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UNE PRÉSENTATION ADÉLIQUE
DE LA SÉRIE SINGULIÈRE

ET DU PROBLÈME DE WARING

par Gilles Lachaud

Introduction

Si F est une forme entière à n variables, notons UA (t), pour t e Z, l'ensemble

des points adéliques de la variété algébrique définie par la relation F (x) t.

Lorsque F est la forme de Fermât

F (x) x\ + + xdn,

G. H. Hardy et J. E. Littlewood ont appelé Série Singulière ce que nous écrivons

maintenant

sAt) M ^ M
(0

où cot est la forme de Leray sur UA (t), et où (j) est une certaine fonction standard

sur A".

Lorsque F est une forme quadratique, c'est A. Weil qui a introduit ces

intégrales sous cette forme dans [9], pour établir ce qu'il a nommé la formule de

Siegel. Celle-ci établit un lien entre l'intégrale SA (t) et le nombre

N(t) # {x e Z" I F (x) t}

qui s'écrit aussi

N (t)I 4> (x).
Uq(')

Pour les formes de degré supérieur, le théorème de Hardy-Littlewood affirme

que si F est la forme de Fermât, on a

N(t) ~ sAt)

lorsque t tend vers l'infini, si n > 2à\ ceci implique, puisque SA (t) tend vers
l'infini avec t, que tout nombre entier assez grand est somme de n puissances
d'ordre à.
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Pour les formes de degré supérieur la série singulière à été étudiée dans le

cadre adélique par T. Ono [7] et J. I. Igusa [5], [6]. Leurs conclusions sont
rassemblées dans le chapitre I. On pouvait penser qu'il était possible d'établir
dans ce cadre le résultat de Hardy et Littlewood : c'est ce que nous avons fait au

chapitre II, en reprenant la méthode du cercle adaptée ici au cercle adélique A/Q
et en utilisant la Formule de Poisson comme le suggèrent naturellement les

expressions de SA (t) et de N (t).

Nous espérons que l'approche que nous présentons ici permettra de traiter le

problème de Waring avec plus d'aisance dans le cas des autres corps adéliques,

qu'il s'agisse des corps de nombres algébriques ou des corps de fonctions, et aussi

dans d'autres cas que celui de la forme de Fermât.
J'ajoute que cet article est résumé dans [11], et que les résultats de [1] utilisés

ici sont repris dans le livre [12], qui vient de paraître au moment de la

publication de ce volume.
Je tiens à remercier J. P. Serre pour l'intérêt qu'il a montré pour le présent

travail, et aussi pour m'avoir communiqué deux lettres que P. Deligne lui a

adressées (datées des 14 et 17 novembre 1971); J. J. Sansuc, de qui j'ai appris
l'existence du mémoire [10] après la rédaction du présent article; et R. Danset

pour sa lecture attentive du manuscrit.

1. Définitions. Notons P l'ensemble des nombres premiers, | x \p la valeur

absolue p-adique du nombre x e Q, et | x |0 sa valeur absolue archimédienne.

L'ensemble P P u {0} est l'ensemble des places de Q. Nous noterons A

l'anneau des adèles de Q.

Pour tout x e Qp, écrivons

(somme qui ne comporte qu'un nombre fini de termes d'indice négatif non nuls)

et posons

Chapitre I. La transformation de Gauss

(i) x E Xnpn avec xn e {0, 1,1}ne Z

(2) < x > £ ;

n< 0
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Le caractère de Tate xP de QP est défini par la relation

XP M exp + 2m < x >

D'autre part, si xeQ0 R, on pose

Xo M exp (-2inx).

Rappelons que si p e P, l'espace S (Qp) est constitué des fonctions localement

constantes à support compact sur Qp; si p 0, l'espace S(R") est l'espace des

fonctions Cx sur R", à décroissance rapide ainsi que toutes leurs dérivées, et

l'espace S (A") des fonctions standard sur A" est constitué des combinaisons

linéaires de fonctions :

(3) 4> M n 4>p (Xp).
peP

lorsque x (xp) e A, où c|)0 g S (Rn), où (f)p g S (Qp), et où de plus (j)p est égale à la

fonction caractéristique de Zp pour tout p e P sauf un nombre fini d'entre eux.
Si x (xp) g A, on pose

(4) xW n Xp(xp);
peP

la fonction x est le caractère de Täte (global) de A.

2. La transformation de Gauss. Soit F une forme entière à n

variables et de degré d, c'est-à-dire un polynôme homogène F e Z \_XU XJ de

degré d, et soit (j) une fonction standard sur A". La transformée de Gauss (pour la

forme F de la fonction (j) g S (An) est définie par la relation

(5) Ga((!>,$ 4> (x) X (x)) dx

où la mesure dx sur A" est la mesure de Haar telle que

dxp dxp >

peP

en prenant pour dx0 la mesure de Lebesgue et pour dxp la mesure de Haar sur Qnp

telle que Zp soit de mesure 1.

Pour montrer que cette intégrale converge, on peut supposer que <\> est
décomposable, c'est-à-dire de la forme donnée dans la relation (3) ; dans ce cas la
fonction GA (cj), £) est égale à un produit d'intégrales locales :

(6) ga (<t>, 0 n Gp(<tvig,
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avec, pour p g P, et Ç g Qp,

(7) Gp(ct)p,y <t>P M XP M)

3. Les places ultramêtriques. Nous allons étudier les intégrales (7)

dans le cas où p est un nombre premier, et où <\>p est la fonction caractéristique de

Znp\ on posera alors Gp (<$>p, £) — Gp © pour £ g Qp; si 11 — p | ^ 1, alors

G,® Gp(ti).
Si q pe avec e ^ 1, et si z g Z/gZ, on définit la somme de Gauss de F en z

par la relation

(8) Y,(F,z) yq(z) Xq (zF(x))t

où x parcourt l'ensemble (Z/qZ)n, où on a noté F la réduction modulo q de F, et

où on a posé

Xq(x) XpOTM

pour x g Zp, en notant x l'image de x dans Z/gZ. Il est clair que | yq (z) | ^ 1, et

que yq (0) 1. Nous renvoyons à [7], Ch. I, § 2 et § 3, pour la démonstration du
résultat suivant :

Théorème 1.1. Avec les notations précédentes, supposons £>eZp et q

pe avec e ^ 1 ; on a alors

Gp(q -^) - yq(l).

