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UNE PRESENTATION ADELIQUE
DE LA SERIE SINGU‘LIERE
ET DU PROBLEME DE WARING

par Gilles LACHAUD

INTRODUCTION

Si F est une forme entiére a n variables, notons U, (t), pour t € Z, 'ensemble
des points adéliques de la variété algébrique définie par la relation F (x) = t.
Lorsque F est la forme de Fermat

F(x) = x{ + ..+ x3,

G. H. Hardy et J. E. Littlewood ont appelé Série Singuliere ce que nous écrivons
maintenant

Salt) = J b (x) o (x)
Up

ou o, est la forme de Leray sur U, (t), et ou ¢ est une certaine fonction standard
sur A"

Lorsque F est une forme quadratique, c’est A. Weil qui a introduit ces

intégrales sous cette forme dans [9], pour établir ce qu’il a nommé la formule de
Siegel. Celle-ci établit un lien entre I'intégrale S, (¢) et le nombre

N@ = # {xeZ"|F(x) = t},
qui s’écrit aussi |

N =Y o).

UQ (t)
Pour les formes de degré supérieur, le théoréme de Hardy-Littlewood affirme
que si F est la forme de Fermat, on a

N (t) ~ Sa (1)

lorsque ¢ tend vers l'infini, si n > 2%; ceci implique, puisque S, (¢) tend vers

Pinfini avec ¢, que tout nombre entier assez grand est somme de n puissances
d’ordre d.
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Pour les formes de degré supérieur la série singuliére a été étudiée dans le
cadre adélique par T. Ono [7] et J. I. Igusa [5], [6]. Leurs conclusions sont
rassemblées dans le chapitre I. On pouvait penser qu’il était possible d’établir
dans ce cadre le résultat de Hardy et Littlewood: C’est ce que nous avons fait au
chapitre I, en reprenant la méthode du cercle adaptée ici au cercle adélique A/Q
et en utilisant la Formule de Poisson comme le suggérent naturellement les
expressions de S, (t) et de N (¢).

Nous espérons que 'approche que nous présentons ici permettra de traiter le
probléme de Waring avec plus d’aisance dans le cas des autres corps adéliques,
qu’il s’agisse des corps de nombres algébriques ou des corps de fonctions, et aussi
dans d’autres cas que celui de la forme de Fermat.

Jajoute que cet article est résumé dans [11], et que les résultats de [ 1] utilises
ici sont repris dans le livre [12], qui vient de paraitre au moment de la
publication de ce volume.

Je tiens a remercier J. P. Serre pour l'intérét qu’il a montré pour le présent
travail, et aussi pour m’avoir communiqué deux lettres que P. Deligne lui a
adressées (datées des 14 et 17 novembre 1971); J. J. Sansuc, de qui j’ai appris
I’existence du mémoire [10] apres la rédaction du présent article; et R. Danset
pour sa lecture attentive du manuscrit.

CHAPITRE I. LA TRANSFORMATION DE GAUSS

1. DErNITIONs. Notons P 'ensemble des nombres premiers, | x |, la valeur
absolue p-adique du nombre x € Q, et | x |, sa valeur absolue archimédienne.

L'ensemble P = P U {0} est I'ensemble des places de Q. Nous noterons A
'anneau des adeles de Q.
Pour tout x € Q,, écrivons

(1) x = ) x,p" avec x,e{0,1,.,p— 1}

neZ

(somme qui ne comporte qu'un nombre fini de termes d’indice négatif non nuls)
et posons

(2) <x>= ) x7p";

on a
x = <x> 4 [x],

avec < x >e€Q,0< < x> <1, [x]eZ,.

I
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Le caractére de Tate y, de Q, est déﬁni par la relation
xp (x) = exp (+2in<x>).
D’autre part, si x € Q, = R, on pose
Yo (X) = exp (—2imx) .

