounded by a poly-
nomial in 7.

The following simple theorem, which is given in [14], characterizes
P/poly.

THEOREM 2.1. Let S be a subset of {0, 1}*. Then the following are
equivalent.

(1) S has small circuits.

(2) Sisin P/poly.

Another way we can gain insight into our classes V/F is to use them to
restate other known results. For example, the result in [2] that there are
short universal traversal sequences for undirected graphs can be restated as

UGAP is in DSPACE (log n)/poly .
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Here UGAP is the undirected maze problem. As another example, we have
Adleman’s [1] result that R (the set of languages accepted in polynomial
time by randomizing Turing machines) has small circuits, which can be
restated as

R is a subset of P/poly .

It may be interesting that both these results use the probabilistic method of
Erdos to prove the existence of the required advice bits.

3. SUMMARY OF MAIN RESULTS

We will discuss a variety of complexity classes. These include the basic
time and space classes DTIME (T (n)), DSPACE (S (n)) and NSPACE (S (n))
and the classes:

p = the set of languages accepted in deterministic polynomial
time,

R = the set of languages accepted in polynomial time by ran-
domizing Turing machines [1],

NP = the set of languages accepted in nondeterministic polynomial
time,

PSPACE = the set of languages accepted in polynomial space,
EXPTIME = u DTIME (2% .

i>0

| Also important is the polynomial-time hierarchy of Meyer and Stock-
| meyer [19]. Fori > 1 we letY ? (respectively [ [F) denote those languages
accepted in polynomial time by Turing machines that make i alternations |
 starting from an existential (respectively universal) state. Note that ‘

I

. NP =) ?and co- NP =]]{. Finally, note that P, PSPACE and EXPTIME
 can be viewed as complexity classes associated with alternating Turing |
machines; specifically, P = ASPACE (logn), PSPACE = AP and
- EXPTIME = APSPACE [3, 10].

| Many of the following theorems take the form

LcS|/F=LcS

. g e s
N it

where L and S’ are uniform complexity classes and V/F is a nonuniform
' complexity class. The proof usually consists of showing that

e
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KeV/|/F =KeS’

where the set of strings K is complete in L with respect to an appropriate
reducibility. The hypothesis tells us that K is of the form S: . where S is a
language in ¥ and a bound on |h (x]) l is known. The proof that Ke S’
consists of giving an appropriate uniform algorithm to recognize K. The
function # (]x|) is not available to this uniform algorithm, but the al-
gorithm can exploit the fact that / (|x|) is consistent; i.e. for all strings y of
the same length as x, y e K <> A (Jx]) - y € S. The algorithm must somehow
filter through all the strings that might be 4 (]x|), and come up with the
right decision about x. The method of doing so depends on the structure
of K. The following section treats the case where K is a “game”. Section 5
considers the case where K is self-reducible. Finally, Section 6 deals with
the case where K has a simple recursive definition.

The main results of this paper are summarized in Figure 1. The rest of
the paper is devoted to supplying proofs and additional comments on these
main results. As promised in the introduction each result demonstrates that
a nonuniform hypothesis can have uniform consequences.

4. THE ROUND-ROBIN TOURNAMENT METHOD

Insight into the nature of a complexity class can often be gained by
identifying “hardest” problems in the class, i.e., problems that are complete
in the class with respect to an appropriate definition of reducibility. For
complexity classes defined in terms of time and space on alternating Turing
machines, these complete problems often take the form of games ([3, 4]).
In this section we explain and apply a proof technique called “the round-
robin tournament method”, which enables us to relate the nonuniform com-
plexity of a game to its uniform complexity. The specific complexity classes

we consider are PSPACE, P and EXPTIME (alias AP, ASPACE (log n)
and APSPACE, respectively ([3, 10])).

A game G is specified by
(i) aset W < {0, 1}* and

(i) a pair of length-preserving functions F, and F, each mapping
{0, 1}* — W into {0, 1}*.
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There is a straightforward interpretation of this structure as a game of
perfect information. Each string x € {0, 1}* is a possible position in the
game. Starting in an initial position, the players move alternately until a
position in W is reached. When a player is to move in position x, he may
move either to Fy (x) or to F, (x). When a position in W is reached, the
player to move is declared the winner. Note that all the positions arising
in a single play of the game have the same length.

We further require that our games be terminating; i.e.,

(iii) there is no sequence of moves leading from a position x back to itself.

Given a game G, let G denote the set of positions from which the first
player can force a win. The set G is specified recursively by

G =Wu{x|F,(x)¢G} u {x|F(x)¢G} .

