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154 G. LACHAUD

où Sp (t) est la série singulière locale de F en /?, et

SA(t) S0(t)Sf(t);

la fonction SA (t) est appelée la série singulière globale de la forme F.

Introduisons enfin une dernière condition :

(SS 5) Il existe T > 0 telle que la fonction ct>0 e S (R") soit égale à 1 sur le

compact

{x e R" | F (x) ^ T}

Il vient donc immédiatement :

Proposition 1.19. Sous les conditions SS 1 à (SS 5 on a

Sa M SA ((t), t)

si t ^ T.

Chapitre II. Le theoreme de Hardy-Littlewood

Dans ce chapitre, on considère la forme de Fermât

(1) F(x)*= xi+ + xdn

où d est un entier pair ; et on va étudier le comportement asymptotique de la suite

(2) N(t) # {xeZ"|F(x) t},

lorsque t e N tend vers l'infini. Le théorème de Hardy-Littlewood (cf. [4],
P.N. II) s'énonce ainsi :

Theoreme 2.1. Supposons d ^ 3 et n > 2d.

On a alors

N(t) SA(t)(1+0 (t-9))

lorsque t tend vers l'infini, avec 0 > 0.
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Remarquons que pour établir le théorème 2.1., il suffit de démontrer que 1 on

a

(3) N(t) SA(t) + 0 (r^-1"0);

on a en effet

(4) SA (t) S0 (t) Sy (f) ;

mais le corollaire 1.16. et la proposition 1.17. impliquent que l'on a

(5) 1«S/(0«1,
et

(6) S0(t) Ko W(n/d)_1 ;

ceci montre que la relation (3) implique le théorème 2.1.

On pose maintenant

R [K/d] + 1

et II x ||o Max (\xt |0,|xn|0) si x (xl5x„) g Rn. On constate que si

Il x II o > R — 1, alors F (x) > t.

Soit Xß'la fonction caractéristique de l'intervalle | x |0 < R de la droite réelle,

et \|/ une fonction C00 positive sur R, telle que

i|/ (x) dx 1

et v|/ (x) 0 si | x |0 ^ 1/3 ; on pose

(7) cpo Xr * vl/,

de telle sorte que la fonction cp0 est C00 sur R, que le support de cp0 est inclus dans

l'intervalle | x |0 ^ R 4- (1/3), et que le support de la dérivée de cp0 est inclus dans

l'ensemble R — (1/3) ^ | x |0 ^ R 4- (1/3). La fonction cp0 est donc constante et

égale à (p0 (0) 1 si | x |0 ^ R — (1/3), et nulle si | x |0 ^ R + (1/3).

Pour tout p g R, on note cpp la fonction caractéristique de Zp dans Qp. Ceci

dit, pour x g A, on pose

(8) <PM n <PPW;
peP

si p g P et si x (xl5..., xn), on pose, dans ce chapitre II,

(9) <t>P M <Pp (*i) - <Pp (*„)
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de telle sorte que l'on a, si x g A",

(10) (j) (x)<p (xj <p (x„).

Avec ces notations, on a

(11) N (t) # {x g,Q" | (j) (x) — 1 et F(x) r},

puisque la condition <\> (x) 1 est équivalente aux deux conditions xgZJ pour
tout p g P, et c|)0 (x) 1 ; or si F (x) t, on a ())0 (x) 1. Pour Ç g A, nous
allons étudier la somme trigonométrique

(12) /©=!? (x)l(x%),
xeQ

qui est une somme finie puisqu'elle porte au plus sur les x g Z tels que | x |0 < R.

Il vient immédiatement

(13) I <|>(x)x(ÇF(x)).
xeQ"

La fonction / (Ç)n est l'analogue de la fonction de Gauss de F, en ce sens que dans

la relation (13) on somme sur Q au lieu d'intégrer sur A. En regroupant dans (13)
les vecteurs x ayant même image par F, il vient

/fë>"=Z xXm Z 4>M;
teQ F (x) — t

puisque les relations cj) (x) ^ 0 et x g Q" impliquent x g Z" et (J)0 (x) # 0,

puisque pour x g Z", on a

<j)0 (x) =1 si II x Ho < 1

et

60 (x) 0 si I! x ||o > R,

et puisqu'enfin si || x ||0 ^ R, on a F (x) > t, il s'ensuit que

(14) Z 4> (x) IV (t)
F (x) — t

si t g Z ; et si t $ Z tous les termes de cette somme sont nuls. On a donc

(15) f(Ç)nZ IV W X (tÇ).
teZ

et en utilisant la formule d'inversion de Fourier, qui s'applique bien évidemment

ici puisque la somme du second membre de (14) est finie, on parvient au résultat
suivant :
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Proposition 2.2. Si t e N on a, avec les notations précédentes,

