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TURING MACHINES THAT TAKE ADVICE *

by Richard M. Karp x) and Richard J. Lipton 2)

1. Introduction

Turing machines, random access machines and most of the other

abstract computing devices studied in computational complexity theory

represent uniform algorithms, which can receive arbitrarily long strings of
symbols as input. The time and space needed by such devices to recognize

a set 3 £ {0, 1}* are examples of uniform measures of the complexity of S.

In contrast, Boolean circuits, as well as certain types of decision trees and

straight-line programs, compute functions with a finite domain. To study
the complexity of recognizing the set S £ {0, 1}* using such computational
devices, we can view S as determining an infinite sequence of finite functions.
For example, we can introduce, for each n, the Boolean function
Sn : {0, 1}" -> {0, 1} defined as follows: Sn (x1? x2i. xn) 1 if and only
if x1 x2 xn e S. If L (S„) denotes the minimum size of a Boolean circuit
realizing Sn, then the growth rate of L (S„) as n -> oo is a measure of the
nonuniform complexity of S.

Let us say that S has small circuits if L (S„) is bounded by a polynomial
in n. It is well known that every set in P has small circuits [16]. Adleman [1]
has recently proved the stronger result that every set accepted in polynomial
time by a randomizing Turing machine has small circuits. Both these results

are typical of the known relationships between uniform and nonuniform
complexity bounds. They obtain a nonuniform upper bound as a
consequence of a uniform upper bound.

The central theme here is an attempt to explore the converse direction.
That is, we wish to understand when nonuniform upper bounds can be
used to obtain uniform upper bounds. The immediate answer is "not

* This article has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Zürich, February 1980. Monographie de
L'Enseignement Mathématique N° 30, Genève 1982.

This research was supported in part by NSF grant x) MCS77-09906 and 2) MCS79-
20409. An earlier version of this paper was presented at the Twelfth Annual ACM
Symposium on Theory of Computing, 1980 [9].
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always" : clearly there are sets with small circuits that are not even recursive.
The very trivial nature of such "counter-examples" suggests, however, that
a more careful investigation may still yield insight. Indeed, as we will show,

if one considers not arbitrary sets but rather "well behaved ones" it is

possible to achieve our goal. For example, we will show that if SAT has

small circuits, then the Meyer-Stockmeyer [19] hierarchy collapses.
Thus, here is an example of a nonuniform upper bound that has

uniform consequences. The proof, of course, will depend on the fact that SAT
is not a "pathological" set, but is rather well behaved.

Our results also serve to rule out some plausible speculations about the

complexity of problems in NP. For example, one might imagine that
P # NP, but SAT is tractable in the following sense: for every I there is a

very short program that runs in time n2 and correctly treats all instances of
length /. Theorem 5.2 shows that, if "very short" means "of length c log 1",
then this speculation is false.

Finally, we mention that the proof techniques presented here were put
to use by S. Mahaney in his proof that P # NP implies the nonexistence

of sparse AP-complete problems [11], and by S. A. Cook in his proof that

P ç HARDWARE (log n) => P c DSPACE (log n log log n)

[5].

2. Nonuniform Complexity Measures

In this section we will define our basic notion of nonuniform complexity
and relate it to circuit complexity.

Let S be a subset of {0, 1}*. Let h : N -» {0, 1}* where N is the set of
natural numbers. Define S : h {x\h (|x|) • x e S}. Next, let V be any
collection of subsets of {0, 1}* and let F be any collection of functions
from N to N. The key definition is

VIF {S: h I S s V and hsF}

Intuitively, V/F is the collection of subsets of {0, 1}* that can be accepted

by V with an amount of advice bounded by F. The idea behind this
definition is foreshadowed in papers by Pippenger [14] and Plaisted [15].