This specification of G suggests the following method of selecting an
optimal move in any position x ¢ W: move to F, (x) if F, (x) ¢ G; other-
wise move to F; (x). If x € G, then this method of move selection will force
a win against any choice of moves by the opponent.

Let us now apply nonuniform complexity to games. Suppose G = S: A,
where S < {0, 1}* and /4 is a function from N into {0, 1}*. Then

xeG<eh(lx]):xeS .
The optimal move selection rule can be restated as follows:

in any position x ¢ W, move to F, (x) if 2 (|x|) - Fo (x) ¢ S, and other-
wise to F; (x).

We would like to consider situations in which G = S: A, but 4 (|x|) is
not known. If we guess that 4 (]x|) = w, then the following move selection
rule is indicated:

in any position x ¢ W,
if w-x¢S, then move to F (x),
else move to Fy (x).
Call this rule Strat (w).
Given strings w, w' and x, the predicate Win (w, w’, x) is defined as
follows: play out position x with the first player choosing his moves ac-

cording to Strat (w), and the second player using Strat (w'); Win (w, w', x)
is true if the first player wins.
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The following easy lemma is the basis of the round-robin tournament
proof technique.

LemMmA 4.1. Let G be a game, G, the associated set of strings, S a
subset of {0, 1}* and % a function from N to {0, 1}*, such that G = S:h.
Let w and w’ range over some set of strings 7'(x) which includes /4 (|x]).
Then the following are equivalent:

(1) xeG
(2) AwVY w Win (w, w, x)
(3) Vw' dw Win (w, w',x).

Proof. If xe G then the sentence V w'(Win (h(|x]), ', x) is true.
Hence (2) and (3) are true. If x ¢ G then, for all w, Win (w, h (|x]), x) is
false; hence (2) and (3) are false. ]

Lemma 4.1 suggests how to decide if x € G when % (|x|) is not known
but a set T (x) containing A (|x|) is known. Simply play a round-robin
tournament among the strategies associated with all the strings in 7 (x),
starting each game in position x. Then x € G if and only if some strategy
emerges undefeated. A subtle point is that the round-robin tournament
method determines whether x e G without necessarily identifying /4 (]x|).

To prepare for the applications of the round-robin tournament method,
we assert the existence of games with certain properties.

Fact 1. There is a game G such that the associated set G is complete
in EXPTIME with respect to many-one polynomial-time reducibility.
Moreover, the set W is in P, and the functions F, and F, are computable
in polynomial time.

Fact 2. There i1s a game G such that G is complete in PSPACE with
respect to many-one polynomial-time reducibility. For this game, the
set W is in P, and the functions F, and F, are computable in polynomial
time. Moreover, there is a polynomial p (-) such that, for every position x,
every play of G starting at x terminates within p (|x|) moves.

Fact 3. There is a game G such that G is complete in P with respect to
many-one logspace reducibility. For this game W is in logspace and the
functions F, and F,; are computable in logspace. Moreover, each position
x ¢ W consists of the concatenation of a fixed part x, with a variable part x,,
such that Fy (x) and F, (x) have the same fixed part as x does. Also, if

| Xy | = n, then |x,| = f(n), where f(n) is a nondecreasing function
which is < 3 log, n.
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Facts 1 and 3 may be derived by simple modifications and encodings of
games described in [3]. One of the modifications is to encode into each non-
terminal position a “clock” which is decremented at each move; this is
done to ensure termination. Similarly, a game of the type referred to in
Fact 2 can be derived from any of several PSPACE-complete games derived
in [17].

We are now ready to give the main theorems of this section.

THEOREM 4.2. If PSPACE < P/poly then PSPACE = Y 5 n []}.
Proof. Since ) 5 n [[5 = PSPACE, it suffices to prove

PSPACE < P/poly = PSPACE < Zé’ N H§ X
For this it is sufficient to show
GeP/[poly = GeYinT[?

where G is the PSPACE-complete set described in Fact 2. Suppose
G € P/poly. Then there is a set S € P, a positive constant k, and a function
h:N - {0,1}* such that |h(n)| <k +n*, so that G = S:h By
lemma 4.1,

xeG < dwV w Win(w, w,Xx) .