Posons maintenant, si X est un corps et si F est une forme à coefficients dans

X :

Ax (F) - {x g F" | dF (x) 0}

La relation d'Euler implique que si le degré de F est premier à la caractéristique
de X, l'ensemble algébrique AK (F) est inclus dans le cône d'équation F 0.

Définition 1.2. On dit que la forme F est fortement non-dégénérée sur X si

A* (F) {0}.

Si la forme F est définie sur Z, on pose Ap (F) Ax (F) si X Qp ; on pose

aussi Äp (F) Ax(F)siX Fp et si F est la réduction modulo p de F. On pose

encore, si F est une forme de degré d,

E (F) {p e P \p\dou&p (F) # 0} ;
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si F est fortement non-dégénérée sur Q, l'ensemble Z (F) est fini. Enfin, pour tout
entier d ^ 3, on pose

Z(d) {peP\p ^ (d-1)6}.

Theoreme 1.3. Supposons n > d ^ 3, et la forme F fortement non-

dégénérée sur Qp. Soit c()eS(Qp); alors si £, g Qp et si \Z}\p > 1, on a

I Gp(4>,01 < Cp

avec Cp 1 si c() est la fonction caractéristique de Znp et si

Donnons quelques indications sur la démonstration de ce résultat. Igusa a

établi l'inégalité figurant dans le théorème pour tout p et toute c|)gS (Qp), avec

une constante Cp qui peut être éventuellement > 1, en utilisant sa théorie des

développements asymptotiques et le principe de résolution des singularités, qui
est explicite dans le cas des formes fortement non-dégénérées. Nous renvoyons
pour cela à [5], Corollary to Theorem 1, et [6], chapter III, § 5, relation (106).

D'autre part, si | ê, |p q > 1 et si cj> est la fonction caractéristique de Zp, le

théorème 1.1. montre que

Gp(<t>,y Gpft) q~lXXp(^W);
x mod q

si on pose <^>p û/^f, on en déduit, par définition du caractère de Tate, que

(9) GP(Ç) q'1X exp {2ma F (x)/q).
x mod q

Par ailleurs, on dispose du résultat suivant, démontré par Deligne (cf. [2],
Théorème 8.4. et [8], Corollaire 6.3.):

Théorème 1.4. Si (a, p)1 et si $ S alors

I X exP (2inaF(x)/p)|< 1)" p"12
x mod p

Puisque d^3, on a

(d—1)" p"12< C

avec Cp (d-1)" p"("/6); on déduit donc du théorème 1.3. et de la relation (9)
que l'on a

|GPŒ| <
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pour p $ Z (F), avec Cp 1 si p £ Z (d). On passe de là au cas où | £ \p pe avec

e > 1 par la méthode usuelle de réduction : cf. [5], lemma 1 et lemma 2.

Remarque. Supposons que F soit la forme de Fermât :

F (x) x\ + + xdn

Celle-ci est fortement non dégénérée sur Qp quel que soit p, et F est fortement
non-dégénérée sur Fp si p ne divise pas d. Pour cette forme, il est possible d'établir
l'inégalité du théoreème 1.3. par des moyens « élémentaires ». En effet, posons

(10) gp& }Zp

on a alors

(H) GP (S) g„ (S)" ;

là encore, si | £, \p q > 1, on voit que

9p (^) Z Xp (&d) ;

jc mod q

et si < ^ > p a/q, il vient donc

dp (Q X exP ;
x mod q

et le résultat suivant est aisé à établir (cf. [1], Lemma 12):

Proposition 1.5. Si {a, p) 1 et si r (d,p— 1), alors

| X exP (2inaxd/p)\1) p1'2.
x mod p

On déduit donc de la proposition 1.5. que si p ne divise pas d, on a la relation

lorsque | \ \p p, avec Cp 1 si p $X(d) ; enfin, des calculs élémentaires et la
méthode usuelle de réduction (cf. [1], Lemmas 13,14 et 15) permettent d'établir
la

Proposition 1.6. Avec les notations précédentes, on a

IMÖI
où C.1 si p4£(d).
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Vu la relation (10), la proposition 1.6. implique l'inégalité figurant dans le

théorème 1.3. pour la forme de Fermât.
Les résultats précédents impliquent le

Corollaire 1.7. Si n > d, alors la fonction Gp (4), £) est intégrable

sur Qp.

Posons maintenant, pour é, g A,

(12) Q&= n Max(l,|^|p),
peP

de telle sorte que Q (Ç) ne dépend que de la projection de £ sur l'espace Af dés

adèles finis (rappelons que A R x Aj). Si c|> g S (A"), posons

Gf(c|>,|) UGftorî,
peP

pour g Ar.

Corollaire 1.8. Supposons F fortement non-dégénérée sur Qp pour
tout p g P. Alors

Gf®«Q(Z,rMd);
en particulier, la fonction Gf (4), Ç) est intégrable sur Af lorsque n > 2d.