We are mainly interested in poly, the collection of all polynomially-
bounded functions, and log, the collection of all functions that are
0 (log n). Indeed, many of our results will concern the classes Pjpoly and

P/log.
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If / is a function, V/f is synonymous with V/{/}. Some preliminary
facts are:

(1) for all F, F/0 F;

(2) any subset of {0, 1}* is in P/2n\

(3) if/is infinitely often nonzero, then P/f contains nonrecursive sets;

(4) if g (n) </(/)< 2" (i.o.) then P/f Ç P/g.

The class P/poly can be characterized in terms of classic circuit
complexity. An n-input m-gate Boolean circuit C is a function

satisfying: if C (i) < B,j\ k > then j < i and k < i. The interpretation
of C is that gate i uses the truth table B on inputs j and k to produce its

output. If 1 <y < n then input j is simply the input variable otherwise,

input j is the output of gate j. In the usual way we define what it means for
a circuit C to realize the Boolean function /. Then let L (/) denote the

minimum number of gates in a Boolean circuit realizing the Boolean
function /. Next, as in the introduction, if S is a subset of {0, 1}*, then
S„ : {0, 1}" —> {0, 1} is defined by

Finally, recall that a set S has small circuits if L (SJ is bounded by a
polynomial in n.

The following simple theorem, which is given in [14], characterizes
PIpoly.

Theorem 2.1.LetS be a subset of {0, 1}*. Then the following are
equivalent.

(1) S has small circuits.

(2) S is in P/poly.

Another way we can gain insight into our classes V/F is to use them to
restate other known results. For example, the result in [2] that there are
short universal traversal sequences for undirected graphs can be restated as

C: {n + 1,..., n + m) -» {0, l}4 x {1, n + m}2

1, if x1 x2 xn e S

0, otherwise

UGAP is in DSPACE (log n)/poly
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Here UGAP is the undirected maze problem. As another example, we have

Adleman's [1] result that R (the set of languages accepted in polynomial
time by randomizing Turing machines) has small circuits, which can be

restated as

R is a subset of P/poly

It may be interesting that both these results use the probabilistic method of
Erdös to prove the existence of the required advice bits.

3. Summary of Main Results

We will discuss a variety of complexity classes. These include the basic
time and space classes DTIME (T (n)), DSPACE (S (n)) and NSPACE (S (n))
and the classes:

P the set of languages accepted in deterministic polynomial
time,

R the set of languages accepted in polynomial time by ran¬

domizing Turing machines [1],

NP the set of languages accepted in nondeterministic polynomial
time,

PSPACE the set of languages accepted in polynomial space,

EXPTIME u DTIME (2ni)
i >o

Also important is the polynomial-time hierarchy of Meyer and Stock-

meyer [19]. For i > 1 we let £ ï (respectively fjf) denote those languages

accepted in polynomial time by Turing machines that make i alternations

starting from an existential (respectively universal) state. Note that
NP £? and co- NP f. Finally, note that P, PSPACE and EXPTIME
can be viewed as complexity classes associated with alternating Turing
machines; specifically, P ASPACE (log n), PSPACE AP and

EXPTIME APSPACE [3, 10].

Many of the following theorems take the form

L ç S IF => Le S'

where L and S' are uniform complexity classes and V/F is a nonuniform
complexity class. The proof usually consists of showing that
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KeV/F => K eS'

where the set of strings K is complete in L with respect to an appropriate

reducibility. The hypothesis tells us that K is of the form S : h where S is a

language in V and a bound on | h (|x|) | is known. The proof that K e S'
consists of giving an appropriate uniform algorithm to recognize K. The

function h (|x|) is not available to this uniform algorithm, but the

algorithm can exploit the fact that h (|x|) is consistent; i.e. for all strings y of
the same length as x, y eKo h (\x\) - y e S. The algorithm must somehow

filter through all the strings that might be h (|x|), and come up with the

right decision about x. The method of doing so depends on the structure
of K. The following section treats the case where K is a "game". Section 5

considers the case where K is self-reducible. Finally, Section 6 deals with
the case where K has a simple recursive definition.