N(t)=\
A/Q

Posons maintenant, pour E, e A,

(16) g&) <P M X (x%) dx

Proposition 2.3. Si n > 2d et d ^ 3, alors

sA (t) ^g®nx(-

Démonstration. La définition (16) de get les définitions (8) et (10) de <p et <(>

impliquent que l'on a

(17) g&" G* (<t>,

pour tout E,e A ; et ici les conditions (SS 1) à (SS 5) du chapitre I sont remplies ; le

théorème 1.18. implique que l'on a

g &x{-tQd$ Ga (<|>, -1) SA (4>, t)

et par la proposition 1.19, on a

SA (<|>, t') SA (0

pour t' ^ t, ce qui démontre la proposition 2.3.

Les propositions 2.2. et 2.3. montrent que la relation (3) se réécrit :

(18) /©"x(-rii) d%

A/Q
g(\rx(-t\)df, 0 (r— n (t(n/d)-1-0

Pour établir cette relation, nous allons utiliser une partie M de A, l'ensemble

majeur, tel que / (^)n et g (^)n soient négligeables hors de M et tel que la différence

/ (y — g (y s°il négligeable dans M. En fait, si 8 > 0, on pose

(19) M{£ e A | |Ç| 0^R-d+setß©<Ä5}
où Q (£,) est défini par la relation (12) du chapitre I.

L'Enseignement mathém., t. XXVIII, fasc. 1-2. U
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Lemme 2.4. Soit k la projection de A sur A/Q. Alors si 0 < A < B,

la restriction de n à l'ensemble

Re A | Klo<(2 By1et

est injective.

Démonstration. Si é, et sont dans A, on a les relations :

(20) + Max (6(^.0 fê')),

(21) e(-y-ôfë)-
Si £, et q sont dans l'ensemble décrit dans le lemme, on a donc

Q(Ç-^')<A et | Ç - |0 < B^1

d'où s'ensuit

< 1.

Or si rj e Q*, on a

I b lo Q("n) > i ;

il s'ensuit que si £, — e Q, alors £

On notera M l'image de l'ensemble majeur M (défini par la relation (19)) par

l'application n ; le lemme 2.4. montre que n est une bijection de M sur M. On

appelle M l'arc majeur de A/Q, et on pose

(22) m (A/Q) - M ;

l'ensemble m est l'arc mineur. Le résultat le plus délicat dans la démonstration du

théorème de Hardy-Littlewood est l'évaluation de / (£,)" sur m. On va établir le

résultat suivant:

Theoreme 2.5. Supposons n > 2D et ô < 1. On a alors

| f(Q \" dlq « R"-d~61

avec 0 > 0.

La démonstration du théorème 2.5. repose sur des résultats d'approximation
diophantienne. Le premier est simple :
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Lemme 2.6. Quel que soit N > 0, la restriction de n à l ensemble

(23) D (N) {t,e A\\Z,\oQ&<N-1 et Q&^ N}

est surjective.
En effet, soit £, e A ; il existe un x0eQ tel que — £, e pour tout p,

i.e. 0 (c, «ï 1. Par ailleurs, le théorème d'approximation de Dirichlet implique

qu'il existe x1 eQ tel que

l^i-xilo^ô^r1^"1 et 6(*i)<
Apposons ^ - X! ; on a Q (Ç2)^ Max (Q (£,), Q (xt)) < Max (1, N) 4 N

et il s'ensuit donc que G D (N).

Le deuxième résultat est plus subtil: c'est ïinégalité de Weyl:

Lemme 2.7. Soit K un polynôme à coefficients réels, de degré d et de

coefficient du terme de plus haut degré égal à a :

K (x) axd + oi1 xd_1 4-

et supposons que le nombre a admette une approximation par un nombre

rationnel a/Q tel que
a 1

Q

Alors, pour tout e > 0, on a

(a, Q) - 1, Q > 1, I oc - - | <

(24) I X exP (2inK M) I ^CR1+E {R~aD) + Q~il/D)+ (Rd/Q)-{1/D\
\x\0^R

avec D 2d~1 et où C ne dépend que de d et 8.

