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154 . G. LACHAUD

ou S, (¢) est la série singuliére locale de F en p, et

Sa(t) = So(0) S, (1);

la fonction S, (t) est appelée la série singuliere globale de la forme F.
Introduisons enfin une derniere condition:

(SSS) Ilexiste T > 0 telle quela fonction ¢y €S (R") soit égale a1l sur le
compact

(xeR"|F(x) < T).

Il vient donc immeédiatement :

ProposITION 1.19.  Sous les conditions (SS1) a (SS5), on a

Sa(t) = Sx(d,1)

CHAPITRE II. LE THEOREME DE HARDY-LITTLEWOOD

Dans ce chapitre, on considere la forme de Fermat
(1) F(x) = x4+ ..+ x¢

oud est un entier pair; et on va étudier le comportement asymptotique de la suite

(2) N = #{xeZ'|F(x) =t},

lorsque t € N tend vers l'infini. Le théoreme de Hardy-Littlewood (cf. [4],
P.N. II) s’énonce ainsi:

THEOREME 2.1. Supposons d >3 et n > 2%
On a alors

N@) =S, (1+0(™%)

lorsque t tend vers linfini, avec 6 > 0.
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Remarquons que pour établir le théoréme 2.1., il suffit de démontrer que I'on
o) N () = Sa() + 067713
on a en effet
(4) Sa(t) = So (1) Sy (1)

mais le corollaire 1.16. et la proposition 1.17. impliquent que 'on a

(5) 1« S;(t) <1,
et |
(6) So (8) = Vo ™74,

ceci montre que la relation (3) implique le théoréme 2.1.
On pose maintenant

R=1[t"]+1,

et || x|lp = Max (| x;lg, - | Xplo) 81 X = (x4, .., X,) € R". On constate que si
| x|lo > R — 1, alors F (x) > t.

Soit y gla fonction caractéristique de I'intervalle | x |, < R dela droite réelle,
et  une fonction C* positive sur R, telle que

et y(x) =0si|x|, = 1/3; on pose
(7) | ®o = Ar * V,

de telle sorte que la fonction @, est C* sur R, que le support de ¢, est inclus dans
Pintervalle| x |, < R + (1/3),et quele support de la dérivée de @, est inclus dans
Pensemble R — (1/3) < | x|, < R + (1/3). Lafonction ¢, est donc constante et
égalea 9y (0) = I'si|x|o < R —(1/3),etnullesi| x|, = R + (1/3).

Pour tout p € P, on note ¢, 1a fonction caractéristique de Z, dans Q,. Ceci
dit, pour x € A, on pose

(8) : ¢x) = [T ¢,(x);

peP

sipe Petsix = (xy, .., x,), on pose, dans ce chapitre II,

(9) d)p (X) = (pp (xl) q)p (X")
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de telle sorte que 'on a, si x € A",

(10) ¢ (x) = @ (x1) - ¢ (x,).
Avec ces notations, on a
(11) Nt = #{xeQ"|d(x) =1 et F(x)=t},

puisque la condition ¢ (x) = 1 est équivalente aux deux conditions x € Z}, pour
tout pe P, et ¢o(x) = 1;0rsi F(x) =t ona ¢y(x) = 1. Pour § € A, nous
allons étudier la somme trigonométrique

(12) f@© = Z(:) ¢ (x) x (x€),

qui est une somme finie puisqu’elle porte au plus sur les x € Z telsque | x |, < R.
Il vient immédiatement

(13) FE = 2 &) x(EF(x).

xeQn

Lafonction f (£)"est 'analogue de la fonction de Gauss de F, en ce sens que dans
la relation (13) on somme sur Q au lieu d’intégrer sur A. En regroupant dans (13)
les vecteurs x ayant méme image par F, il vient

fE =2 x@E) Y ox);

teQ F(x) =1
puisque les relations ¢ (x) # 0 et x € Q" impliquent x € Z" et ¢, (x) # O,

puisque pour x € Z", on a

do(x) =1 st [[xfo<R-—1
et '
(bO(x) =0 Si Hx”() = R,

et puisqu’enfin si || x ||, = R, on a F (x) > t, il s’ensuit que
(14) Y d(x) =N
F(x)=1

siteZ;etsit¢Z tous les termes de cette somme sont nuls. On a donc

(15) fE =) NOxE),

teZ

et en utilisant la formule d’inversion de Fourier, qui s’applique bien évidemment
ici puisque la somme du second membre de (14) est finie, on parvient au résultat
suivant:
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PROPOSITION 2.2. Si teN on a, avec les notations précédentes,

N (1) = j £ ®) x (—t8) dE .
A/Q

Posons maintenant, pour § € A,

(16) g€ = j ¢ (x) x (x?€) dx .