The main results of this paper are summarized in Figure 1. The rest of
the paper is devoted to supplying proofs and additional comments on these

main results. As promised in the introduction each result demonstrates that
a nonuniform hypothesis can have uniform consequences.

4. The Round-Robin Tournament Method

Insight into the nature of a complexity class can often be gained by
identifying "hardest" problems in the class, i.e., problems that are complete
in the class with respect to an appropriate definition of reducibility. For
complexity classes defined in terms of time and space on alternating Turing
machines, these complete problems often take the form of games ([3, 4]).
In this section we explain and apply a proof technique called "the round-
robin tournament method", which enables us to relate the nonuniform
complexity of a game to its uniform complexity. The specific complexity classes
we consider are PSPACE, P and EXPTIME (alias AP, ASPACE {log ri)
and APSPACE, respectively ([3, 10])).

A game G is specified by

(i) a set W c {0, 1}* and

(ii) a pair of length-preserving functions F0 and Fu each mapping
{0, 1}* - Winto {0, 1}*.
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There is a straightforward interpretation of this structure as a game of
perfect information. Each string xe{0, 1}* is a possible position in the

game. Starting in an initial position, the players move alternately until a

position in W is reached. When a player is to move in position x, he may
move either to F0 (.x) or to F1 (x). When a position in W is reached, the

player to move is declared the winner. Note that all the positions arising
in a single play of the game have the same length.

We further require that our games be terminating; i.e.,

(iii) there is no sequence of moves leading from a position x back to itself.

Given a game G, let G denote the set of positions from which the first
player can force a win. The set G is specified recursively by

G Wu{jc| F0(x)$G} u {x\F1(x)$G}

This specification of G suggests the following method of selecting an

optimal move in any position x £ W: move to F0 (x) if F0 (x) $ G; otherwise

move to F1 (x). If xeG, then this method of move selection will force

a win against any choice of moves by the opponent.
Let us now apply nonuniform complexity to games. Suppose G S : A,

where S ç {0, 1}* and A is a function from N into {0, 1}*. Then

xeG o h (|x|) • x e S

The optimal move selection rule can be restated as follows:

in any position x $ W, move to F0 (x) if A (jx|) • F0 (x) $ S, and otherwise

to Fi (x).

We would like to consider situations in which G S : A, but A (|x|) is

not known. If we guess that A (|x|) w, then the following move selection

rule is indicated :

in any position x W,

if w - x $ S, then move to F0 (x),

else move to Fx (x).

Call this rule Strat (w).

Given strings w, w' and x, the predicate Win (w, w\ x) is defined as

follows: play out position x with the first player choosing his moves
according to Strat (w), and the second player using Strat (w'); Win (w, w\ x)
is true if the first player wins.
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The following easy lemma is the basis of the round-robin tournament

proof technique.

Lemma 4.1. Let G be a game, G, the associated set of strings, S a

subset of {0, 1}* and h a function from N to {0, 1}*, such that G S : h.

Let w and w' range over some set of strings P (x) which includes h(\x\).
Then the following are equivalent:

(1) xeG
(2) 3 w V w' Win (w, w', x)

(3) V w' 3 vv Win (w, w',x).

Proof. If xeG then the sentence V w' (Win (h (1*1), w\ x) is true.

Hence (2) and (3) are true. If x$ G then, for all w, Win (w, h (|x|), x) is

false; hence (2) and (3) are false.

Lemma 4.1 suggests how to decide if x e G when h (|x|) is not known
but a set T (x) containing A(|x|) is known. Simply play a round-robin
tournament among the strategies associated with all the strings in T (x),

starting each game in position x. Then x e G if and only if some strategy

emerges undefeated. A subtle point is that the round-robin tournament
method determines whether xeG without necessarily identifying h (|x|).

To prepare for the applications of the round-robin tournament method,
we assert the existence of games with certain properties.

