Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 28 (1982)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: STRUCTURED vs GENERAL MODELS IN COMPUTATIONAL
COMPLEXITY

Autor: Borodin, A.

Kapitel: [I. Comparison Based Models

DOI: https://doi.org/10.5169/seals-52236

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-52236
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

MODELS IN COMPUTATIONAL COMPLEXITY 175

I would argue that these barriers and many of these same conjectures
are of fundamental importance in the structured setting although here one
has to look at each specific model to formulate appropriate questions. But
this is precisely my main, albeit obvious, conclusion—namely, that it is
important and productive to formulate and study the analogous barriers
and conjectures in reasonably natural structured settings. Of course,
I should admit that my perspective may distort the fact that specific instances
of these questions were studied in structured settings before the issues were
formulated generally. But in the general framework these issues have come
into clearer focus. There are several reasons why these issues should also
be pursued in structured settings.

1. The issues are usually of significant independent interest in the
different settings, especially when the model represents the “natural”
model.

2. Some structured models have the property, often by design, that
they are sufficiently “general with respect to a specific complexity
issue” that results in such a setting will yield a direct corollary for the
general theory.

3. A structured model may not be sufficiently general to yield direct
corollaries but nevertheless the proof techniques which are developed
may become paradigms for the general model.

In the following sections I would like to substantiate these points by
primarily considering the two structured models, SI (comparison based
models) and S2 (arithmetic models) mentioned initially. We will then
discuss a few other examples outside of these models to further emphasize
the utility of this viewpoint.

II. COMPARISON BASED MODELS

I want to concentrate on a few examples of models which hopefully
will exemplify the utility of the structured viewpoint. The first model, or
rather class of models, is the comparison tree (see Knuth [73]). In a pure
comparison tree, we label the nodes of a tree by questions of the form
“x; <x;?”. The model then can only solve problems dealing with “search-
ing and sorting”. It is also sufficient to consider the input domain to be
{12, .., n} for a problem of size n. On a given input, the computation
follows an appropriate path to a leaf, where the output takes place. Since

176 A. BORODIN

every problem under consideration is completely determined by the per-
mutation of the input, and since we can sort in n log n + o (n) comparisons,
this simple model cannot address itself to many of the “larger issues”
(e.g. P vs NP). Yet, we do get an Q (nlogn) lower bound not only for
sorting but for set recognition problems like “X distinct ?”, “X = Y?”.
The sorting argument simply observes that we need at least one leaf for
each of the possible n! permutations and hence the depth of the tree (= num-
ber of comparisons = Time in this model) must be at least [logn!]
= nlogn + o (n). As simple as this argument is, it provides a paradigm
for asking and answering the same complexity question in a more interesting
setting, namely for Random Access Machines (see Paul [80]) with +, —, X
as unit cost operations. The same questions apparently remain open if
integer division is also allowed as a unit cost operation.

One way to establish the set recognition lower bounds can be obtained
by considering an extension of the model, namely linear comparison trees

n
where nodes are labelled “) ¢x;>> ¢,.,?”, with {¢;} in some under-
i=1

lying field (say Q for definiteness). For linear comparison trees, we can
consider the input domain to be Q". It is easily seen that the set of inputs
leading to any leaf is a convex subset of Q". Dobkin and Lipton [78] then
observe that if a subset 4 (of Q") which is being recognized is the disjoint
union of k open sets, we must have at least one leaf (in the linear comparison
tree) for each such open set (by convexity). Again, it follows that [log &k]
time is required. For example, if 4 = {< xy,..,x, > lxi # x;} it
follows that k = Q (n!) and hence the Q2 (n log n) lower bound. By the
same proof technique, Dobkin and Lipton show that the knapsack problem
({ < Xgy oo Xy > | Fiy, o iy Zx,.j = 1}) requires Q (n*) comparisons.
The linear tree model allows us to pose more challenging questions;
that is, beyond what can be done with a pure comparison tree. Although
we can view linear trees as an extension of the pure model, I would claim
that, relative to its scope of intended problems, this model is in a sense
more structured. This will become clearer if we enlarge our discussion to
Space considerations (where it is possible to force larger Time bounds).
 Each node of a comparison tree can be thought of as representing a state
(or 1.D.) of the computation. In order to introduce Space complexity, we
should coalesce identical states (that is, those with identical subtrees) and
' let outputs take place at any step of the computation. We are then led to
Pippenger’s comparison branching programs (see Tompa [78]), which are
directed acyclic graphs (rather than trees) whose nodes are labelled as in