PROPOSITION 2.3. Si n>2d et d =3, alors

Sa(t) = J g (&) x (—1tg) dg.

Démonstration. La définition (16) de g et les définitions (8) et (10) de ¢ et ¢
impliquent que 'on a

(17) g@E) = G, (9,9

pour tout & € A;eticiles conditions (SS 1) & (SS 5) du chapitre I sont remplies;; le
théoreme 1.18. implique que I'on a

J g &) x(—t)dg = GA (¢, —1) = Sa (P, 1)
et par la proposition 1.19, on a

Sa (1) = S5 (t)

pour t' < t, ce qui démontre la proposition 2.3.
Les propositions 2.2. et 2.3. montrent que la relation (3) se réécrit:

(18) j f @) x (=) dg — J g ) x (—t8)dg = 0(™P717%).
A/Q A

Pour établir cette relation, nous allons utiliser une partie M de A, 'ensemble

majeur, tel que f (§)" et g (€)" soient négligeables hors de M et tel que la différence
f(E)" — g (§)" soit négligeable dans M. En fait, si 8 > 0, on pose

(19) M= {EeA| |Elp <R et Q() < R%

ou Q (&) est défini par la relation (12) du chapitre 1.

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 11
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LEMME 24. Soit n laprojectionde A sur A/Q. Alorssi 0 < A < B,
la restriction de m a l'ensemble

{EeAl [Elo<(2B) " et Q8 < 4}

est injective.

Démonstration. St & et &' sont dans A, on a les relations:
(20) Q(E+E&) < Max (Q(8), 0 (¥)),
(21) Q(=8 = Q).
Si & et &' sont dans 'ensemble décrit dans le lemme, on a donc
QE—E)<A et |E—E],< B!
d’ou s’ensuit
1E -8 QE-E)<AB™ < 1.

OrsineQ* ona

Inle@M) = 1;

il s’ensuit que si & — &' € Q, alors & = &
On notera M I'image de I'ensemble majeur M (défini par la relation (19)) par
I'application 7; le lemme 2.4. montre que © est une bijection de M sur M. On

appelle M larc majeur de A/Q, et on pose
(22) m = (A/Q) — M;

Pensemble m est larc mineur. Le résultat le plus délicat dans la démonstration du

théoréme de Hardy-Littlewood est ’évaluation de f (£)" sur m. On va établir le
résultat suivant: '

THEOREME 2.5. Supposons n > 2D et & < 1. On a alors

j_u f© I dg « R4,

avec 0, > 0.
La démonstration du théoréme 2.5. repose sur des résultats d’approximation
diophantienne. Le premier est simple:
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LEMME 2.6. Quel que soit N > 0, la restrictionde m a Pensemble

(23) D(N) = {E€A| |E[QE <N™' et Q) <N

est surjective.

En effet, soit £ € A il existe un x, € Q telque §; = xo — § € Z, pour tout p,
ie. O (§;) < 1. Par ailleurs, le theoreme d’approximation de Dirichlet implique
qu’il existe x; € Q tel que |

| &1 — Xy o <Q(x;))"*N ' et Q(x) < N.

Posons &, = &, — x;;0na Q (§) < Max (Q (E,), @ (x,)) < Max (L, N) < N
et il s’ensuit donc que &, € D (N).
Le deuxiéme résultat est plus subtil: C’est l'inégalité de Weyl :

LEMME 2.7. Soit K un polynéme a coefficients réels, de degré d et de
coefficient du terme de plus haut degré égal a o.:

K(x) = ox? + o, x71 + .,

et supposons que le nombre o admette une approximation par un nombre
rationnel a/Q tel que

@0 =1,0>1, |a_g|<ég.