Fact 1. There is a game G such that the associated set G is complete
in EXPTIME with respect to many-one polynomial-time reducibility.
Moreover, the set W is in P, and the functions F0 and F1 are computable
in polynomial time.

Fact 2. There is a game G such that G is complete in PSPACE with
respect to many-one polynomial-time reducibility. For this game, the
set W is in P, and the functions F0 and F1 are computable in polynomial
time. Moreover, there is a polynomial p (•) such that, for every position x,
every play of G starting at x terminates within p (|x|) moves.

Fact 3. There is a game G such that G is complete in P with respect to
many-one logspace reducibility. For this game W is in logspace and the
functions F0 and F1 are computable in logspace. Moreover, each position
x $ W consists of the concatenation of afixedpart x± with a variable part x2,
such that F0 (x) and F1 (x) have the same fixed part as x does. Also, if
I Xi I n, then | x2 | f (n), where f (n) is a nondecreasing function
which is < 3 log2 n.
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Facts 1 and 3 may be derived by simple modifications and encodings of
games described in [3]. One of the modifications is to encode into each
nonterminal position a "clock" which is decremented at each move; this is

done to ensure termination. Similarly, a game of the type referred to in
Fact 2 can be derived from any of several PSPACE-complete games derived
in [17].

We are now ready to give the main theorems of this section.

Theorem 4.2. If PSPACE c PIpoly then PSPACE ££ n Yl 2 •

Proof. Since n Yl 2 — PSPACE, it suffices to prove

PSPACE ç PIpoly => PSPACE £ ££ n Yli •

For this it is sufficient to show

G eP I poly => Ge£f n \[p2

where G is the PSPACE-complete set described in Fact 2. Suppose
G e Pfpoly. Then there is a set S e P, a positive constant /c, and a function
h: N -» {0, 1}* such that | h (n) | < k + nk, so that G S : h. By
lemma 4.1,

xeG oBwVw' Win (w, w',x)

Here each of w and W ranges over all strings of length < k + | x \k. Since

E0 and F1 are polynomial-time computable, W is polynomial-time
recognizable and play from x terminates within p (|x|) moves, the predicate
Win (w, w\ x) is computable in polynomial-time. Thus Ge YJi- Similarly,
since

x e G <s>Vw'3 w Win (w, w', x)

it follows that G e J"J f.

Theorem 4.3. PSPACE ç Pflog <=> PSPACE P.

FV00/. Since P Ç PSPACE, and since PSPACE - P implies
PSPACE ç PIlog, it suffices to prove PSPACE ç P//og => PSPACE c p.
For this it suffices to show Ge Pflog => GeP, where G is the PSPACE-

complete set described in Fact 2. Again, the round-robin tournament
method yields the proof. Suppose G e P/log. Then there is a set S e P, a

positive constant fc, and a function h: N -> {0, 1}* such that A (/^) < k log2 n

so that G S : h. Then xeGoBwW Win {w, w', x), where w and

w' range over the 0 (|x|)fc strings of length < k log2 | x |. Since Win (w, w', x)
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can be computed in polynomial time, we can decide in polynomial time

whether x e G by actually enumerating the polynomially-many pairs

w, w'), computing Win (w,w', x) for each pair, and determining whether

some strategy Strat (w) indeed wins from x against all the competing

strategies. Thus GeP. H

Theorem 4.4. EXPTIME <= P SPACEoEXPTIME PSPACE.

Proof. The proof is almost a carbon copy of the proof of theorem 4.3.

It suffices to show that

G e PSPACEI poly => G e PSPACE

where G is the game referred to in Fact 1. Suppose

Then G S : h,where S e PSPACE and | (|x|) [ < | x for some

Then

xe G o3wVw' Win (w, w', x)

where w and w' range over all strings of length < k + | x \k. Since W, F0

and F± are computable in polynomial space, it suffices to play out the

game from x9 alternately using Strat (w) and Strat (V) for move selection;
this simulation requires repeated calls on the polynomial-space recognizer
for S. Thus the truth of the formula

3w Vwr Win (w, w',x)

can be decided in polynomial space by simply running through the pairs
(w, w'), and evaluating Win (w, w', x) for each pair. It follows that
G g PSPACE.