Pour une démonstration de ce résultat, nous renvoyons le lecteur à [1],
lemma 1. Si E, (£p) e A, posons

Ao + I < >
peP

où le nombre rationnel < > est défini par la relation (2) du Chapitre I. On a

où l'entier Q (£,) est défini comme d'habitude par la relation (12) du Chapitre I, et

où les entiers a (£) et Q (£) sont premiers entre eux. De plus

(26) / (£,) X X (A) X exP R}) •

\x\ <R l*|<Ä
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Supposons maintenant que l'image n (£) de é, dans A/Q soit dans m ; puisque
la fonction / est invariante sous Q, le lemme 2.6. permet de supposer que l'on a

(27) |Ç|o Q(t>)<R-d + * et Q(Q^Rd-'.
Mais la relation (25) implique

m} « ^i0;

on déduit donc des deux relations précédentes que

Q © Q©R"-' & '

et on peut appliquer le lemme 2.7. de Weyl avec K (x) — xd ; le membre de

gauche de la relation (24) n'est autre que l'expression (26) de / (£); si nous
examinons le membre de droite de la relation (24) avec les valeurs qui lui sont
données maintenant, on voit que

Rd/Q (Q » Rd

par la relation (27) ; et on a aussi

Q&> *ô;

en effet la relation (27) implique que | é, |0 < R~d + Ô; si on avait en outre
Q (£) ^ K5 alors n (£) serait dans M ce qui est contraire à l'hypothèse. On a donc

finalement, si 5 < 1,

(27.1) fg) « r1+'-Wd>

Le troisième résultat que nous allons utiliser est Yinégalité de Hua :

Lemme. Pour tout s > 0, on a

(27.2) 17 (^) |2jD àÇ « R2D~d+E.
A/Q

Démonstration. Soit Z l'ensemble produit de tous les Zp, pour p e P.

L'ensemble
D+ ]0, 1[ x Z

est un domaine fondamental de A/Q dans A, autrement dit la restriction de

la projection n à D + est injective et pour toute fonction g continue sur A/Q, on a

•i
9 (£) ^

A/Q 0 J
g fco, £/) à\f.

z
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Si ^ g D+, et si x g Z, on a

ce qui implique
X (x%) Xo (Ao) »

/©
où on a posé, pour g R,

/o (ko) I Xo (Ao) •

On a donc

\f(k)\2Ddk
A/Q

/ofêo)|2D^o,

et pour prouver (27.2) il suffit de montrer que l'intégrale du membre de droite de

la relation précédente est majorée par R2D~d+\ Ce qui est l'inégalité de Hua

comme énoncée et démontrée dans [1], lemma 2.

Pour démontrer le théorème 2.5., il suffit de remarquer que

i/fë)rdç < sup i/©r2D
A/Q ÇeA/Q

f(k)\2D ik;
A/Q

en utilisant (27.1) et (27.2), on voit que le membre de droite de cette expression est

majoré par RT, avec

on a donc

avec

T (n-2D) (1 + e - (8/D)) + 2D - d + 8 ;

T n — d —

0! (8/D) (n-2D) - 8 (n —2D — 1),

donc 0X est positif dès que n > 2D, ce qui établit le théorème 2.5.

Posons maintenant g ©n G (£), conformément à la relation (17).

Theoreme 2.8. Lorsque t tend vers l'infini et si n > 2d, on a

| G© |dÇ « Rn~d~«\
J A-M

avec 02 > 0.

Démonstration. Si é, g A — M, on a

I I > R~ä +&oug(Ç)>.R8;
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On a donc

(28)

G. LACHAUD

G & d* ^ Io (R) Jf + If (R) Jo (Ä)

et

/offl
|^o|>«"d + 5

Go Go) I <G0

MR)

A/

<2 (0 > R°

G G,) I <G/,

70 (Ä) f I G0 Go)
J R

<G0-

Rappelons que la fonction G0 dépend de R puisqu'elle dépend de <t>0 ; les relations

(7) et (9) montrent que 4>0 Go) < 1, et que l'on a

4>o (0) « Rn.

La proposition 1.10. montre que l'on a

(29) |G0Go)| « MaxfR-MSI)-«"*»

et il s'ensuit que

I G0 Go) I <Go « R" <G +
J Ml < R " " J |4| > R ~

« + (R-y-WV
«

D'autre part, la proposition 1.8. implique l'inégalité

| Ç \'{nld)

If (R)« ÔG)"^ d%r-,
Q<y>R

si nous écrivons n/d c+ e avec >2 et e > 0, il vient

If (R) « R- Q G)"c d%f
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et la relation (13) du chapitre I montre que l'intégrale figurant dans le membre

de droite converge ; on a donc

(30) If (R) J0 (R) « R"-d~£Ô.