Here each of w and w’ ranges over all strings of length <k + l X I". Since
F, and F; are polynomial-time computable, W is polynomial-time recog-
nizable and play from x terminates within p (|x|) moves, the predicate
Win (w, ', x) is computable in polynomial-time. Thus Ge ) }. Similarly,
since

xeG < Vw dw Win(w, w,Xx) .

it follows that Ge [] 7. [

THEOREM 4.3. PSPACE < PJlog <> PSPACE = P.

| Proof. Since P < PSPACE, and since PSPACE = P implies
~ PSPACE < Pllog, it suffices to prove PSPACE < Pllog == PSPACE < P.
~ For this it suffices to show Ge P/log = G € P, where G is the PSPACE-
complete set described in Fact 2. Again, the round-robin tournament
 method yields the proof. Suppose G e P/log. Then there is a set Se P, a
| positive constant k, and a function 4: N — {0, 1}* such that & (n) <k log, n
so that G = S:h. Then xe G < dw Vw’ Win (w, w', x), where w and
| W’ range over the 0 (|x|)* strings of length < k log, I X | Since Win (w, w', X)
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can be computed in polynomial time, we can decide in polynomial time
whether xe G by actually enumerating the polynomially-many pairs
(w, w"), computing Win (w, w', x) for each pair, and determining whether
some strategy Strat (w) indeed wins from x against all the competing
strategies. Thus G € P. N

THEOREM 4.4. EXPTIME < PSPACE|poly <> EXPTIME = PSPACE.

Proof. The proof is almost a carbon copy of the proof of theorem 4.3.
It suffices to show that

G e PSPACE | poly = Ge PSPACE ,

where G is the game referred to in Fact 1. Suppose G e PSPACE/poly.
Then G = S: h, where S € PSPACE and [ h (|x]) | <k + | X [", for some k.
Then

xeG < dAwVw Win (w, w',Xx)

where w and w’ range over all strings of length <k + |x I". Since W, F,
and F; are computable in polynomial space, it suffices to play out the
game from x, alternately using Strat (w) and Strat (w') for move selection;
this simulation requires repeated calls on the polynomial-space recognizer
for S. Thus the truth of the formula

dwVw' Win (w, w', x)

can be decided in polynomial space by simply running througb the pairs

(w, w'), and evaluating Win (w, w’, x) for each pair. It follows that
G e PSPACE. B

The last in our clone of four theorems proved by the round-robin
tournament method is the following.

THEOREM 4.5. For any positive integer /,
P = DSPACE ((logn))/log n <+ P < DSPACE ((log n)").
Proof. It suffices to prove
G € DSPACE ((log n)'(/log) = G € DSPACE ((log n)"),
where G is the set described in Fact 3. Suppose

G € DSPACE ((log n))}/log .
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Then G = S:/ where S e DSPACE ((log n)") and l h (x) I < k log, Ix l,
for some k. Then xe G < dw Vw' Win (w, w', x), where w and w’ range
over all strings of length < k log, | x |. Clearly space 0 ((log n)") suffices to
deterministically enumerate all pairs (w, w') and, for each, to play out
Strat (w) against Strat (w") from position x, with the help of repeated calls
on a deterministic space (log n)' recognizer for S. It follows that

G € DSPACE ((log n)") .

5. THE SELF-REDUCIBILITY METHOD

The “hardest” problems in complexity classes defined by bounds on
nondeterministic time or space often possess a structural property called
self-reducibility. Various formal definitions of self-reducibility can be found
in the literature ([12, 18, 20]). Here is one version of the idea. Let K be a
subset of {0, 1}*. A self-reducibility structure for K is specified by a partial
ordering < of {0, 1}* such that

(i) A, the set of minimal elements in <, is recursive and

(i) A n K is recursive

together with a pair of computable functions G, and G; mapping
{0, 1}* — A into {0, 1}*, such that, for all xe {0, 1}* — A,

(iii) Go(x) <x,G;(x) <x, [Ge(X) [ =[G (X) | = [x]
and xeK < Gy(x)eK or G;(x)ekK.

If K has a self-reducibility structure, then K is called self-reducible.

To illustrate the concept, we give self-reducibility structures for two
important examples. The first example is the satisfiability problem for
propositional formulas, encoded so that the following property holds: Let
F(t,t,, ..., t,) be a formula in which the variables ¢, ¢4, ..., #, appear, and
let F(a,t,, ..., t,) be the same formula with the Boolean constant a sub-
stituted for ¢,. Let < F(ty,1¢,, ..., t,) > and < F(a, t,,...,t,) > denote
the encodings of these two formulas as strings. Then

| < Fty, th o t) > | = | < Fla 1y s 1) > |

Let SAT denote this version of the satisfiability problem. The set SAT has
| a self-reducibility structure in which A is the set of propositional formulas
; containing no variables,
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Go(<F(ty,ty, .. t)>) = <F(0,1,,....1,)> and
Gy (<F(t;,ty, ety >) = <F(1,t5, .., 8)> .