The last in our clone of four theorems proved by the round-robin
tournament method is the following.

Theorem 4.5. For any positive integer /,

P £ DSPACE ((log n)1)/lognoP ç DSPACE ((log n)1).

Proof. It suffices to prove

G e DSPACE ((log n)l(/log)=> G 6 DSPACE ((log n)1)

where G is the set described in Fact 3. Suppose

G e DSPACE ((log n))l/log
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Then G S: h where S e DSPACE ((log ri)1) and | h (x) | < k log2 | x |,

for some k. Then xeGoBwVw' Win {w, w', x), where w and w' range
over all strings of length < k log2 | x |. Clearly space 0 ((log ri)1) suffices to
deterministically enumerate all pairs (w, w') and, for each, to play out
Strat (w) against Strat (w') from position x, with the help of repeated calls

on a deterministic space (log ri)1 recognizer for S. It follows that

G g DSPACE ((log ri)1)

5. The Self-Reducibility Method

The "hardest" problems in complexity classes defined by bounds on
nondeterministic time or space often possess a structural property called

self-reducibility. Various formal definitions of self-reducibility can be found
in the literature ([12, 18, 20]). Here is one version of the idea. Let K be a

subset of {0, 1}*. A self-reducibility structure for K is specified by a partial
ordering < of {0, 1}* such that

(i) A, the set of minimal elements in <, is recursive and

(ii) A n K is recursive

together with a pair of computable functions G0 and G1 mapping
{0, 1}* - A into {0, 1}*, such that, for all xe {0, 1}* - A,

(iii) G0 (x) < x, Gi (x) < x, | G0 (x) | | Gx (x) | \ x\
and xeK^G0(x)eK or Gx (x)eK.

If K has a self-reducibility structure, then K is called self-reducible.

To illustrate the concept, we give self-reducibility structures for two
important examples. The first example is the satisfiability problem for
propositional formulas, encoded so that the following property holds : Let

F (tl9 t2, t„) be a formula in which the variables tl9 tu tn appear, and

let F (a, t2, tn) be the same formula with the Boolean constant a
substituted for tv Let < F (tl9 t2, tn) > and < F (a, t2n..., tn) > denote

the encodings of these two formulas as strings. Then

I < F{tut2,t„)>II < F(t2,t„)> I

Let SAT denote this version of the satisfiability problem. The set SAT has

a self-reducibility structure in which A is the set of propositional formulas

containing no variables,
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G0(<F= <F(0,*2,...,O> and

G1 <F (rlf t2,tn)>) <F(U2,...,0>
As a second example, let DAG denote the set of encodings of triples

(W, s, t) such that

(i) W is a directed acyclic graph in which the out-degree of each vertex is

either 0 or 2; if v has out-degree 2 then its successor vertices are
denoted o o (v) and a1 (v);

(ii) s is a vertex and t is a vertex of out-degree 0;

(iii) there exists a directed path from s to t.

Assume that, for any directed acyclic graph G, any vertex t of out-
degree 0, and any two vertices v and w, the encodings of (W,v, t) and

(¥, w, t) are of the same length. Then DAG is clearly self-reducible. Let A
be the set of triples (W, s, t) such that s is of out-degree 0, and let
G0 ((V, s, 0) (ÎP, tfo (s), t) and Gt ((V, s, t)) (V, a, (s), t).

It is possible to relate the uniform complexity of a self-reducible set K
to its nonuniform complexity. Suppose K has a self-reducibility structure
(<, A, G0, Gi) and K S : h. For each w e {0, 1}* define reductw, a total
function over {0, !{*, by the following recursive definition:

reductw (x) if x e A then x else

if w • G0 (x) e S then reductw (G0 (x)) else

reductw {G1 (x)).