Rappelons que si p € P, espace S (Q;) est constitué des fonctions localement
constantes a support compact sur Q%;si p = 0, I'espace S (R”) est I'espace des
fonctions C* sur R”, a décroissance rapide ainsi que toutes leurs dérivées, et
espace S (A") des fonctions standard sur A" est constitué des combinaisons
lin¢aires de fonctions:

() $ () =TT ¢p(x,).

peP
lorsque x = (x,) € A,oud, € S (R"),0ud, €S (Q}), et oude plus ¢, estégaleala
. fonction caractéristique de Z}, pour tout p € P sauf un nombre fini d’entre eux.
St x = (x,) € A, on pose

@ () = TT 1, (%)

peP
la fonction y est le caractere de Tate (global) de A.

2. LA TRANSFORMATION DE GAUSS. Soit F une forme entiére a n
variables et de degré d, c’est-a-dire un polynome homogéne F e Z [ X, ..., X, ] de
degre d, et soit ¢ une fonction standard sur A”. La transformée de Gauss ( pour la
forme F) de la fonction ¢ €S (A") est définie par la relation

(5) Gal(d, 8 = J ¢ (x) x (EF (x)) dx
An
ou la mesure dx sur A" est la mesure de Haar telle que
dx = [] dx,,
peP

en prenant pour dx, la mesure de Lebesgue et pour dx, la mesure de Haar sur Q;
telle que Z7 soit de mesure 1.

Pour montrer que cette intégrale converge, on peut supposer que ¢ est
décomposable, c’est-a-dire de la forme donnée dans la relation (3); dans ce cas la
fonction G, (¢, &) est égale a un produit d’intégrales locales:

(6) GA ((b’ &) = H Gp (d)pa E.>p) 5

peP
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avec, pour p € F, et£eQ,,

) G, (0, 8) = f &, (0%, (EF (x)) dx .

Qp

3. LES PLACES ULTRAMETRIQUES. Nous allons étudier les intégrales (7)
dans le cas ou p est un nombre premier, et ou ¢, est la fonction caractéristique de
Z;; on posera alors G, (¢,, &) = G,(E) pour E€Q,; si [§ —n| < 1, alors
G, () = G, (n)

Sig = p®avece > 1,etsize Z/qZ, on définit la somme de Gauss de F en z
par la relation

(8) Y, (F,2) = 7,(2) = ¢ "Z yx, (2F (x)),

ou x parcourt I'ensemble (Z/gZ)", ot on a noté F la réduction modulo g de F, et
ou on a poseé
% (X) = 1, (¢ 'x)

pour x € Z,, en notant X I'image de x dans Z/qZ. Il est clair que | v, (2) | < 1, et
que v, (0) = 1. Nousrenvoyonsa [7],Ch. I,§ 2 et § 3, pour la démonstration du
résultat suivant:

THEOREME 1.1.  Avec les notations précédentes, supposons EeZ, et q
= p° avec e = 1; on aalors

G,(g7'8) = 1, ().

Posons maintenant, si K est un corps et si F' est une forme a coefficients dans
K:
Ag (F) = {xe K"|dF (x) = 0} .

La relation d’Euler implique que si le degré de F est premier a la caractéristique
de K, ’ensemble algébrique Ay (F) est inclus dans le cone d’équation F = 0.

Définition 1.2. On dit que la forme F est fortement non-dégénérée sur K si
Ag (F) = {0}.

Si la forme F est définie sur Z, on pose A, (F) = Ag (F)si K = Q,; on pose
aussi Zp (F) = Ax (F)siK = F etsi F estla réduction modulo p de F. On pose
encore, si F est une forme de degré d,

Z(F) = {pePl|pld ou A,(F) # 0};
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si F est fortement non-dégénérée sur Q, 'ensemble Z (F) est fini. Enfin, pour tout
entier d > 3, on pose

£ = {peP|p<d—1°.