As a second example, let DAG denote the set of encodings of triples
(¥, s, t) such that

(i) ¥ is a directed acyclic graph in which the out-degree of each vertex is
either 0 or 2; if v has out-degree 2 then its successor vertices are de-
noted ¢ (v) and o, (v);

(i1) s is a vertex and ¢ is a vertex of out-degree O;

(iii) there exists a directed path from s to .

Assume that, for any directed acyclic graph G, any vertex ¢ of out-
degree 0, and any two vertices v and w, the encodings of (¥, v, ¢t) and
(¥, w, t) are of the same length. Then DAG is clearly self-reducible. Let A
be the set of triples (¥, s, t) such that s is of out-degree 0, and let

Go ((Z,5,1) = (¥,00(s),t) and G, (¥, 5, 1)) = (¥, 74 (5), 1).

It is possible to relate the uniform complexity of a self-reducible set K
to its nonuniform complexity. Suppose K has a self-reducibility structure
(<, A, Gy, Gy) and K = S: h Foreach we {0, 1}* define reduct,, a total
function over {0, 1{*, by the following recursive definition:

reduct,, (x) = if x € A then x else
if w- G, (x) € S then reduct,, (G, (x)) else
reduct,, (G, (x)).

Then, for all w, reduct, (x) e A. Also, reduct,(x)eK = xeK and
x € K < reduct, |,y (x) e K. These observations imply the following
lemma.

LEMMA 5.1. Let w range over some set which includes % (|x|). Then

x ¢ K <> dw[reduct, (x) e K] .

Lemma 5.1 suggests a uniform way of testing membership in K: for
each w in a suitable set, compute reduct,, (x) and test whether

reduct,, (x) e A n K.

The complexity of this algorithm will depend on the time and space needed
to test membership in A, and in A n K, on the lengths of chains in the
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partial ordering <, and on the number of strings w that need to be con-
sidered.
Now we are ready to give some applications of self-reducibility.

THEOREM 5.2. P = NP < NP < Pllog.
Proof. The implication P = NP = NP < P/log is immediate. Since
SAT is NP-complete, the reverse implication will follow once we prove that

SAT € Pllog = SATeP .

Assume that SAT € P/log. Then SAT = S: h, where S € P and, for some k,
lh(n) | < k log, n.

Using the self-reducibility structure for SAT given above, coupled with
the method of lemma 5.1, we can test whether string x is in SAT. It is
necessary to compute reduct, (x) for each of the polynomially-many
strings w of length < k log, »n and, for each, to test whether

reduct,, (x) e A n K .

Each such computation can be done in polynomial time. Hence we con-
clude that SAT € P. m

By similar methods we can relate the nonuniform and uniform com-
plexities of other self-reducible problems. For example, we can state the
following result.

THEOREM 5.3. Let Factor denote the set of triples of integers <x, y, z>
such that x has a factor between y and z. Then

Factor € P | log <> Factor € P .

As another application of the self-reducibility method, we give the
following theorem.

THEOREM 5.4.
NSPACE (logn)/log < DSPACE (log n) | log
<> NSPACE (logn) = DSPACE (log n) .
Proof. 1t is sufficient to prove

NSPACE (log n)/log = DSPACE (log n)/log
= NSPACE (log n) = DSPACE (log n) .
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Since DAG is logspace complete in NSPACE (log n), it suffices to show that
DAG e DSPACE (log n)/log = DAG € DSPACE (log n) .

Suppose that DAG = S: &, where S € DSPACE (log n) and
| ()| <klogyn.

Then, guided by the self-reducibility of DAG, we can test whether
(P, s, t) € DAG by performing the following computation for each string w
of length < k log, n:

Vi = §,

while v has out-degree 2 do

v:=1if w- (¥, v, t) €S then v, else v;.
If v is ever set equal to ¢ then accept (¥, s, t); otherwise, reject it. It is clear

that this method recognizes DAG deterministically within space 0 (log n).
N

6. THE METHOD OF RECURSIVE DEFINITION

Let K be a subset of {0, 1}*, and let Cy: {0, 1}* — {0, 1} be the charac-
teristic function of K. By a recursive definition of Cx we mean a rule that
specifies Cx on a “basis set” A < {0, 1}*, and uniquely determines Cy on
the rest of {0, 1}* by a recurrence formula of the form

Cx(x) = F(x, Cx (f1 (x)), Ck (fz (x))a oo Cg (ft (x))),
xe{0,1}* — A .