Démonstration. Si | é, \p ^ 1, et si 4> est la fonction caractéristique de Zp, la
relation (7) montre immédiatement que Gp (4>, Çp) 1. Ceci, joint au Théorème
1.3., implique donc que l'on a

I GpC4>,y I < cp Max (1, | Ç

avec Cp 1 pour presque tout p e P ; i\ s'ensuit que

IM^I ^(n cP)Q&rin,d)-
psP

Pour prouver la dernière assertion du corollaire, écrivons

Max (1, | % |,)-w>Q&-(n,d) n
A/ peP J

or

(î-p-1)d-P1-5)-1 p1-' ^ (î—2i-s) ;

KU>i

l s'ensuit que

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 10
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Max (1, | \p)~s dt, ^ 1 + Cpl'\
/ Qp '

avec C 1 — 21_s, et donc que l'on a

(13) f Q(^)~sd^ < n (l + Q?1-*);
J A/ peP

ce produit infini convergeant si 5 > 2, on voit donc que la fonction Gf est

intégrable si n > 2d.

4. La place archimedienne Si p 0, on dispose de résultats

analogues à ceux de la section précédente.

Theoreme 1.9. Supposons F fortement non-dégénérée sur R, et soit
<t>0 e S (R"). Alors on a

| G0 (CK, y K C Max (1,1 ^ |)-w>

pour tout £, g R", avec une constante C dépendant de cj>0.

Pour démontrer le théorème 1.9., on peut utiliser le prolongement analytique
de la distribution F5, ce qui peut être effectué en résolvant les singularités de la
forme F à l'origine ; on renvoie encore à Igusa [5], n° 2 et [6], chapter III, §5, pour
une démonstration du théorème 1.9.

Remarque. Dans le cas où F est la forme de Fermât on peut préciser les

résultats comme suit.

Supposons que

iW <Po (*i) - <Po (x„),

pour x (xl5..., xj g Rn, où cpo est une fonction de S (R) telle que 0 ^ cp0 ^ 1,

et posons

'^(<j>o) <Po (0)~d •

Proposition 1.10. Avec les notations et hypothèses précédentes, on a

| G0 (4>o, Ç) I < C Max (A ((t)0), I % |0

pour tout E, eR", où la constante C est indépendante de 4>0.
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Démonstration. Posons

9o &

Alors on a d'une part

cp0 (x) exp (-2inx%) dx

(14) I g0 & I ^

et d'autre part, en posant t x%

Qo ® d-'\^ |o(1/d) 9o

(p0 (x) dx 00 (0) »

(t1/d^ {1/d)) exp — 2int) t(1/d) 1 dt,

et l'intégrale de droite est majorée par l'intégrale convergente

/ exp — 2int) til/d) 1 dt,

puisque 0 ^ (p0 ^ 1. On a donc

(15) g0&« I ^ lo(1/d) -

les relations (14) et (15) impliquent donc

00 « Min (<Po (°). I % lo <1/d))

« Max [A (<t>o), 11, |)"(1/d)

ce qui établit la proposition 1.10, puisque

g0 £)» G0 (<j>o, Ö •

Pour résumer les résultats obtenus, nous introduisons les hypothèses
suivantes :

(SS 1) On a n > 2d et d ^ 3 ;

(SS 2) La forme F est non-dégénérée sur Qp pour tout p e P.

En regroupant les résultats obtenus pour les places ultramétriques et pour la

place archimédienne, c'est-à-dire le corollaire 1.8. et le théorème 1.9., on parvient
au résultat suivant:
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Theoreme 1.11. Sous les conditions (SS 1) et (SS 2) l'intégrale

4> M x (y7 M) dx

est convergente pour tout E, g A et définit une fonction intégrable sur A.

5. La série singulière. Si p g F et si t g Qp on pose

Up(t) {xgQJ|F(x) t};

Puisque F est homogène, l'hypersurface Up (t) est non singulière si t # 0. Si

x e Up (t), et si ôF/dxk (x) / 0, on pose

G), (x) (— l)fc 1 (ôF/dxk) 1
dxx A A ^ A A dxn,

où la notation dxk signifie que l'on omet dxk.

Les cûfc se recollent pour former une forme différentielle cot (x) de degré n — 1

sur Up (t), et on a

(16) œt (x) A dF (x) dx ;

la forme différentielle co, est appelée la forme de Leray de Up (t).

Si (j) e S (Qnp), et si t g Q*, on pose

(17) Spfat) (j) (x) co, (x).
dp (t)

Si <\> est la fonction caractéristique de ZJ, la fonction Sp (t) Sp (<(>, t) est appelée
la série singulière locale de F en p.

Theoreme 1.12. Soit peP; si F est fortement non-dégénérée, la

fonction Sp (4>, t) est intégrable sur Qp et on a, pour £, g Qp,

S„(4>,ä;) GP(<|>,Ç);

de plus, si n > d on a

Gp(4>,-t) sp(<t>,0

pour t e Q* et 4> e S (Qp).
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Démonstration. La relation (16) implique que si cj) g S (Qp), on a la relation

(18) <\> (x) dx
F (x) f 0

dt (j> (x) cof (x) ;

up (t)

puisque F est fortement non-dégénérée, l'hypersurface Up (0) est non singulière

hors de l'origine, et donc de mesure nulle ; ceci prouve que Sp (<|>, t) est intégrable.

D'autre part

Sp (<l>, Ö sp (4>, t) XP &) dt

xPm M co, (x)

F (x) f 0

Up (t)

<l> (x) Xp (Z,F W) dx

puisque Up (0) est de mesure nulle. Ceci établit la première relation que nous

avions en vue. Enfin, le Corollaire 1.7. (si p e P) ou le Théorème 1.9. (si p 0]

montrent que la fonction Gp (<(>, £) est intégrable sur Qp si n > d ; la première

relation que nous avons établie implique donc, via la formule d'inversion de

Fourier, que l'on a

Gp (c|>, - t) Sp(ej), t)

pour presque tout te Qp ; mais le théorème de Lebesgue et le théorème des

fonctions implicites montrent que la fonction Sp (<J>, t) est continue si t # 0 (cf.