Then, for all w, reductw (x) g A. Also, reductw (x) g K => x g K and
x e K o reductH\xl) (x) g K. These observations imply the following
lemma.

Lemma 5.1. Let w range over some set which includes A(|x|). Then

x s K <=> 3 w [redactw (x) s X]

Lemma 5.1 suggests a uniform way of testing membership in K: for
each w in a suitable set, compute reductw (x) and test whether

reductw (x) g A n K

The complexity of this algorithm will depend on the time and space needed
to test membership in A, and in A n K, on the lengths of chains in the
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partial ordering <, and on the number of strings w that need to be
considered.

Now we are ready to give some applications of self-reducibility.

Theorem 5.2. P NP <=> NP c P/log.

Proof. The implication P NP => NP Ç P/log is immediate. Since

SAT is AP-complete, the reverse implication will follow once we prove that

SAT e P/log => SATeP

Assume that SAT e P/log. Then SAT S : h, where S e P and, for some k,
I h (n) I < k log2 n.

Using the self-reducibility structure for SAT given above, coupled with
the method of lemma 5.1, we can test whether string x is in SAT. It is

necessary to compute reductw (x) for each of the polynomially-many
strings w of length < k log2 n and, for each, to test whether

reductw (x) e A n K

Each such computation can be done in polynomial time. Hence we
conclude that SAT e P.

By similar methods we can relate the nonuniform and uniform
complexities of other self-reducible problems. For example, we can state the

following result.

Theorem 5.3. Let Factor denote the set of triples of integers <x, y, z>
such that x has a factor between y and z. Then

Factor eP/ log o Factor eP

As another application of the self-reducibility method, we give the

following theorem.

Theorem 5.4.

NSPACE (log n) / log Ç DSPACE (log n) / log

O NSPACE (log n) DSPACE (log n).

Proof. It is sufficient to prove

NSPACE (ilog n)/log <= DSPACE 0log n)/log

=> NSPACE 0log n) DSPACE (log n)
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Since DAG is logspace complete in NSPACE (log n), it suffices to show that

DAG e DSPACE (log n)/log => DAG e DSPACE (log n)

Suppose that DAG S : h, where S e DSPACE (log ri) and

\h(n)\<k log2 n

Then, guided by the self-reducibility of DAG, we can test whether

(W, s, t) e DAG by performing the following computation for each string w

of length < k log2 n :

v : s;

while v has out-degree 2 do

v : if w • (W9 v0, /)eS then v0 else vv

If v is ever set equal to t then accept (W9 s, t); otherwise, reject it. It is clear

that this method recognizes DAG deterministically within space 0 (log ri).

6. The Method of Recursive Definition

Let K be a subset of {0, 1}*, and let CK : {0, 1}* -> {0, 1} be the characteristic

function of K. By a recursive definition of CK we mean a rule that
specifies CK on a "basis set" A ç {0, 1}*, and uniquely determines CK on
the rest of {0, 1}* by a recurrence formula of the form

CK(x) F(x, CK(ft (x)), CK(f2(x% CK(ft(x))),
x e {0,1}* — A

Example 1. Let G be a game, as defined in Section 4, and let G be the
set of positions from which the player to move can force a win. Then G is

uniquely determined by

(i) if x e W then x e G

(ii) if x e {0, 1}* - W then x e G <s> F0 (x) <£ G or Fx (x) £ G.

Example 2. Let (<, A, G0, GJ be a self-reducibility structure for the
set K ç {0, 1}*. Then K is determined uniquely by its intersection with A,
together with the recurrence

for x ^ A, x g K G0(x)eKuGj(x)eK.