Example 1. Let G be a game, as defined in Section 4, and let G be the
set of positions from which the player to move can force a win. Then G is
uniquely determined by

(1) fxeWthenxeG
(i) ifxe{0,1}* — Wthen xe G <> F, (x) ¢ G or F, (x) ¢ G.

Example 2. Let (<, A, G,, G,) be a self-reducibility structure for the
set K = {0, 1}*. Then K is determined uniquely by its intersection with A,
together with the recurrence

for x¢A,xeK < G,(x)eKu G, (x)eK.

L’Enseignement mathém., t. XXVIII, fasc. 3-4. ' 14
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The theme of the present section is that, when Cy has a simple enough
recursive definition, bounds on the nonuniform complexity of K yield
bounds on its uniform complexity. The idea is as follows. Suppose K = S: A,

and Cyg is determined by its values on A, together with the recurrence
formula

Cx(x) = F(x, Cx(fi (X)), ..., Cx (/i (), xe {0, 1}* — A,
where

i@ ] =[f@]=]x].

For any string w, define K,, = {x l wx € S}. Then, for x € A, we can make
the following assertion:

xeK e 3dw[xeK,] A Vy[Ck, ()
= F(yn CKw (fl (y))a cees CKw (ft(y))] .

Here, w ranges over all strings of length lk (le) [, and y ranges over all
strings of the same length as x. The above formula suggests a uniform
algorithm to test membership in K by searching through all choices of w
and y. Further, the quantifier structure of the formula allows us to con-
clude that K lies in ) %, provided that | 4 (n)) | is bounded by a polynomial
in n, S is in P, and F is computable in polynomial time.

As an illustration of this approach, we prove that, if NP has small
circuits, thenu )7 = Y 5, ie., the polynomial-time hierarchy collapses.

Originally we proved this with ) 7 replaced by ) %. The improvement is due
to M. Sipser.

THEOREM 6.1. If NP < P/poly then Y § = u ) P.

i=1

The proof of this theorem requires the following lemma.

LemmA 6.2. If NP < P/poly then u Y P = P/poly.

i=1

Proof. Let E; be the set of encodings of true sentences of the form

" - - - - -
(*) 0:1x10:%X2 .. 0;X; F(X(,X2, ...,

where Q; =3, the Q; are alternately 3 and V, fj is shorthand for the
triple Xjis Xjys e Xjr of Boolean variables, and F is a propositional

J
formula. Let A; be defined in the same way, except that O, = V. It is
known that E; is logspace complete in ) 7, and 4;is logspace complete in

-

X;)
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[ 7. Also, it is clear that 4;€ P/poly < E; P/poly. 1t suffices for the lemma
to prove that E; € P/poly for all i.

By hypothesis, E, € P/poly. We proceed by induction on i. Assume
E;_, € P/poly; then A;_ € P/poly. Thus there exists a set S € P, a constant
k and a function 4:N - {0,1}* such that |/z (n) | <k + rn* and
xeA;i < h(x])-xeS.

If y is the encoding of a sentence of the form (*), and a is a #,-tuple of
boolean variables, let y7 denote the encoding of the sentence that results
from y by deleting the quantifier Q, and substituting @ for X, in
F(X{, X3, .., %;). We choose our encoding conventions and method of
substitution so that the length of y7 is equal to the length of y.

Since S € P, the following set T is in NP:
T = {wy| for some d, w-y3 €S} .

By hypothesis T € P/polv, so there exist S’ e P, k'€ Nand h': N — {0, 1}*
so that |2’ (n) | <k’ + n* and xe T < /' (|x]) - x€S. Then y e 4; < for
some ¢ , y7 € E;_, < for some a,

h(ly2) - yeeS<h(yzD:-yeT<h (Ih(yzD - yI(-h(yzD-yeS .

But the prefix A’ (|A(|y3]) -y ]( ~h (|y7]) is a polynomial-bounded function
of l y l; also S" € P. These two facts together establish that 4, € P/poly. H

Proof of Theorem 6.1. It suffices to prove that NP < P/poly= [FEE=D N+
for this it is sufficient to prove that the set 43is in ) 2. Our proof is based on
the fact that 4; has an easty-to-evaluate recursive definition of the form
Ca3 () = R(p, Cyy (), Cyy (¥"). Consider a sentence y of the form

Q1X1Q2%5 .. QX F(xy,%,, ..., X,
where the string of quantifiers Q; @, ... O, is contained in V* 3* V*,

Let

y' = Q2 X2 e Qn Xn F(09 X2y eees xn)
and

y” = QZ x2 Qn xn F(la x23 seey xn) .
Then .