[6], p. 75); ceci établit donc la seconde assertion du théorème 1.12.

Remarque 1.13. A titre d'exercice, et bien que cela ne soit pas utilisé par la

suite, montrons comment on peut retrouver, lorsque F est la forme de Fermât,
l'expression usuelle de la Série Singulière. La relation

SP(t) Gp(-t)

se réécrit

Sp{t) Cpfë) Xp(-t

» i + Z
1 p~e: z*

Gp®Xp(-t®d$,
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puisque Gp (Ç) 1 si £, e Zp d'après le théorème 1.1.; ce théorème implique

encore que l'on peut écrire l'expression précédente sous la forme

MO 1 + I f
«gi J

YP.(ï\)Xp(-tP eTlpe \ Kp
Z*

où q est la classe de q modulo peZp, et où ype est défini par la relation (8) ; il
s'ensuit que l'on a

(19) Sp(t)1 + X A(p<),
e ^ 1

ou on a pose, si q pe

a i 7„<n)Xp(~
1

^"n -

Zp

Mais en posant q a + qÇ avec a e (Z/qZ)* et Ç e Zp, il vient immédiatement

(20) /I (q) X 7i (a) exP inta/q) ;
(a, q) 1

si F est la forme de Fermât, on a

(21) y, (a) («T1 Z exp
x mod q

et les relations (19), (20) et (21) donnent l'expression de la série singulière locale

figurant par exemple dans [4], P.N.II et [1], [3].
Posons maintenant, si p e P et si q pe avec e ^ 1,

Mq(t) # {xe(Z/qZy\F(x) t)

Proposition 1.14. Avec les notations précédentes, si q est assez grand, on

a Sp(t) Mq
1

•

Démonstration. La fonction Sp est localement constante sur Q* (cf. [6],
p. 83); il s'ensuit que pour tout t # 0, il existe un entier e tel que

Sp{s) Sp{t) si | s - [ <

soit a la fonction caractéristique de l'ensemble

{x <QJ|| Fix)<
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Si § est la fonction caractéristique de Znp, on a alors, en vertu de la relation (18),

a (x) cj) (x) dx ds a (s) (j) (x) ws (x)
up (s)

SPq(s)ds q
1

Sp(t);

par ailleurs
\s~t\

a (x) § (x) X
y mod <Z *

a (x) dx
y + iZp

Mq(t) dx
«zp

q~nMq(t),

et la proposition 1.14. est donc démontrée.

Proposition 1.15. Supposons n > d 3, et la forme F non-dégénérée

sur Qp. On a alors pour tout t e Qp:

I (t) — 1 | <

si p ^ E (F) u X (d), où C ne dépend que de n et d.

Démonstration. Le théorème 1.12. affirme que Sp (t) — t) ; et puisque
Gp 1 sur Zp, il s'ensuit que

t S, (r) - 1 I <
|fch>i

GAQ\dt,i

en invoquant le théorème 1.3., on en déduit que

|Sp(r) - 1 I <
iqP>i

«S (1 —P" ') (1 —P1 " 1

(1 — 21 ~ 1 p1 ~

ce qui prouve la proposition 1.15.

Corollaire 1.16. Supposons les conditions (SS 1) et (SS 2) satisfaites et
soit (j) une fonction décomposable de S (A") ;
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a) le produit infini

sf(ht) n sr(<M)
peP

converge, et

Sf (cj), t) « 1 ;

b) Supposons que UA(t) soit non vide si t est assez grand et aussi que la
condition suivante soit remplie :

(SS3) Pour tout p e P, la fonction <\>p est la fonction caractéristique de

Z"P-

Alors, si t est assez grand, on a

Sf (cj), t) » 1

Démonstration. Le a) est une conséquence directe de la proposition 1.15. On
déduit aussi de cette proposition que l'on a

n sp(t)»i,
p**

où Z' est le complémentaire d'un ensemble fini. En effet, choisissons s tel que
1 < s < (n/d) — 1 ; on a alors

1 - Cp~1(n/d) ^ 1 - p~s

pour tout p $ Z (C), où Z (C) est un ensemble fini ; si on pose

Z' £ (C) u Z (d) uZ(F),

où C est la constante figurant dans l'inégalité de la proposition 1.15., on a

(22) nsP(^nd-n»i.
P&-' P&-'

Par ailleurs, si UA (t) / 0, alors Up (t) / 0 pour tout p e P, et on sait que
l'ensemble

{xe(Z/p*Zr|F(x) t}

est non vide pour tout e ^ 1 si et seulement si Up (t) est non vide ; la proposition
1.14. montre donc que si UA (t) / 0, alors Sp (t) > c pour tout p g P, ce qui

prouve que l'on a

(23) nv')»i,per
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et les relations (22) et (23) établissent donc la partie b) du corollaire 1.16.

Signalons en passant le résultat suivant (cf. la démonstration du lemme 11 de

[1]):

Proposition 1.17. Si F est la forme de Fermât et si n est un entier pair
vérifiant n ^ 4d, alors UA (t) est non vide.