THEOREME 1.3. Supposons n > d > 3, et la forme F fortement non-
dégénérée sur Q,. Soit €S (Q}); alorssi £€Q, etsi |E],> 1, ona

|G, (,8) | < C,|E]"™

avec C,=1 si ¢ est la fonction caractéristique de 717 et si
pEX@ | E (P

Donnons quelques indications sur la démonstration de ce résultat. Igusa a
¢tablhi 'inégalité figurant dans le théoréme pour tout p et toute ¢ € S (Q}), avec
une constante C, qui peut €tre éventuellement > 1, en utilisant sa théorie des
développements asymptotiques et le principe de résolution des singularités, qui
est explicite dans le cas des formes fortement non-dégénérées. Nous renvoyons
pour cela a [5], Corollary to Theorem 1, et [6], chapter III, § 5, relation (106).

Drautre part, si ||, = g > 1 et si ¢ est la fonction caractéristique de Z, le
théoréme 1.1. montre que

G,($0,8) =G, 8 =q " Y x,EFx);

x mod g

sion pose <&>, = a/q, on en déduit, par définition du caractére de Tate, que

(9) le &) =q ' ) exp(2ina F(x)/q).

x mod g

Par ailleurs, on dispose du résultat suivant, démontré par Deligne (cf. [2],
Théoréme 8.4. et [8], Corollaire 6.3.):

THEOREME 14. Si (a,p) = 1 et si p¢ X (F), alors

| ), exp(2inaF (x)/p)| < (d—1)" p™>.

x mod p

Puisque d > 3,on a
n _n/2 n(l-—
(d—1)p"? < C, pntt- W

avec C, = (d—1)" p~"®; on déduit donc du théoréme 1.3. et de la relation (9)
que 'on a

1[G, @) < C,p~ ™
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pourp ¢ X (F),avecC, = 1sip¢ X (d).Onpassedelaaucasou| |, = p®avec
e > 1 par la méthode usuelle de réduction: cf. [5], lemma 1 et lemma 2.

Remarque. Supposons que F soit la forme de Fermat :
F(x) =x{+ ..+ x8

Celle-ci est fortement non dégénérée sur Q, quel que soit p, et F est fortement
non-degeéneree sur F, si p ne divise pas d. Pour cette forme, il est possible d’établir
I'inegalité du théoreéme 1.3. par des moyens « élémentaires ». En effet, posons

(10) 9, (&) = [z, %, (x%€) dx;
on a alors
(11) G, (&) = g,(©)";

la encore, si | £], = g > 1, on voit que

g, &) = Y %, (ExY;

x mod ¢q

et si <&>, = a/q, il vient donc

g, (&) = > exp (2inax?/q);

x mod g

et le résultat suivant est aisé a établir (cf. [1], Lemma 12):

ProrosiTiON 1.5. Si (a,p) =1 etsi r = (d,p—1), alors

| Y exp Qinax¥p)| < (r—1) p2.

x mod p

On déduit donc de la proposition 1.5. que si p ne divise pas d, on a la relation

19,1 < Cpp~ 9

lorsque | £ |, = p,avec C, = 1sip ¢ X (d); enfin, des calculs €lémentaires et la
méthode usuelle de réduction (cf. [1], Lemmas 13, 14 et 15) permettent d’établir
la

PROPOSITION 1.6. Avec les notations précédentes, on a

19, (&) < C,| &, 1D,
ou C,=1 si p¢2(d).
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Vu la relation (10), la proposition 1.6. implique I'inégalité figurant dans le
théoréme 1.3. pour la forme de Fermat.
Les résultats précédents impliquent le

COROLLAIRE 1.7. Si n > d, alors la fonction G,(d,&) est intégrable

sur Q.

Posons maintenant, pour & € A,

(12) 0 = [[ Max(L1&,1,),

peP

de telle sorte que Q (£) ne dépend que de la projection de & sur I'espace A , des
adéles finis (rappelons que A = R x A,). Si ¢ € S (A"), posons

Gr (9.8 =[] G (9,,E))

peP

pour £ e A,

COROLLAIRE 1.8. Supposons F fortement non-dégénérée sur Q, pour
tout pe P. Alors

Gr(€) « Q&)™

en particulier, la fonction G, (9, &) est intégrable sur A, lorsque n > 2d.

