
I. Introduction and Conclusion

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 28 (1982)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 28.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



STRUCTURED vs GENERAL MODELS
IN COMPUTATIONAL COMPLEXITY *

by A. Borodin

I. Introduction and Conclusion

The goal of this expository paper is to make explicit a certain viewpoint
of computational complexity, indeed a viewpoint of computation itself.
Since I am calling attention to distinctions which are (at least, intuitively)
recognized by most logicians and computer scientists, I feel obliged to

immediately draw some conclusions about the usefulness of these

distinctions. I will devote the remaining sections to some evidence regarding
the conclusions.

I use the term structured model of computation in almost the same sense

as Pippenger and Valiant [76] (who say "conservative" rather than
"structured") to mean that a computation in such a model can only proceed
within a fixed, well-defined, mathematical structure; that is, it uses only the
relations and operations within that structure for the computation. Hence
all intermediate results as well as the inputs and the outputs are from the

underlying domain. Two well studied examples are:

51. Comparison trees (also called pure comparison trees, computation
trees) where the structure is [D; <] with D a partially ordered set,

{<,>} or {<,*%>} predicates, and no operations. Linear
comparison trees extend this model by allowing linear functions
of the inputs.

52. Arithmetic circuits (also called arithmetic straight line programs)
where the usual domains are F [xt, xn], F [[xu xj] or
F(xu xn), there are no predicates, and the operations are
+ -, x,

In contrast, a general model of computation can be viewed as a string
(over a finite alphabet) processing machine. While the input and output
strings for a given problem may arise as a "natural encoding" of a set of

* This article has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Zürich, February 1980. Monographie de
L'Enseignement Mathématique N° 30, Genève 1982.

L'Enseignement mathém., t. XXVIII fasc. 3-4. 12



172 A. BORODIN

elements from the domain of a particular mathematical structure, there is

no obligation to process these objects in any prescribed way relating to the
intended mathematical structure. The main criterion for a general model
is that we can "get at" the encoding; that is, we can access and arbitrarily
manipulate the individual characters (or bits, since we usually consider

binary encoding) of all the inputs and intermediate results. As common
examples of such models we have:

Gl. Boolean circuits.

G2. Turing machines (TM) in all styles, sizes and colours.

Surely, this distinction between structured and general is quite intuitive.
Moreover, similar distinctions have already been made explicit in computer
science (and, of course, mathematical logic) in the context of programming
language semantics ; in particular, the theory of program schemes compares
language features by having uninterpreted predicate and function symbols.

(Indeed, perhaps the first structured TIME-SPACE tradeoff result for
simulating linear recursion schemes by flowchart schemes originates from
Paterson and Hewitt's [70] seminal paper—see Chandra [73] and Savage

[79].) And we should also note some analogy with the distinction between

the first order theory of the reals (or complex numbers) under +, x in
contrast to the first order theory of integers (or rationals). In the latter, we

can (via the Gödel function) get at the encoding of a domain element,
which is precisely why we get undecidability. In the former, we get
decidability (see Specker and Strassen [76] for a discussion of the complexity of
such decision problems and how we can get at the expressibility and thus

encoding of "small" integers).

My purpose here is to argue for the importance of this distinction in
the study of computational complexity. I am particularly interested in
lower bounds. As a point of reference, let me review the somewhat
embarrassing state of affairs in computational complexity with regard to the

"general" or string processing viewpoint. If we ignore "diagonalization
based results", the following barriers are well recognized:

GBl. The inability to establish a nonlinear lower bound on sequential
Time or circuit SIZE.

GB2. The inability to establish a non-logarithmic (i.e. co (log nj) lower
bound on Space.

GB3. The inability to establish a non-logarithmic lower bound on

Parallel Time or circuit Depth.



MODELS IN COMPUTATIONAL COMPLEXITY 173

Although our concepts of "Parallel Time" are still evolving, we should at

least note that GB2 and 3 are quite related by the Parallel Time-Space

simulations (see Cook's [80] paper in this conference).

For the general viewpoint, one measures complexity as a function of

the length of the encoding of the inputs and outputs. In contrast, one

measures complexity in the structured viewpoint as a function of the

number of inputs and outputs. In either case we can refer to the size of the

problem. In the structured setting, the barriers are a little less precise yet

the analogies do persist.

SB1. We do have some important Q (n log n) lower bounds for algebraic

complexity based on degree (Strassen [73]) and for pure and

linear comparison trees based on information theoretic arguments

(e.g. sorting and related problems—see Reingold [72]). There are

even some Q (n2) lower bounds for linear comparison trees

(also based on information theoretic arguments—Dobkin and

Lipton [78]).

SB2. I do not know of any non-logarithmic Space bounds except
for the result of Cook and Rackoff [80]—see section IV.

SB3. Again, I do not know of any non-logarithmic Depth bounds

except for some trivial arguments in algebraic complexity based

on degree.