Cys (J’) = (if @; = Vthen Cy45 () A Caz (¥") else Cy3 (V) U C 5 (") -
C4, 1s uniquely determined by this recursive definition which is of the form
Cyy () = R((3, Cyy ), C 43 (»")), coupled with its values on the “basis
set” consisting of sentences without quantifiers.
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By Lemma 6.2, A;eP/poly. Thus A; = S:h where SeP and
Ih (n) ] <k + n*. For each we{0,1}* define f,:{0, 1}* —» {0,1} by
fw(x) = 1 & wxeS. Then membership of y in A5, in the case where y
contains at least one quantifier, is expressed by the following formula:

% IwVz[£,0) =1 A £u(D) = R(z. £, (2). £ (2")] .

Here w ranges over all strings of length <k + | ¥ I" and z ranges over all
strings of length l y | Also, with the help of a polynomial-time algorithm
to test membership in S, the property £, () = 1 and

fv @ = R(z, £, @), f, (")

can be tested in polynomial time. Thus the 3 V form of (**) establishes
that A5 € ) 5. =

Theorem 6.1 has a number of corollaries.

COROLLARY 6.3. If R = NPthenu ) F =>7%.

This follows immediately from the observation [1] that every set in R has
small circuits.

The next corollary concerns sparse sets. A set S is sparse [6, 7] if

deVn>2,|Sn{0,1}"| <n

CoroLLARY 6.4. If there is a sparse set S that is complete in NP with
respect to polynomial time Turing reducibility (cf. Cook [4]), then

vyr=21%.
1

This corollary follows immediately from Theorem 6.1 once it is noted
that the existence of such an S implies that every set in NP has small cir-
cuits. Corollary 6.4 should be compared with results of Mahaney [11] and
Fortune [6] which show that, if there exists a sparse or co-sparse set which
is complete in NP with respect to many-one polynomial-time reducibility
(Karp [8]) then P = NP. Note that Corollary 6.4 has a weaker conclusion
than the results of Mahaney and Fortune, but also a weaker hypothesis.

Let ZEROS denote the following decision problem: given a prime g
and a set {p; (x), py (x), ..., p, (x)} of sparse polynomials with integer
coefficients, to determine whether there exists an integer x such that, for
i=1,2,..,np;(x) = 0mod q.
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COROLLARY 6.5. If ZEROS € Pjpoly, then v ).F = > 7.

This is based on Plaisted’s result [15] that every problem in NP can be
solved in polynomial time with the help of an oracle for ZEROS together
with a polynomial-bounded number of advice bits. Thus NP < P/poly if
ZEROS € P/poly.

THEOREM 6.6. (Meyer) EXPTIME < P/poly <> EXPTIME = ) 3.

Proof. Let G be the set of strings representing positions from which
the first player can win in the EXPTIME-complete game mentioned in
FACT 1. It suffices to prove that

GeP/poly = Ge) }.
Suppose G = S: & where S € P and / is polynomial-bounded. Then

xeGedwVz[xeWuzeWu(wzeS <« wF,(2)
¢S U WF(z)¢9S)]

Here w ranges over all strings of length | h (|x|) and z ranges over all strings
of the same length as x. Since membership in S or membership in W can
be tested in polynomial time, it tollows that Ge ) 5. -]

COROLLARY 6.7. EXPTIME < P/poly = P # NP.

Proof. Assume for contradiction that EXPTIME < P/poly and P = NP.
The first hypothesis implies that EXPTIME = ) %, and the second implies
that P = ) . Hence P = EXPTIME. But this contradicts the result that
P G EXPTIME, which is easily proved by diagonalization. .|

Figure 1. MAIN RESULTS

PSPACE < P|poly = PSPACE = Y5~ Y%
PSPACE < P|/log <~ PSPACE = P
EXPTIME < PSPACE | poly < EXPTIME‘= PSPACE
P = DSPACE ((log n)’)[log < P = DSPACE ((log n)')
NSPACE (logn) = DSPACE (log n) [ log

<> NSPACE (logn) = DSPACE (log n)
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NP < P/log <P = NP (Y

NP < Pl/poly = uY? =32 (®
EXPTIME < P|poly = EXPTIME = Y2 =P # NP (%
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