6. La formule globale. Le corollaire 1.16. implique que le produit des

mesures (cd,)p sur Up (t), pour p e P, définit une mesure co sur l'ensemble UA (t)
des points adéliques de la variété F (x) f. Si <)> e S (An), on pose

SA (<t>, t) <|> (x) CD, (w) ;

"a «>

le corollaire 1.16. montre que cette intégrale converge, et les théorèmes 1.11. et
1.12. impliquent le

Théorème 1.18. Si les conditions (SS 1) et (SS 2) sont satisfaites, on a

Sa (ht) ÔA(h ~t)•
Supposons maintenant

(SS 4) La forme F est anisotrope sur R.

Sous la condition (SS 4), l'intégrale

S0 (0 CD, (X)
C0 (t)

est convergente, et il est clair que l'on a

S0(t) Vq t(n/d) ~1

avec

V0 CDi (X)
J Co(l)

Posons, pour te Z

srit) n s,®,
peP
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où Sp (t) est la série singulière locale de F en /?, et

SA(t) S0(t)Sf(t);

la fonction SA (t) est appelée la série singulière globale de la forme F.

Introduisons enfin une dernière condition :

(SS 5) Il existe T > 0 telle que la fonction ct>0 e S (R") soit égale à 1 sur le

compact

{x e R" | F (x) ^ T}

Il vient donc immédiatement :

Proposition 1.19. Sous les conditions SS 1 à (SS 5 on a

Sa M SA ((t), t)

si t ^ T.

Chapitre II. Le theoreme de Hardy-Littlewood

Dans ce chapitre, on considère la forme de Fermât

(1) F(x)*= xi+ + xdn

où d est un entier pair ; et on va étudier le comportement asymptotique de la suite

(2) N(t) # {xeZ"|F(x) t},

lorsque t e N tend vers l'infini. Le théorème de Hardy-Littlewood (cf. [4],
P.N. II) s'énonce ainsi :

Theoreme 2.1. Supposons d ^ 3 et n > 2d.

On a alors

N(t) SA(t)(1+0 (t-9))

lorsque t tend vers l'infini, avec 0 > 0.
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Remarquons que pour établir le théorème 2.1., il suffit de démontrer que 1 on

a

(3) N(t) SA(t) + 0 (r^-1"0);

on a en effet

(4) SA (t) S0 (t) Sy (f) ;

mais le corollaire 1.16. et la proposition 1.17. impliquent que l'on a

(5) 1«S/(0«1,
et

(6) S0(t) Ko W(n/d)_1 ;

ceci montre que la relation (3) implique le théorème 2.1.

On pose maintenant

R [K/d] + 1

et II x ||o Max (\xt |0,|xn|0) si x (xl5x„) g Rn. On constate que si

Il x II o > R — 1, alors F (x) > t.

Soit Xß'la fonction caractéristique de l'intervalle | x |0 < R de la droite réelle,

et \|/ une fonction C00 positive sur R, telle que

i|/ (x) dx 1

et v|/ (x) 0 si | x |0 ^ 1/3 ; on pose

(7) cpo Xr * vl/,

de telle sorte que la fonction cp0 est C00 sur R, que le support de cp0 est inclus dans

l'intervalle | x |0 ^ R 4- (1/3), et que le support de la dérivée de cp0 est inclus dans

l'ensemble R — (1/3) ^ | x |0 ^ R 4- (1/3). La fonction cp0 est donc constante et

égale à (p0 (0) 1 si | x |0 ^ R — (1/3), et nulle si | x |0 ^ R + (1/3).

Pour tout p g R, on note cpp la fonction caractéristique de Zp dans Qp. Ceci

dit, pour x g A, on pose

(8) <PM n <PPW;
peP

si p g P et si x (xl5..., xn), on pose, dans ce chapitre II,

(9) <t>P M <Pp (*i) - <Pp (*„)
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de telle sorte que l'on a, si x g A",

(10) (j) (x)<p (xj <p (x„).

Avec ces notations, on a

(11) N (t) # {x g,Q" | (j) (x) — 1 et F(x) r},

puisque la condition <\> (x) 1 est équivalente aux deux conditions xgZJ pour
tout p g P, et c|)0 (x) 1 ; or si F (x) t, on a ())0 (x) 1. Pour Ç g A, nous
allons étudier la somme trigonométrique

(12) /©=!? (x)l(x%),
xeQ

qui est une somme finie puisqu'elle porte au plus sur les x g Z tels que | x |0 < R.

Il vient immédiatement

(13) I <|>(x)x(ÇF(x)).
xeQ"

La fonction / (Ç)n est l'analogue de la fonction de Gauss de F, en ce sens que dans

la relation (13) on somme sur Q au lieu d'intégrer sur A. En regroupant dans (13)
les vecteurs x ayant même image par F, il vient

/fë>"=Z xXm Z 4>M;
teQ F (x) — t

puisque les relations cj) (x) ^ 0 et x g Q" impliquent x g Z" et (J)0 (x) # 0,

puisque pour x g Z", on a

<j)0 (x) =1 si II x Ho < 1

et

60 (x) 0 si I! x ||o > R,

et puisqu'enfin si || x ||0 ^ R, on a F (x) > t, il s'ensuit que

(14) Z 4> (x) IV (t)
F (x) — t

si t g Z ; et si t $ Z tous les termes de cette somme sont nuls. On a donc

(15) f(Ç)nZ IV W X (tÇ).
teZ

et en utilisant la formule d'inversion de Fourier, qui s'applique bien évidemment

ici puisque la somme du second membre de (14) est finie, on parvient au résultat
suivant :
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Proposition 2.2. Si t e N on a, avec les notations précédentes,

N(t)=\
A/Q

Posons maintenant, pour E, e A,

(16) g&) <P M X (x%) dx

Proposition 2.3. Si n > 2d et d ^ 3, alors

sA (t) ^g®nx(-

Démonstration. La définition (16) de get les définitions (8) et (10) de <p et <(>

impliquent que l'on a

(17) g&" G* (<t>,

pour tout E,e A ; et ici les conditions (SS 1) à (SS 5) du chapitre I sont remplies ; le

théorème 1.18. implique que l'on a

g &x{-tQd$ Ga (<|>, -1) SA (4>, t)

et par la proposition 1.19, on a

SA (<|>, t') SA (0

pour t' ^ t, ce qui démontre la proposition 2.3.