L'Enseignement mathém., t. XXVIII, fasc. 3-4. i a
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The theme of the present section is that, when CK has a simple enough
recursive definition, bounds on the nonuniform complexity of K yield
bounds on its uniform complexity. The idea is as follows. Suppose K S : A,

and CK is determined by its values on A, together with the recurrence
formula

CK(x) F(x,CK(fl(x)), CK( ft(x))), x e {0, 1}* - A
where

|/iO)| |/t(*)| |*|-
For any string w, define Kw {x | wx e S}. Then, for x e A, we can make
the following assertion:

xeK o3w[xeKj A Vy[CKw(y)
F(y, CKw(f1(y)),...,CKw(ft(ym-

Here, w ranges over all strings of length | h (|x|) |, and y ranges over all
strings of the same length as x. The above formula suggests a uniform
algorithm to test membership in K by searching through all choices of w

and y. Further, the quantifier structure of the formula allows us to
conclude that K lies in f, provided that | h (nj) | is bounded by a polynomial
in n, S is in P, and F is computable in polynomial time.

As an illustration of this approach, we prove that, if NP has small

circuits, then u i-e., the polynomial-time hierarchy collapses.
i

Originally we proved this with YJi replaced by YS- The improvement is due

to M. Sipser.

00

Theorem 6.1. If NP ^ Pjpoly then ££ u £ f.
i 1

The proof of this theorem requires the following lemma.

00

Lemma 6.2. If NP ç PIpoly then vj ^ f s Pfpoly.
i 1

Proof. Let Et be the set of encodings of true sentences of the form

(*) 01^1 02*2- Qi,3cÉ)

where Q1 3,theQj are alternately 3 and V, Xj is shorthand for the

triple x.- x.- xf r of Boolean variables, and F is a propositionalJl J 2 J' j
formula. Let At be defined in the same way, except that Q± V. It is

known that Et is logspace complete in £f, and At is logspace complete in
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Jjf. Also, it is clear that A t e P/poly o Ete Pjpoly. It suffices for the lemma

to prove that Et e Pjpoly for all /.

By hypothesis, E± e Pjpoly. We proceed by induction on i. Assume

Ei_1 e Pjpoly; then At_ 1 e Pjpoly. Thus there exists a set S eP, a constant
k and a function h : N -» {0, 1}* such that | h (n) | < k + nk and

V e Ai= t <^> h (|x|) - xeS.
If y is the encoding of a sentence of the form (*), and a is a ^-tuple of

boolean variables, let yf denote the encoding of the sentence that results

from y by deleting the quantifier Q1 and substituting a for 5c
t in

F (3c i, 5c 2,xt). We choose our encoding conventions and method of
substitution so that the length of is equal to the length of y.

Since SeP, the following set T is in NP:

T {wy J for some a, w • e S}

By hypothesis T e Pjpoly, so there exist S' e P9 k' e N and h' : N -» {0, 1}*
so that I h' (ri) | < k' + nk' and x e T o h' (|x|) • x e S. Then y e At <=> for
some a y~Z eEi_1 o for some a,

h Qyî) -yfeSoh (\y-\) -yeT^h'{\h (|y-|) -y\{-h (\yt\) -yeS'.
But the prefix h' (| A(l7îl) -y\(-h (|y~J|) is a polynomial-bounded function
of I y J ; also S' e P. These two facts together establish that At e Pjpoly.

Proofof Theorem 6.1. It suffices to prove that NP c P/poly=> Yl% — H 21

for this it is sufficient to prove that the set A3 is in f. Our proof is based on
the fact that A3 has an easty-to-evaluate recursive definition of the form
Ç43 (y) P (y, CÄ3 (/), CAs (/'))• Consider a sentence y of the form

ôl *1 Ô2 X2 ••• Qn^nF C*T> Xn)

where the string of quantifiers Q1 Q2 Qn is contained in V* 3* V*.