Alors, pour tout € > 0, ona

04| Y exp (inK (9)] < CRIT (R7UD) 4 0014 (RijQ)=(11D)

|xlo=R

avec D =291 etou C nedépend quede d et .
Pour une démonstration de ce résultat, nous renvoyons le lecteur a [1],
lemma 1. Si & = (§,) € A, posons

&} = =&+ ) <&, >,

peP

ou le nombre rationnel < &, > est défini par la relation (2) du Chapitre I. On a

(€)
(25) =25
5<% "oq

oul’entier Q (&) est défini comme d’habitude par la relation (12) du Chapitre I, et
ou les entiers a (§) et Q (§) sont premiers entre eux. De plus

(26) fE =Y x(x%) = Y exp(2inx?{E}).

|x| <R |x|<R
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Supposons maintenant que 'image 7 (§) de £ dans A/Q soit dans ;; puisque
la fonction f est invariante sous Q, le lemme 2.6. permet de supposer que I'on a

(27) €10 Q(E) < R™*® et Q(E) < R

Mais la relation (25) implique

a(g)
{8 — =1 =1€lo;
SATE ’
on déduit donc des deux relations précédentes que
a (&) 1 1
1 {&} - <

| < — < :
Q® “QER"T" Q)

et on peut appliquer le lemme 2.7. de Weyl avec K (x) = x? {£}; le membre de
gauche de la relation (24) n’est autre que l’expression (26) de f (§); si nous
examinons le membre de droite de la relation (24) avec les valeurs qui lui sont -
données maintenant, on voit que

RYQ (&) » R®
par la relation (27); et on a aussi
Q (&) > R®;
d+46.

en effet la relation (27) implique que ||, < R™%"°; si on avait en outre
0 () < R®alorsr () serait dans M ce qui est contraire a I’hypothése. On a donc
finalement, s1 6 < 1,

(27.1) f () « RLFe=@D)

Le troisieme résultat que nous allons utiliser est I'inégalité de Hua:

LEMME. Pour tout ¢ >0, ona

(27.2) J | (&) PP dE « R?P~da%e
A/Q

Démonstration. Soit Z Iensemble produit de tous les Z, pour peP.

L’ensemble
D" =10, 1[ x Z

est un domaine fondamental de A/Q dans A, autrement dit la restriction de
la projection ma D™ est injective et pour toute fonction g continue sur A/Q, on a

j g () dg = f f g (8o, &) dSp dE .
A/Q 0J1Z
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SiteD¥,etsixeZ,ona
1 (X€) = %o (x%o)
ce qui implique

f© = fo(Go)>

ou on a pose¢, pour &, € R,

fo o) = Z Xo (xdio)-

|x] <R

On a donc

J | £ (©)*P dE = j | fo (Bo) [*” d&o
A/Q 0

et pour prouver (27.2) il suffit de montrer que 'intégrale du membre de droite de
la relation précédente est majorée par R*?~79%¢ ce qui est I'inégalité de Hua
comme énoncée et démontrée dans [1], lemma 2.

Pour démontrer le théoréme 2.5., il suffit de remarquer que

J | f(&)]"dE < sup |f(§)|"_2DJ‘ | f(©)*Pdg;
AQ AIQ

EeA/Q

en utilisant (27.1) et (27.2), on voit que le membre de droite de cette expression est
majoré par RT, avec

T =®n—-2D)(1+¢e— (/D) +2D—d+ ¢,
on a donc
T =n—-d-20,,
avec
0, = (8/D)(n—2D) — e(n—2D—1),

donc 0, est positif dés que n > 2D, ce qui établit le théoréme 2.5.

Posons maintenant g (§)" = G (&), conformément a la relation (17).

THEOREME 2.8. Lorsque t tend vers linfinietsi n> 2d, ona
J |G (E)]dE « R*47%,
A-M ,
avec 6, > 0.

Démonstration. Si&e€ A — M, on a

|G| > R7™ ou Q(§) > R®;
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On a donc
(28) J G(E)dE < 14 (R)J; + 1,(R)J,(R),
A-M
avec
»
10 (R) = | Go (E;o) l d&o ’
J ]&O|>R*d+
Jf = |Gf(E_;f)|dE.~f,
J Ay
I, (R) = | G (Ep) | dEy,
Jow®>r®
et

Jo (R) = J | Go (o) | dEo -
R

Rappelons que la fonction G, dépend de R puisqu’elle dépend de ¢ ; les relations
(7) et (9) montrent que ¢, (§,) < 1, et que 'on a

by (0) <« R".
La proposition 1.10. montre que 'on a

(29) | Go (Eo) | « Max (R™4, &)~

et 1l s’ensuit que

J | Go (8o) 1 dEp < J R" dE + J | & |70 dg
R lgj<R—4 lg]>R—d
& Rn—d + (R—-d)l—(n/d) ,

« R" 4,

D’autre part, la proposition 1.8. implique I'inégalité

I;(R) « f Q &)~V dE,;
Q(E)>R
si nous écrivons n/d = ¢ + g avec ¢ > 2 et € > 0, 1l vient

I;(R) « R‘”’J Q (&) “dg,

As
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et la relation (13) du chapitre I montre que l'intégrale figurant dans le membre
de droite converge; on a donc

(30) I,(R)J,(R) « R*™47%%,

D’autre part, et en faisant usage de la relation (29), il vient

Iy (R) « J | €10 ™9 dE,
|Elo>R—d+3

et donc
(31) I, (R) <« RU-®a-1) — pn-d=¢

avec € > 0; et puisque, toujours par la proposition 1.8., I'integrale J, est.
convergente, les relations (28), (30) et (31) établissent 'estimation €énoncée dans le
théoréme 2.8.