Les propositions 2.2. et 2.3. montrent que la relation (3) se réécrit :

(18) /©"x(-rii) d%

A/Q
g(\rx(-t\)df, 0 (r— n (t(n/d)-1-0

Pour établir cette relation, nous allons utiliser une partie M de A, l'ensemble

majeur, tel que / (^)n et g (^)n soient négligeables hors de M et tel que la différence

/ (y — g (y s°il négligeable dans M. En fait, si 8 > 0, on pose

(19) M{£ e A | |Ç| 0^R-d+setß©<Ä5}
où Q (£,) est défini par la relation (12) du chapitre I.

L'Enseignement mathém., t. XXVIII, fasc. 1-2. U
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Lemme 2.4. Soit k la projection de A sur A/Q. Alors si 0 < A < B,

la restriction de n à l'ensemble

Re A | Klo<(2 By1et

est injective.

Démonstration. Si é, et sont dans A, on a les relations :

(20) + Max (6(^.0 fê')),

(21) e(-y-ôfë)-
Si £, et q sont dans l'ensemble décrit dans le lemme, on a donc

Q(Ç-^')<A et | Ç - |0 < B^1

d'où s'ensuit

< 1.

Or si rj e Q*, on a

I b lo Q("n) > i ;

il s'ensuit que si £, — e Q, alors £

On notera M l'image de l'ensemble majeur M (défini par la relation (19)) par

l'application n ; le lemme 2.4. montre que n est une bijection de M sur M. On

appelle M l'arc majeur de A/Q, et on pose

(22) m (A/Q) - M ;

l'ensemble m est l'arc mineur. Le résultat le plus délicat dans la démonstration du

théorème de Hardy-Littlewood est l'évaluation de / (£,)" sur m. On va établir le

résultat suivant:

Theoreme 2.5. Supposons n > 2D et ô < 1. On a alors

| f(Q \" dlq « R"-d~61

avec 0 > 0.

La démonstration du théorème 2.5. repose sur des résultats d'approximation
diophantienne. Le premier est simple :
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Lemme 2.6. Quel que soit N > 0, la restriction de n à l ensemble

(23) D (N) {t,e A\\Z,\oQ&<N-1 et Q&^ N}

est surjective.
En effet, soit £, e A ; il existe un x0eQ tel que — £, e pour tout p,

i.e. 0 (c, «ï 1. Par ailleurs, le théorème d'approximation de Dirichlet implique

qu'il existe x1 eQ tel que

l^i-xilo^ô^r1^"1 et 6(*i)<
Apposons ^ - X! ; on a Q (Ç2)^ Max (Q (£,), Q (xt)) < Max (1, N) 4 N

et il s'ensuit donc que G D (N).

Le deuxième résultat est plus subtil: c'est ïinégalité de Weyl:

Lemme 2.7. Soit K un polynôme à coefficients réels, de degré d et de

coefficient du terme de plus haut degré égal à a :

K (x) axd + oi1 xd_1 4-

et supposons que le nombre a admette une approximation par un nombre

rationnel a/Q tel que
a 1

Q

Alors, pour tout e > 0, on a

(a, Q) - 1, Q > 1, I oc - - | <

(24) I X exP (2inK M) I ^CR1+E {R~aD) + Q~il/D)+ (Rd/Q)-{1/D\
\x\0^R

avec D 2d~1 et où C ne dépend que de d et 8.

Pour une démonstration de ce résultat, nous renvoyons le lecteur à [1],
lemma 1. Si E, (£p) e A, posons

Ao + I < >
peP

où le nombre rationnel < > est défini par la relation (2) du Chapitre I. On a

où l'entier Q (£,) est défini comme d'habitude par la relation (12) du Chapitre I, et

où les entiers a (£) et Q (£) sont premiers entre eux. De plus

(26) / (£,) X X (A) X exP R}) •

\x\ <R l*|<Ä
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Supposons maintenant que l'image n (£) de é, dans A/Q soit dans m ; puisque
la fonction / est invariante sous Q, le lemme 2.6. permet de supposer que l'on a

(27) |Ç|o Q(t>)<R-d + * et Q(Q^Rd-'.
Mais la relation (25) implique

m} « ^i0;

on déduit donc des deux relations précédentes que

Q © Q©R"-' & '

et on peut appliquer le lemme 2.7. de Weyl avec K (x) — xd ; le membre de

gauche de la relation (24) n'est autre que l'expression (26) de / (£); si nous
examinons le membre de droite de la relation (24) avec les valeurs qui lui sont
données maintenant, on voit que

Rd/Q (Q » Rd

par la relation (27) ; et on a aussi

Q&> *ô;

en effet la relation (27) implique que | é, |0 < R~d + Ô; si on avait en outre
Q (£) ^ K5 alors n (£) serait dans M ce qui est contraire à l'hypothèse. On a donc

finalement, si 5 < 1,

(27.1) fg) « r1+'-Wd>

Le troisième résultat que nous allons utiliser est Yinégalité de Hua :

Lemme. Pour tout s > 0, on a

(27.2) 17 (^) |2jD àÇ « R2D~d+E.
A/Q

Démonstration. Soit Z l'ensemble produit de tous les Zp, pour p e P.