MODELS IN COMPUTATIONAL COMPLEXITY 177

comparison trees and whose edges are labelled to denote possible outputs.
The Space used by a branching program is defined as log (# nodes or states),
which is precisely Cobham’s [66] notion of capacity which was defined
for general models. (We should also note that a general version of branching
programs was also studied by Masek [76] prior to their introduction into
a structured setting).

We can construct branching programs for any set of predicates, in
particular we can have {=, 2k } {<, > }, or linear comparisons. And
now we can try to clarify why linear branching programs appear to be more
structured. Cook, and Tompa [78] observe that { <, >} (or { =, #})
branching programs are “general with respect to Space and Time (within
a factor of n) complexity” in the following sense:

Suppose we have a problem for which we can establish that any branching
program which works correctly for problem size n must have Space
= Q (S (n)) (or for which we can establish a Time-Space tradeoff of the
form f (Time, Space) = Q (P (n))—e.g. Space = O (log'n) = Time
= Q (n'°* ™). Then a corresponding result will hold for a general model
because the structured model can simulate the general model on a “rep-
resentative set of inputs”. Suppose the { <, >} (respectively, { =, # })
comparison problem is to compute f; (X, ..., Xy), o0r fr (X15 oos X,,); the

analogous general problem is to output f; (X, ..., X,), «ees fr (X1, o0y Xp)
given X, ..., X, where y denotes a binary encoding of the integer y. (Note,
the model insures that each f; (xy, ..., x,) = Xy for some index i;). We

only assume that the general model has a read-only input (not necessarily
a tape), with a fixed number of reading heads. In fact, since we are permitting
random access on the input we can assume that there is only one input
head. Now suppose the general model solves this analogous general problem

in Space (= Capacity) S (n), and Time (= # of steps or just read instruc-

tions) 7 (n). In particular, the general machine must work on a special class
of inputs, those that satisfy the property that x; is the rank of x; in
{x1,..., x,} (resp. x; is the smallest index j (i) <(i such that x; = x;;).
But now the structured comparison program can simulate the behaviour
of the general machine on this class of inputs in the following way: we need
to simulate a move J: (present state, input bit being read) — (new state,
new head position). But we can use the { <, >} (resp. { =, # }) tests
to determine any x; (and hence any bit of x;) using at most n — 1 (resp.
i—1) comparisons so that the branching program has Time complexity

178 A. BORODIN

T < nT, and increasing the number of states by a factor of n?* (resp. n)

so that the Space .S of the branching program is O (S) since Space > log n
(whenever the output depends on all » inputs). The bounds S and T then
apply as upper bounds within the structured model for the original problem.

This is the sense in which we mean that such a model is “general relative
to a particular issue”. The model is not general (in that it cannot always get
at the encoding), but it can simulate the general machine on a “represen-
tative set of inputs”. Savitch [73], and Cook and Rackoff [80] have made
such observations before with respect to conjecture GC2 (see section IV).