THEOREME 2.9. Pour tout £€ M, ona

fE-9@<QER.

Démonstration. Posons

h(x, &) = ¢ (x) x (x),

ou ¢ est définie par la relation (8), de telle sorte que

f© = ZQh(xsi)
et

g (©) =J h(x, &) dx.

Posons aussi

il(y,&) = J‘ h(X,i)X(Xy) dx .

Alors on peut appliquer a la fonction h (x) = h (x, £)la formule de Poisson, et il
vient ‘

FE =73 hixe

xeQ

= Y h(y¢),

yeQ
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et donc

(32) fE =9g@E+ Y h(y¢.

y¥0

Si & € A posons g, (§) = Max (1, 1,l,) - X
Les fonctions h et h sont décomposables; nous noterons h, (resp h,) leurs
facteurs locaux.

LeEMME 2.10. La fonction y —. fzp (v, €), définie sur Q,, est constante
modulo Z, et a support dans q,(&)" ' Z,

Démonstration. Posons q,(£) = gq. Puisque ¢ > 1, si [ x; — x, | < g/,
alors x, et x, sont tous deux dans Z, ou tous deux en dehors, et on a

(pp (xl) = (pp (XZ) @
Si x, et x, ne sont pas dans Z,, on a

gp (xb &) = gp(xz, T;) =0.

Si x, et x, sont dans Z , on a

Ix(i —xgipg le _‘x2|p>

et donc
| x4& — x5E 1, < |x; — x2 [, 1E1,;
s1
le _x2| <q——la
on a donc

| x1€ — x381, < 1,

elil sensuil que x, (x{&) = x, (x3&) el par conséquent h, (x,, &) = h, (x,, £). La
fonction x — h, (x, £) est donc constante modulo g Z, et a support dans Z,; le
lemme s’ensuit immeédiatement par duailité. '

LeEMME 2.11. Si ueS(R), on pose

(33) nwﬁ=J‘|zuw+oPmﬁ
0 xeZ

Alors

(34) Slam) < /2/3) 0wl

y¥0




SERIE SINGULIERE ET PROBLEME DE WARING 165

Démonstration. En appliquant I'égalité de Parseval-Bessel a la fonction
périodique

u*(t) = ) u(x+1)),

xeZ
on obtient

1
2 laml? =J lu* () [P dt = [ul?,

yeZ 0

et en remplagant u par sa dérivée ', 1l vient
dn? 3 lya () 1> = Ilu .
y#0

En appliquant I'inégalité de Cauchy-Schwarz aux suites | y@i (y) | et | 1/y |, oi'y
parcourt Z — {0}, on en déduit

[;0 |4 (y) 12 < (n?/3) 1/4n®) | v 1T,
y
d’ou le lemme 2.11.

LEMME 2.12. Avec les notations précédentes,si 0 < a < R et e R on

Y, ho (v/a, &) « aR?| & | .

y¥0
Démonstration. Nous allons tout d’abord établir le résultat suivant. Soit
ue C,(R); on suppose que Suppu c [—R, +R] et on pose M (u)
= sup | u' (x) |. Alors
R

(35) (1/a) ;0 | (y/a) | < (1/3/3) R M ()

En effet appliquons le lemme 2.11 a la fonction v (t) = u (at); puisque ¥ (y)
= (1/a) 4 (y/a) on a

(1/a) ;O | (v/a) | < (1/2/3) | V' |, .