We should note that a general model may be considered from a structured

point of view in the context of a specific problem and complexity measure.
This is the case for the recent result on sorting (see Paul's [80] paper in this
conference).

This also seems like an appropriate place to comment on two other

concepts, uniformity and restricted models which relate to our theme.
Circuits (arithmetic or Boolean) and Comparison trees or Branching
Programs (see Tompa [78]) are non-uniform models in that for each size n,
we have a different solution. The derivation of these solutions may be

completely unrelated (for different n) and arbitrarily complex. In contrast,
Turing machines are uniform. It turns out that known lower bounds
(except for "on-line" computations—see Tarjan [77]) in the structured
setting are achieved with respect to non-uniform models. Non-uniformity
makes the lower bounds results stronger, but it also reflects the fact that
we don't know how to take advantage of uniformity. But the point here is

that uniformity considerations are appropriate in either of our settings. We
call a model, structured or general, restrictive (for a particular class of



174 A. BORODIN

problems or for all computable problems) if there is some "reasonable"

or "natural" model which can (seemingly) solve the intended problems more
efficiently. For example, a one tape TM is provably restrictive and there

are senses (on-line computation—see Hennie [66]) in which multitape and

multidimensional Turing machines are also restrictive. Valiant [79c]
demonstrates that monotone +, x arithmetic circuits are restrictive. Comparison

trees which use only { # } tests are also provably restrictive in
the structured setting (Reingold [72]). I would resist the temptation to
think of structured models as being a-priori restricted general devices

because the relevant computational domain used need not be finitely
encodeable.

Given the barriers GBl, 2, 3, we can see why the following conjectures
remain fundamental challenges (for notation, see Hopcroft and Ullman
[79]).

GC1. P -jf~ NP. I use this to represent all the associated issues, like
completeness, # P problems (Valiant [79a]), etc.

GC2. DSPACE(S) ^ NSPACE(S) for reasonable constructible)
bounds S.

GC3. P $ DSPACE (logk) for any k (and, in particular, for k= 1).

Indeed P $ u DSPACE (logk). (This is implied by GC3.)
k

GC4. P $ DEPTH (logk) for any k (uniform or non-uniform circuit
depth). And again, k 1 is of special interest.

GC5. P n u DSPACE (logk) (or P n DSPACE (log2)) is not equal to
k

the class of problems which can be computed simultaneously
in small Time (polynomial) and Space u logk). The latter

k

class lacks a good notation (Cook [79] calls it PLOPS) so I'll
add nothing to the confusion and either call it Polytimelogspace

or "SC" (for reasons explained below).

GC6. P n u DEPTH (logk) is not equal to Polysizelogdepth. (The
k

last term is a test to see if anyone skipped GC5—Cook refers

to this class as "NC", referring to (Nick) Pippenger [79]. If
NC takes hold, we would have to use SC for Polytimelogspace.)

Referring back to our barriers, we could add insult GB4: "The

inability to prove a SIZE • DEPTH lower bound of co (n log «)"
to the injury of GBl and GB3.



MODELS IN COMPUTATIONAL COMPLEXITY 175

I would argue that these barriers and many of these same conjectures

are of fundamental importance in the structured setting although here one
has to look at each specific model to formulate appropriate questions. But
this is precisely my main, albeit obvious, conclusion—namely, that it is

important and productive to formulate and study the analogous barriers
and conjectures in reasonably natural structured settings. Of course,
I should admit that my perspective may distort the fact that specific instances

of these questions were studied in structured settings before the issues were
formulated generally. But in the general framework these issues have come
into clearer focus. There are several reasons why these issues should also
be pursued in structured settings.

1. The issues are usually of significant independent interest in the
different settings, especially when the model represents the "natural"
model.

2. Some structured models have the property, often by design, that
they are sufficiently "general with respect to a specific complexity
issue" that results in such a setting will yield a direct corollary for the
general theory.

3. A structured model may not be sufficiently general to yield direct
corollaries but nevertheless the proof techniques which are developed
may become paradigms for the general model.

In the following sections I would like to substantiate these points by
primarily considering the two structured models, SI (comparison based
models) and S2 (arithmetic models) mentioned initially. We will then
discuss a few other examples outside of these models to further emphasize
the utility of this viewpoint.

II. Comparison Based Models

I want to concentrate on a few examples of models which hopefully
will exemplify the utility of the structured viewpoint. The first model, or
rather class of models, is the comparison tree (see Knuth [73]). In a pure
comparison tree, we label the nodes of a tree by questions of the form
xi ^ xj • The model then can only solve problems dealing with "searching

and sorting". It is also sufficient to consider the input domain to be
{1,2, 77} for a problem of size n. On a given input, the computation
follows an appropriate path to a leaf, where the output takes place. Since


	I. Introduction and Conclusion