The question then arises as to whether or not linear tree or linear
branching programs may be sufficiently general in this same sense. But now
it is not clear whether or not there exists an appropriate representative set
of inputs for the type of problems we would like to consider. I want to
mention one such problem, the shortest path problem, relating to conjecture
GC5. The problem can be formulated as a set recognition problem or as a
function; given 4 = (a;;), where a;; is the distance (or cost) associated with
edge < i,j >, compute D = (d;;), where d;; is the distance (or the path
itself) of the shortest (i.e. of least cumulative cost) path from node i to
node j. This problem has received considerable attention from the point
of view of Time complexity. The most structured model for the problem is a
straight-line program or circuit (i.e. no predicates) with operations “min”
and +. Kerr [70] showed that such “oblivious (the sequence of operations
is independent of the inputs) programs require Q (n*), where n is the number
of nodes and hence n? is the size of the problem. A more challenging setting
is provided by linear tree programs. In this setting Fredman [76]
demonstrates an O (n2>) method (which can be used as the basis for a
O (n® (loglog n)'/3/(log n)'/®) = o (n*) uniform algorithm). With regard
 to lower bounds, we only have a negative result by Rivest and Yao [78]
that a particularly appealing approach cannot yield a sought after
Q (n? log n) lower bound. I am interested in Time-Space bounds for this
~ problem in the context of linear branching programs. It seems necessary to
extend the model to allow assignments y;: = linear combination of pre-
- viously defined {y ;+ and inputs { x, }. Then Space is defined as Capacity
plus the number of extra variables y;. The shortest path problem is an
~ excellent example of a problem which is in P n U DSPACE (log") but
; k

| not, apparently, in Polytimelogspace. (Here I use these terms to have the
- obvious meaning for a structured setting like linear branching programs as
well as their more standard meaning in the general setting). It is con-

MODELS IN COMPUTATIONAL COMPLEXITY 179

ceivable to me that ideas from linear geometry may enable someone (appar-
ently, not me) to establish an w (log n) lower bound on Space, and even
more generally establish the structured analogue of conjecture GCs.
But I don’t see how this would directly yield a corollary for the general
theory. It seems fair to augment the Space measure by the precision of the
coefficients used in the program to reflect the fact that such coefficients
would have to be represented. Now given bounds on Space and Time,
we can put bounds on the precision of the inputs needed for a potentially
representative input set. Unfortunately, the bound, which clearly exists
given the decision procedure for the first order theory of Q under + (see
Specker and Strassen [76]), would be exponential in ¢, the Time bound
for the branching program; hence we do not readily obtain a representative
set as for the pure branching models since it appears to take time ¢ to decode
each input.

But still the problem is of enough independent interest that it is worth
pursuing. And, moreover, this gives me an opportunity to argue that even
if a direct corollary does not follow, the proof method may generalize. The
case in point is the Time-Space = Q (n*) lower bound established by
Borodin, et al. [79] for sorting on comparison branching programs. This
result is “too low-level” to employ the previously discussed simulation
for inferring a meaningful lower bound in the general setting. Yet, in this
case Borodin and Cook [80] were able to show that the proof method does
generalize and a bound of Q (n?/log n) was established to sort z integers,
each of length O (logn). Hence in terms of input string length m
= O (n log n), we have the time-space bound Q (m?/log®m). The idea in
producing this general bound was to take a fairly structured view of the
input without giving up any generality. I should also mention that Yao
extended the original Q (n?) result to linear branching programs (i.e. a
more powerful structured model). Unfortunately, there are no comparable
lower bounds for a set recognition problem, in either setting.

Before leaving this section, we should mention another important
structured comparison based model, the Batcher comparator network
(see Knuth [73]). The model consists of a network (or circuit) with one type
of gate, a comparator, which takes < x,y > on input and outputs
< max (x, y), min (x, y) >. Pippenger and Valiant [76] study an extension

of this model, called ordering networks, where comparators are replaced
by gates

180 A. BORODIN

. . >
computing 1) f(x> y) - { (1) i:j})

. _ x b=1
and 1) g (b, x,y) = {y h=0,

and then augmented by the usual Boolean operations. Both models can
be studied with respect to Depth or Size (= number of gates) of the network.
The merging problem is relatively well understood on both models, with
log n Depth and » log n Size being asymptotically necessary and sufficient.
The sorting problem is relatively open. In particular, we know, Q (n log n)
= Size = O (nlog?n) and simultaneously O (log?n) Depth on both models.
For Depth alone the model is more critical. The conjecture is that sorting
requires Q (log®n) Depth on comparator networks, whereas the results of
Muller and Preparata [75] show that O (logn) Depth is sufficient (with
Size = O (n?)) for ordering networks. However, this raises the question
as to whether or not we can simultaneously achieve O (log n) Depth and
quasilinear Size (i.e. O (n log"n)). (For a much more powerful non oblivious
parallel model, namely a comparison tree with n comparisons permitted
in parallel, Valiant [75] can derive such simultaneous bounds—see also
Preparata [78]). Even for comparator networks, there is no proof that
Size - Depth = w (n log?n). This same issue concerning sorting on ordering
networks can be viewed in the general setting of Boolean circuits which are
to sort » numbers, each of binary length O (log n).