Mais puisque u (x) = Osi| x| > R,lafonctionv’ (x+¢t) = au’ (ax+ at) est nulle
si|x| > (R/a) + 1, donc a fortiori si | x| > 2R/a et

Yivx+l< Y aM @) = 2RM (),

|x]<2R/a
d’ou || v' ||; < 2RM (u) et la relation (35).
Ceci dit, on a
(d/dx) b (x, Eo) = %o (x"&o) (P (x) + 2imdx* "1 E; @4 (X)) ;
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ot on peut choisir \ de telle sorte que 0 <  (x) < 1, et alors

®o (x) = Y * g (x)

vérifie aussi 0 < @, (x) < 1; et puisque
®o (x) = V¥ (x+R) — V(x—R),

on a| @y (x)| < 2. En tenant compte du fait que

Qo(x) =0 si |x|>R + (1/3),
il vient donc finalement
(36) M ((d/dx) ho (x, &o)) < CR™H [ & o,

ou la constante C ne dépend ni de R ni de &,. En appliquant a h,, (x, £,)la relation
(35) et compte tenu de (36), on obtient le résultat du lemme 2.12.

Démonstration du théoréeme 2.9. La relation (32) implique

yeQ¥

et le lemme 2.10 montre que la somme de droite ne porte en réalité que sur les
y € Q* tels que q,(€) ye Z, pour tout p e P, donc tels que Q (§) ye Z; par
ailleurs, puisque

(37) hy (9, &) = j Yo (X' +xy) dx

Zp

on a | fzp (¥, €,) | < 1etdonc

lh (1, &) | < | he (3, E0) |
1l s’ensuit

1 fE) —g@®I< Y ho(y/Q(E),E);

yeZ — {0}

utilisant le lemme 2.12 pour majorer le membre de droite, il vient

fE) —g) <RIEIQ(E),

et comme | &, | < R79"%si £ e M, le théoréme 2.9 est démontré.
THEOREME 2.13. Si & < d/2d+1), etsi n > 4d, ona

J [ x(—t5)dg = J g (€ x (—t&)dE + O (R"17%),

| avec 05 > 0.
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Démonstration. La proposition 1.6 montre que

g;(8) « QE) 1

par ailleurs

go (o) < R
on a donc
(38) g(®) < RQE).
Remarquons maintenant que si & < d/(2d+1) et Ee M, on a
(39) RPQ@E) <RQE "

en effet la relation Q (£) < R® implique, puisque & (1 + (1/d)) < 1 — &,

Q (é)l +(1/d) < RI—B )
Posons

K(E€ = fE&"—g(@";

si £ € M on a l'inégalite
(40) K@ <« R Q ()™
avec v > 2, comme on va le voir. Si on pose

k@ = /0@ —-g(@©)),

il vient, par la formule du bindme,

K€ «Max (k&g ") (<p<n),

mais le théoréme 2.9. affirme que

k(€ « R°Q(8);

les inégalités (38) et (39) montrent donc que 'on a
k() g (B 7« R1TEQ ()b
orsin>=3d+ 2,ona
1 — ((n—1)d) < =2,

ce qui établit (40) puisque 3d + 2 < 4d dés que d > 2.
Pour déemontrer le théoreme 2.13. il suffit donc d’estimer I'intégrale de K sur
M ; mais la relation (40) et la définition de M impliquent

J K (§) dE « J R1TO J Q(§)vdE,,;
M lgo| <R "4+ Q (¢) <R®
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puisque v > 2, I'intégrale

J Q(§) " d¢;

est convergente et on a donc
J\ K (&) dE., « Rn~d+1—26
M

ce qui établit le théoréeme 2.13. avec 6; = 1 — 20.

Nous pouvons maintenant démontrer le théoréeme 2.1. Rappelons que I'on a posé

D = 27! Supposons donc n > 2D, et dans la définition (19) de I’ensemble
majeur, choisissons & tel que

§ < df2d+1).

D’autre part soit 6 un nombre « suffisamment petit ». La proposition 2.2. affirme
que

N(t) = J [ @) x(—1t§) dE;
AIQ

nous avons vu dans le théoréme 2.5. que lorsque n > 2D, on a

J | f(€)["dE « R"™47°

et dans le théoréme 2.13., que si n > 4d,

J_ F@E x(—16)dg = j g (&) x (—t€)dg + O(R"™*7F).

Les trois relations précédentes impliquent donc que 'on a
N (1) = j g &) x (—tE)d& + 0 (R 7).
M
Rappelons que g ()" = G(§) et quesin > 2d,etd > 3,0on a

J_ |G (€)]dE « R"™47°

par le théoreme 2.8., et

|
g
g
|
i

Sa(t) = J G (§) x (—15) dg
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par la proposition 2.3. Puisque R? ~ t, on tire des trois relations précédentes que
sous les hypothéses faites (et en changeant 0 en 6/d), on a

N (1) = Sx(e) + 0™ 179

qui n'est autre que la relation (3) et le théoréme 2.1. est établi.
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