D'autre part, et en faisant usage de la relation (29), il vient

Io (R) « l^lo(n/d) <%,
%\0>R-d + h

et donc

(31) I0 (R) « (OA*"1) Rn-d-t'

avec s' > 0; et puisque, toujours par la proposition 1.8., l'intégrale Jf est

convergente, les relations (28), (30) et (31) établissent l'estimation énoncée dans le

théorème 2.8.

Théorème 2.9. Pour tout é, e M, on a

f®-g®«Q&) R*.

Démonstration. Posons

h(x^) <p (x) x (x%),

où cp est définie par la relation (8), de telle sorte que

© £ (X, Ç)

et

Posons aussi

g& h (x, £) dx

h (x> l) 1 (*>') <ix

Alors on peut appliquer à la fonction \ (x) h (x, £) la formule de Poisson, et il
vient f(ï)- I A (x, y

jceQ

I Hv.ç),
peQ
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et donc

(32) / te) a ft). + I h OU) •

yto
Si £, 6 A posons qp (Q Max (1, |Çp|p).

Les fonctions h et h, sont décomposables ; nous noterons hp (resp hp) leurs
facteurs locaux.

Lemme 2.10. La fonction f hp(y,fy, définie sur Qp, est constante
modulo Zp et à support dans Zp.

Démonstration. Posons qp(fy q. Puisque q ^ 1, si | xl — x2 | ^ q~ \
alors xx et x2 sont tous deux dans Zp ou tous deux en dehors, et on a

<PP(*i) (x2) •

Si Xi et x2 ne sont pas dans Zp, on a

Mx2>£) 0.

Si Xi et x2 sont dans Zp, on a

I *1 - Alp< I *1 - *2 \p,
et donc

\xti-xtt\P^\xi-x2\p\^\p
si

\x1 - x2 \ ^ q'1
on a donc

I ~ lp < i,
et il s'ensuit que Xp(^q) %p (x^q) et par conséquent hp (xl9 q) (x2, q). La
fonction x -* hp (x, £) est donc constante modulo g Zp et à support dans Zp ; le

lemme s'ensuit immédiatement par dualité.

Lemme 2.11. Si ueS{R), on pose

(33) Il « Iii f I Z w(x + t)|2^-
J 0 xeZ

Alors

(34) X | Û(y)|< (1/273) Il u'|, •

y + o
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Démonstration. En appliquant l'égalité de Parseval-Bessel à la fonction

périodique u*(t)Z
xeZ

on obtient
•i

Z i " w i2

yeZ
U* (t)I2 dt Il u II?,

et en remplaçant u par sa dérivée u', il vient

4tt2 S \yû(y)\2 H u'II?.
yf 0

En appliquant l'inégalité de Cauchy-Schwarz aux suites | yû (y) | et | 1 /y |, où y

parcourt Z — {0}, on en déduit

[Z |ù(y)|]2^(7i2/3)(l/47r2)||^||f,
yf 0

d'où le lemme 2.11.

Lemme 2.12. Avec les notations précédentes, si 0 < a < R et e R on

Z K (y/a, Ç0) « aRd I 4o I
•

yf 0

Démonstration. Nous allons tout d'abord établir le résultat suivant. Soit
ueCc (R); on suppose que Supp u c= [ — R, +R] et on pose M (u')

sup | u' (x) |. Alors
R

(35) (1/a) Z I " (y/a) \«S(1/^/3)R M ("') •

yfO

En effet appliquons le lemme 2.11 à la fonction v (t) u(at); puisque v (y)
(1 la) û (y/a) on a

(Ma) Z I « (y/a)|< (1/2^3) Il t/nt
y + o

Mais puisque u (x) 0 si | x | > R, la fonction v' (x +1) au (ax + at) est nulle
si | x | > (R/a) + 1, donc a fortiori si | x | > 2R/a et

Z I Vf (x +t)Kz aM (u') (u'),
\x\^2R/a

d'où II v' Il
1 ^ 2RM (u') et la relation (35).