L'ensemble
D+ ]0, 1[ x Z

est un domaine fondamental de A/Q dans A, autrement dit la restriction de

la projection n à D + est injective et pour toute fonction g continue sur A/Q, on a

•i
9 (£) ^

A/Q 0 J
g fco, £/) à\f.

z
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Si ^ g D+, et si x g Z, on a

ce qui implique
X (x%) Xo (Ao) »

/©
où on a posé, pour g R,

/o (ko) I Xo (Ao) •

On a donc

\f(k)\2Ddk
A/Q

/ofêo)|2D^o,

et pour prouver (27.2) il suffit de montrer que l'intégrale du membre de droite de

la relation précédente est majorée par R2D~d+\ Ce qui est l'inégalité de Hua

comme énoncée et démontrée dans [1], lemma 2.

Pour démontrer le théorème 2.5., il suffit de remarquer que

i/fë)rdç < sup i/©r2D
A/Q ÇeA/Q

f(k)\2D ik;
A/Q

en utilisant (27.1) et (27.2), on voit que le membre de droite de cette expression est

majoré par RT, avec

on a donc

avec

T (n-2D) (1 + e - (8/D)) + 2D - d + 8 ;

T n — d —

0! (8/D) (n-2D) - 8 (n —2D — 1),

donc 0X est positif dès que n > 2D, ce qui établit le théorème 2.5.

Posons maintenant g ©n G (£), conformément à la relation (17).

Theoreme 2.8. Lorsque t tend vers l'infini et si n > 2d, on a

| G© |dÇ « Rn~d~«\
J A-M

avec 02 > 0.

Démonstration. Si é, g A — M, on a

I I > R~ä +&oug(Ç)>.R8;



162

On a donc

(28)
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G & d* ^ Io (R) Jf + If (R) Jo (Ä)

et

/offl
|^o|>«"d + 5

Go Go) I <G0

MR)

A/

<2 (0 > R°

G G,) I <G/,

70 (Ä) f I G0 Go)
J R

<G0-

Rappelons que la fonction G0 dépend de R puisqu'elle dépend de <t>0 ; les relations

(7) et (9) montrent que 4>0 Go) < 1, et que l'on a

4>o (0) « Rn.

La proposition 1.10. montre que l'on a

(29) |G0Go)| « MaxfR-MSI)-«"*»

et il s'ensuit que

I G0 Go) I <Go « R" <G +
J Ml < R " " J |4| > R ~

« + (R-y-WV
«

D'autre part, la proposition 1.8. implique l'inégalité

| Ç \'{nld)

If (R)« ÔG)"^ d%r-,
Q<y>R

si nous écrivons n/d c+ e avec >2 et e > 0, il vient

If (R) « R- Q G)"c d%f
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et la relation (13) du chapitre I montre que l'intégrale figurant dans le membre

de droite converge ; on a donc

(30) If (R) J0 (R) « R"-d~£Ô.

D'autre part, et en faisant usage de la relation (29), il vient

Io (R) « l^lo(n/d) <%,
%\0>R-d + h

et donc

(31) I0 (R) « (OA*"1) Rn-d-t'

avec s' > 0; et puisque, toujours par la proposition 1.8., l'intégrale Jf est

convergente, les relations (28), (30) et (31) établissent l'estimation énoncée dans le

théorème 2.8.

Théorème 2.9. Pour tout é, e M, on a

f®-g®«Q&) R*.

Démonstration. Posons

h(x^) <p (x) x (x%),

où cp est définie par la relation (8), de telle sorte que

© £ (X, Ç)

et

Posons aussi

g& h (x, £) dx

h (x> l) 1 (*>') <ix

Alors on peut appliquer à la fonction \ (x) h (x, £) la formule de Poisson, et il
vient f(ï)- I A (x, y

jceQ

I Hv.ç),
peQ
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et donc

(32) / te) a ft). + I h OU) •

yto
Si £, 6 A posons qp (Q Max (1, |Çp|p).

Les fonctions h et h, sont décomposables ; nous noterons hp (resp hp) leurs
facteurs locaux.

Lemme 2.10. La fonction f hp(y,fy, définie sur Qp, est constante
modulo Zp et à support dans Zp.

Démonstration. Posons qp(fy q. Puisque q ^ 1, si | xl — x2 | ^ q~ \
alors xx et x2 sont tous deux dans Zp ou tous deux en dehors, et on a

<PP(*i) (x2) •

Si Xi et x2 ne sont pas dans Zp, on a

Mx2>£) 0.

Si Xi et x2 sont dans Zp, on a

I *1 - Alp< I *1 - *2 \p,
et donc

\xti-xtt\P^\xi-x2\p\^\p
si

\x1 - x2 \ ^ q'1
on a donc

I ~ lp < i,
et il s'ensuit que Xp(^q) %p (x^q) et par conséquent hp (xl9 q) (x2, q). La
fonction x -* hp (x, £) est donc constante modulo g Zp et à support dans Zp ; le

lemme s'ensuit immédiatement par dualité.

Lemme 2.11. Si ueS{R), on pose

(33) Il « Iii f I Z w(x + t)|2^-
J 0 xeZ

Alors

(34) X | Û(y)|< (1/273) Il u'|, •

y + o
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Démonstration. En appliquant l'égalité de Parseval-Bessel à la fonction

périodique u*(t)Z
xeZ

on obtient
•i

Z i " w i2

yeZ
U* (t)I2 dt Il u II?,

et en remplaçant u par sa dérivée u', il vient

4tt2 S \yû(y)\2 H u'II?.
yf 0

En appliquant l'inégalité de Cauchy-Schwarz aux suites | yû (y) | et | 1 /y |, où y

parcourt Z — {0}, on en déduit

[Z |ù(y)|]2^(7i2/3)(l/47r2)||^||f,
yf 0

d'où le lemme 2.11.

