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UNE PRÉSENTATION ADÉLIQUE
DE LA SÉRIE SINGULIÈRE

ET DU PROBLÈME DE WARING

par Gilles Lachaud

Introduction

Si F est une forme entière à n variables, notons UA (t), pour t e Z, l'ensemble

des points adéliques de la variété algébrique définie par la relation F (x) t.

Lorsque F est la forme de Fermât

F (x) x\ + + xdn,

G. H. Hardy et J. E. Littlewood ont appelé Série Singulière ce que nous écrivons

maintenant

sAt) M ^ M
(0

où cot est la forme de Leray sur UA (t), et où (j) est une certaine fonction standard

sur A".

Lorsque F est une forme quadratique, c'est A. Weil qui a introduit ces

intégrales sous cette forme dans [9], pour établir ce qu'il a nommé la formule de

Siegel. Celle-ci établit un lien entre l'intégrale SA (t) et le nombre

N(t) # {x e Z" I F (x) t}

qui s'écrit aussi

N (t)I 4> (x).
Uq(')

Pour les formes de degré supérieur, le théorème de Hardy-Littlewood affirme

que si F est la forme de Fermât, on a

N(t) ~ sAt)

lorsque t tend vers l'infini, si n > 2à\ ceci implique, puisque SA (t) tend vers
l'infini avec t, que tout nombre entier assez grand est somme de n puissances
d'ordre à.
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Pour les formes de degré supérieur la série singulière à été étudiée dans le

cadre adélique par T. Ono [7] et J. I. Igusa [5], [6]. Leurs conclusions sont
rassemblées dans le chapitre I. On pouvait penser qu'il était possible d'établir
dans ce cadre le résultat de Hardy et Littlewood : c'est ce que nous avons fait au

chapitre II, en reprenant la méthode du cercle adaptée ici au cercle adélique A/Q
et en utilisant la Formule de Poisson comme le suggèrent naturellement les

expressions de SA (t) et de N (t).

Nous espérons que l'approche que nous présentons ici permettra de traiter le

problème de Waring avec plus d'aisance dans le cas des autres corps adéliques,

qu'il s'agisse des corps de nombres algébriques ou des corps de fonctions, et aussi

dans d'autres cas que celui de la forme de Fermât.
J'ajoute que cet article est résumé dans [11], et que les résultats de [1] utilisés

ici sont repris dans le livre [12], qui vient de paraître au moment de la

publication de ce volume.
Je tiens à remercier J. P. Serre pour l'intérêt qu'il a montré pour le présent

travail, et aussi pour m'avoir communiqué deux lettres que P. Deligne lui a

adressées (datées des 14 et 17 novembre 1971); J. J. Sansuc, de qui j'ai appris
l'existence du mémoire [10] après la rédaction du présent article; et R. Danset

pour sa lecture attentive du manuscrit.

1. Définitions. Notons P l'ensemble des nombres premiers, | x \p la valeur

absolue p-adique du nombre x e Q, et | x |0 sa valeur absolue archimédienne.

L'ensemble P P u {0} est l'ensemble des places de Q. Nous noterons A

l'anneau des adèles de Q.

Pour tout x e Qp, écrivons

(somme qui ne comporte qu'un nombre fini de termes d'indice négatif non nuls)

et posons

Chapitre I. La transformation de Gauss

(i) x E Xnpn avec xn e {0, 1,1}ne Z

(2) < x > £ ;

n< 0
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