Ceci dit, on a

(d/dx) h (x, Ç0) Xo(Ao) (<Po (x) + cp0 (x)) ;
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or on peut choisir vj/ de telle sorte que 0 ^ v|/ (x) ^ 1, et alors

(Po M, V|> * Xr M
vérifie aussi 0 ^ (p0 (x) ^ 1 ; et puisque

<Po(x) v|/(* + ß) - \)f(x-R),

on a | (po (x) | ^ 2. En tenant compte du fait que

q>o (x) 0 si | x | > R + (1/3),

il vient donc finalement

(36) M {(d/dx) h0 (x, y) ^ CRd~1 | £, j0

où la constante C ne dépend ni de R ni de £0. En appliquant à h0 (x, £0) la relation
(35) et compte tenu de (36), on obtient le résultat du lemme 2.12.

Démonstration du théorème 2.9. La relation (32) implique

I Z \h(y, Ç)|,
yeQ*

et le lemme 2.10 montre que la somme de droite ne porte en réalité que sur les

y g Q* tels que qp (£) y e Zp pour tout p e P, donc tels que Q (£) y e Z ; par
ailleurs, puisque

(37) Kfoïp)

on a | hp {y, y | ^ 1 et donc

il s'ensuit

Xp (x"Ç + xy)d

h(y,ï)\ < \ K(y^o)\i

I / fé) - 9 &I < I (y/Q (4), y ;
yeZ-{0}

utilisant le lemme 2.12 pour majorer le membre de droite, il vient

/(Ç) - gfé)« Ä'ÜUIß®,
et comme | £0 | ^ R~d+Ssi% e M,lethéorème 2.9 est démontré.

Théorème 2.13. Si8< d/(2d+l), et si n > Ad, on a

fWx(-tQd% gWxi-tQdt, + n — d — 03\

avec > 0.
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Démonstration. La proposition 1.6 montre que

M«« Q

par ailleurs

g0 féo) « R ;

on a donc

(38) g®«RQ®^'d.
Remarquons maintenant que si 8 < d/(2d + 1) et £, e M, on a

(39) R&Q®< R

en effet la relation Q ®< Rà implique, puisque 8 (1 + (1 <1-8,

Q^ynm^Ri-s
Posons

K®f®n-si E, g M on a l'inégalité

(40) K (Ç) « Rn-l+è(^) -v

avec v > 2, comme on va le voir. Si on pose

k® f®-g®,
il vient, par la formule du binôme,

K©«Max(|kfê)'0fêr'|) (l^p^n),
mais le théorème 2.9. affirme que

k®« Rh Q ® ;

les inégalités (38) et (39) montrent donc que l'on a

k®pg®"-p « k»-i+s g (Ç)i-(o-u/«);

or si « ^ 3d +2, on a

1 — ((n — 1)/d) < -2,
ce qui établit (40) puisque 3d + 2 ^ 4d dès que d ^ 2.

Pour démontrer le théorème 2.13. il suffit donc d'estimer l'intégrale de K sur
M ; mais la relation (40) et la définition de M impliquent

K® d%«
M

Rn- 1+5

|So|<* — d + d
Ôfërv^/;

Ö(D<RS
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puisque v > 2, l'intégrale

est convergente et on a donc

Q^rvd^
A/

K © dt, « R" -d+l-25

ce qui établit le théorème 2.13. avec 03 1 — 25.

Nous pouvons maintenant démontrer le théorème 2.1. Rappelons que l'on a posé
D 2d~1. Supposons donc n > 2D, et dans la définition (19) de l'ensemble

majeur, choisissons 8 tel que

8 < d/(2d-\-1).

D'autre part soit 0 un nombre « suffisamment petit ». La proposition 2.2. affirme

que

N(t)
A/Q

f &)"%{-1%)

nous avons vu dans le théorème 2.5. que lorsque n > 2D, on a

|/(Ç) I" d%« R"'0-»

et dans le théorème 2.13., que si n >

fWx{-tt>)d$= f gWx(-ti,)dï, + 0
J M

Les trois relations précédentes impliquent donc que l'on a

N(t)= g(QnX(-tQ d\ + 0 (R"-d-0).

Rappelons que g (£)" G (£) et que si n > 2d, et d > 3, on a

I G(Ç)|dÇ « Rn~d-Q
J À-Af

par le théorème 2.8., et

sA (0 G (£,) X —
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par la proposition 2.3. Puisque Rd ~ t,ontire des trois relations précédentes que

sous les hypothèses faites (et en changeant 0 en on a

N (t) SA(t)+ 0(t("/d)_1_e)

qui n'est autre que la relation (3) et le théorème 2.1. est établi.
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