Lemme 2.12. Avec les notations précédentes, si 0 < a < R et e R on

Z K (y/a, Ç0) « aRd I 4o I
•

yf 0

Démonstration. Nous allons tout d'abord établir le résultat suivant. Soit
ueCc (R); on suppose que Supp u c= [ — R, +R] et on pose M (u')

sup | u' (x) |. Alors
R

(35) (1/a) Z I " (y/a) \«S(1/^/3)R M ("') •

yfO

En effet appliquons le lemme 2.11 à la fonction v (t) u(at); puisque v (y)
(1 la) û (y/a) on a

(Ma) Z I « (y/a)|< (1/2^3) Il t/nt
y + o

Mais puisque u (x) 0 si | x | > R, la fonction v' (x +1) au (ax + at) est nulle
si | x | > (R/a) + 1, donc a fortiori si | x | > 2R/a et

Z I Vf (x +t)Kz aM (u') (u'),
\x\^2R/a

d'où II v' Il
1 ^ 2RM (u') et la relation (35).

Ceci dit, on a

(d/dx) h (x, Ç0) Xo(Ao) (<Po (x) + cp0 (x)) ;
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or on peut choisir vj/ de telle sorte que 0 ^ v|/ (x) ^ 1, et alors

(Po M, V|> * Xr M
vérifie aussi 0 ^ (p0 (x) ^ 1 ; et puisque

<Po(x) v|/(* + ß) - \)f(x-R),

on a | (po (x) | ^ 2. En tenant compte du fait que

q>o (x) 0 si | x | > R + (1/3),

il vient donc finalement

(36) M {(d/dx) h0 (x, y) ^ CRd~1 | £, j0

où la constante C ne dépend ni de R ni de £0. En appliquant à h0 (x, £0) la relation
(35) et compte tenu de (36), on obtient le résultat du lemme 2.12.

Démonstration du théorème 2.9. La relation (32) implique

I Z \h(y, Ç)|,
yeQ*

et le lemme 2.10 montre que la somme de droite ne porte en réalité que sur les

y g Q* tels que qp (£) y e Zp pour tout p e P, donc tels que Q (£) y e Z ; par
ailleurs, puisque

(37) Kfoïp)

on a | hp {y, y | ^ 1 et donc

il s'ensuit

Xp (x"Ç + xy)d

h(y,ï)\ < \ K(y^o)\i

I / fé) - 9 &I < I (y/Q (4), y ;
yeZ-{0}

utilisant le lemme 2.12 pour majorer le membre de droite, il vient

/(Ç) - gfé)« Ä'ÜUIß®,
et comme | £0 | ^ R~d+Ssi% e M,lethéorème 2.9 est démontré.

Théorème 2.13. Si8< d/(2d+l), et si n > Ad, on a

fWx(-tQd% gWxi-tQdt, + n — d — 03\

avec > 0.
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Démonstration. La proposition 1.6 montre que

M«« Q

par ailleurs

g0 féo) « R ;

on a donc

(38) g®«RQ®^'d.
Remarquons maintenant que si 8 < d/(2d + 1) et £, e M, on a

(39) R&Q®< R

en effet la relation Q ®< Rà implique, puisque 8 (1 + (1 <1-8,

Q^ynm^Ri-s
Posons

K®f®n-si E, g M on a l'inégalité

(40) K (Ç) « Rn-l+è(^) -v

avec v > 2, comme on va le voir. Si on pose

k® f®-g®,
il vient, par la formule du binôme,

K©«Max(|kfê)'0fêr'|) (l^p^n),
mais le théorème 2.9. affirme que

k®« Rh Q ® ;

les inégalités (38) et (39) montrent donc que l'on a

k®pg®"-p « k»-i+s g (Ç)i-(o-u/«);

or si « ^ 3d +2, on a

1 — ((n — 1)/d) < -2,
ce qui établit (40) puisque 3d + 2 ^ 4d dès que d ^ 2.

Pour démontrer le théorème 2.13. il suffit donc d'estimer l'intégrale de K sur
M ; mais la relation (40) et la définition de M impliquent

K® d%«
M

Rn- 1+5

|So|<* — d + d
Ôfërv^/;

Ö(D<RS
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puisque v > 2, l'intégrale

est convergente et on a donc

Q^rvd^
A/

K © dt, « R" -d+l-25

ce qui établit le théorème 2.13. avec 03 1 — 25.

Nous pouvons maintenant démontrer le théorème 2.1. Rappelons que l'on a posé
D 2d~1. Supposons donc n > 2D, et dans la définition (19) de l'ensemble

majeur, choisissons 8 tel que

8 < d/(2d-\-1).

D'autre part soit 0 un nombre « suffisamment petit ». La proposition 2.2. affirme

que

N(t)
A/Q

f &)"%{-1%)

nous avons vu dans le théorème 2.5. que lorsque n > 2D, on a

|/(Ç) I" d%« R"'0-»

et dans le théorème 2.13., que si n >

fWx{-tt>)d$= f gWx(-ti,)dï, + 0
J M

Les trois relations précédentes impliquent donc que l'on a

N(t)= g(QnX(-tQ d\ + 0 (R"-d-0).

Rappelons que g (£)" G (£) et que si n > 2d, et d > 3, on a

I G(Ç)|dÇ « Rn~d-Q
J À-Af

par le théorème 2.8., et

sA (0 G (£,) X —
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par la proposition 2.3. Puisque Rd ~ t,ontire des trois relations précédentes que

sous les hypothèses faites (et en changeant 0 en on a

N (t) SA(t)+ 0(t("/d)_1_e)

qui n'est autre que la relation (3) et le théorème 2.1. est établi.
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