The Size-Depth problem for sorting (in contrast to Time-Space) seems
to have a very interesting complexity behaviour, also observed for a variety
of other problems involving simultaneous resource bounds. This behaviour
is as follows: An optimal bound for measure 1 (say Depth = O (log n))
can be achieved when the bound for measure 2 is essentially pessimal
(say Size = O (n?®)), whereas by relaxing the measure 1 somewhat
(to O (logzn)) we can get good (i.e. quasilinear) measure 2 bounds. At the

other extreme, an optimal measure 2 bound, say if O (n log n) Size were
| possible, seems to be achievable only with an essentially pessimal measure 1
- bound. As other examples consider Space (as measure 1) and Time
(measure 2) for the problems of the median (see Munro and Paterson [78]
for the upper bound) and the string pattern matching problem (see Galil
~and Seiferas [77] for the upper bound). This latter problem exhibits a more
~ quantitative statement of the behaviour, namely that with approximately %
- registers (which in our terms would be k log n Space since each register
holds a pointer) one can solve the string pattern matching problem in Time

MODELS IN COMPUTATIONAL COMPLEXITY 181

O (n'* /). (Pippenger [personal communication] has recently shown that
a similar upper bound can also be achieved for the sorting problem in the
context of ordering networks.) This same quantative behaviour has a
corresponding lower bound for the (structured) simulation of linear recursion
schemes by flow-chart schemes that was referred to in Section L.

I1I. ARITHMETIC MODELS — ALGEBRAIC COMPLEXITY

I would now like to turn attention to the complexity of arithmetic
problems, and to the straight line or circuit model with operations +, —, X
(and perhaps =). Fortunately, I need not pursue this topic in too much
detail since Valiant [80] in this conference will be addressing just this topic.
Indeed, Valiant [794] and [795] has always provided compelling evidence for
the importance of the interrelation between a structured problem setting
(algebraic complexity) and the general theory. The correspondence between
algebraically structured arithmetic circuits computing (say) formal poly-
nomials in F[x, ..., x,] and general Boolean circuits computing Boolean
functions of #n variables is readily apparent. In the former, gates represent
the ring operations (X, +, —) and the inputs are the (indeterminates)
{x,-} v F, while in the latter, the gates represent some basis set of Boolean
operations (say A, v, —) and the inputs are the (Boolean variables)
{x;} v {0 or false, 1 or true }. Since v, A, — can be easily simulated
by +, —, X when restricted to {0,1{ (e.g. x v y by x + y — x X),
positive results for the arithmetic case often carry over immediately to
the Boolean setting. The usual measures of complexity are SIZE (= number
of gates = sequential Time complexity), DEPTH (= length of longest
path in the circuit = parallel time complexity) and FORMULA SIZE
(= number of gates in a circuit having fan-out one; i.e. a formula). One
of the first (pair of) results that demonstrated to me the importance of
keeping this correspondence in mind, is the relating of the FORMULA
SIZE and DEPTH measures. Independently, Spira [71] (for the Boolean
case over any basis) and Brent [74] showed how to convert any formula of
size m to an equivalent formula (and hence circuit) of depth O (log m);
the converse that any circuit of depth 4 can be converted to a formula of
size 2¢ is immediate. It is interesting to note that the Spira result seems to
depend intrinsically on the Boolean domain, whereas the Brent result is
proven in a more abstract setting using only that X (resp. A) distributes
over + (resp. v). Then, here again, is a situation where a result need not

	II. Comparison Based Models