Let

/ 02 *2 Qn *n F (0, x2i Xn)
and

y" 02 *2 - Qn Xn F (1, x2, ...5 xn)
Then

Ca3(>') (if QiV then CA3(/)A CA3 else (/) u (y"))
CMis uniquely determined by this recursive definition which is of the form
G3 (j) R ((y, CA3(>>'), Cl3 (>'")), coupled with its values on the "basis
set" consisting of sentences without quantifiers.
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By Lemma 6.2, A3eP/poly. Thus A3 S: h where SeP and
I h {ri) I < k + nk. For each w e {0, 1}* define fw : {0, 1}* -» {0, 1} by
fw(x) 1 <=> wx e S. Then membership of y in A3, in the case where y
contains at least one quantifier, is expressed by the following formula:

(**) 3 vv Vz [/w(y) 1 A /w(z)

Here w ranges over all strings of length < k + \y\k, and z ranges over all
strings of length | y |. Also, with the help of a polynomial-time algorithm
to test membership in S, the property fw (y) 1 and

L 0) R (z, fw {z'\ fw (z"))

can be tested in polynomial time. Thus the 3 V form of (**) establishes

that A3 e YJi-

Theorem 6.1 has a number of corollaries.

Corollary 6.3. If R NP then u J] 2 •

i
This follows immediately from the observation [1] that every set in R has

small circuits.
The next corollary concerns sparse sets. A set S is sparse [6, 7] if

3 c \/n > 2, I S n {0,1}M | < nc.

Corollary 6.4. If there is a sparse set S that is complete in NP with
respect to polynomial time Turing reducibility (cf. Cook [4]), then

uEf B-
i

This corollary follows immediately from Theorem 6.1 once it is noted
that the existence of such an S implies that every set in NP has small
circuits. Corollary 6.4 should be compared with results of Mahaney [11] and
Fortune [6] which show that, if there exists a sparse or co-sparse set which
is complete in NP with respect to many-one polynomial-time reducibility
(Karp [8]) then P — NP. Note that Corollary 6.4 has a weaker conclusion
than the results of Mahaney and Fortune, but also a weaker hypothesis.

Let ZEROS denote the following decision problem: given a prime q
and a set {/?t (x), p2 (v),..., pn (x)} of sparse polynomials with integer
coefficients, to determine whether there exists an integer x such that, for
i 1, 2,..., n,Pi (x) 0 mod q.
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Corollary 6.5. If ZEROS e P/poly, then u £2 •

This is based on Plaisted's result [15] that every problem in can be

solved in polynomial time with the help of an oracle for ZEROS together
with a polynomial-bounded number of advice bits. Thus NP £ P/poly if
ZEROS e P/poly.

Theorem 6.6. (Meyer) EXPT1ME £ P/poly o EXPTIME

Proof. Let G be the set of strings representing positions from which
the first player can win in the EXPTIMcompletegame mentioned in
FACT 1. It suffices to prove that

G eP Ipoly => G e 2 •

Suppose G S : hwhere S e Pandh is polynomial-bounded. Then

xeG<=>3wVz[xefFuzeITu (wz e S wF0 (z)

£S u wF1(z)£S)]
Here w ranges over all strings of length | h (|x|) and z ranges over all strings
of the same length as x. Since membership in S or membership in W can
be tested in polynomial time, it tollows that Ge^f.

Corollary 6.7. EXPTIME £ P/poly => ^ NP.

Proof. Assume for contradiction that EXPTIME £ P/poly and P NP.
The first hypothesis implies that EXPTIME £2» and the second implies
that P — Yj2- Hence P EXPTIME. But this contradicts the result that
P f EXPTIME, which is easily proved by diagonalization.

Figure 1. Main Results

PSPACE £ P/poly => PSPACE £2 n
PSPACE £ P/log o PSPACEP

EXPTIME £ PSPACEjpolyoEXPTIME PSPACE
P £ DSPACE ((log n)1) / log o P £ DSPACE ((log n)!)
NSPACE (log n) £ DSPACE (log n) / log

o N SPACE(log n) DSPACE (log n)
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NP s PI log oP NPC)
NP <= PI poly => Zf (2)

EXPTIME <= PI poly => EXPTIME %* => P ¥> NP (3)
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