Démonstration. Si | €1, < 1, etsi ¢ est lafonction caractéristique de Z7, la
relation (7) montre immédiatement que G, (¢, &,) = 1. Ceci, joint au Théoréme
1.3., implique donc que 'on a

|G, (9,8,)| < C, Max (1, | € |p)~<n/d)
avec C, = 1 pour presque tout p € P; il s’ensuit que

G, @< (] C)oE) ™.

peP

Pour prouver la derniére assertion du corollaire, écrivons

J- Q)™ = T1] J Max (L, | £1,) ™9 dE ;
AS peP p

or

J 1€1,°dE, = (1—p~ ) (A—=p' ™)~ pl7s < (12" p'™5;
[Elp>1

il s’ensuit que

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 10
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[ Max (1,|& 1) " dE < 1+ Cp' ™,

n
v p
avec C = 1 — 2175 et donc que l'on a

(13) f Q@) de < [ (1+Cp'79);

peP

ce produit infini convergeant si s > 2, on voit donc que la fonction G, est
intégrable si n > 2d.

4. LA PLACE ARCHIMEDIENNE. Si p = 0, on dispose de résultats
analogues a ceux de la section précédente.

THEOREME 1.9. Supposons F fortement non-dégénérée sur R, et soit
b, €S (R". Alorsona

| Go (d,, &) | < C Max (1, | & [)~ 4

pour tout & e R", avec une constante C dépendant de o

Pour démontrer le theoreme 1.9., on peut utiliser le prolongement analytique
de la distribution F* ce qui peut étre effectué en résolvant les singularités de la
forme F al’origine ; on renvoie encore a Igusa[5], n 2 et [6], chapter II1, §5, pour
une démonstration du théoréme 1.9.

Remarque. Dans le cas ou F est la forme de Fermat on peut préciser les
résultats comme suit.
Supposons que
$o () = @¢ (Xy) - 9o (X,),

pour x = (xy, ..., X,) € R", ou ¢, est une fonction de S (R) telle que 0 < ¢, < 1,
et posons

A(do) = 9o (0)7°.

PROPOSITION 1.10. Avec les notations et hypotheses précédentes, on a
| Go ($0, &) | < C Max (4 (dy), | & |o) @

pour tout & € R", ou la constante C est indépendante de .
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Démonstration. Posons
go (&) = J ®, (x) exp (—2inx‘€) dx .
R
Alors on a d’une part

(14) 190 (9] < j Po (x) dx = §0(0),

et d’autre part, en posant t = x%,

go (&) = d 1&g J(Po (V9 =W exp (—2imt) (MO dr
et I'intégrale de droite est majorée par l'intégrale convergente
I = Jexp (—2imt) (M9~ dp
puisque 0 < @, < 1. On a donc

(15) go (&) < [ &g 7.
. les relations (14) et (15) impliquent donc

go () < Min (9o (0), | & o */%)
« Max (A (o), | £ )"0

ce qui établit la proposition 1.10, puisque

go (&) = Go (o, €) .

Pour résumer les résultats obtenus, nous introduisons les hypotheses
suivantes:

(SS1) Ona n>2d et d>= 3;

(SS2) La forme F est non-dégénérée sur Q, pour tout pe P.

En regroupant les résultats obtenus pour les places ultrameétriques et pour la
place archimédienne, c’est-a-dire le corollaire 1.8. et le théoreme 1.9., on parvient
au resultat suivant:
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THEOREME 1.11.  Sous les conditions (SS 1) et (SS 2) lintégrale

GA(¢,a>==J 6 () 1 (6F () dx

est convergente pour tout & e A et définit une fonction intégrable sur A.

5. LA SERIE SINGULIERE. Sipe P etsiteQ,on pose

Uy() = {xe Q| F(x) = t};

Puisque F est homogene, 'hypersurface U, (f) est non singuliére i t # 0. Si
xe U, (1), et si 0F/dx, (x) # 0, on pose

W (x) = (= 1)L (0F/ox) L dx, A . Adx, A .. A dx,,

. 2 S ,
ou la notation dx, signifie que 'on omet dx,.
Les o, se recollent pour former une forme différentielle o, (x) de degrén — 1
sur U, (t), ct on a

(16) o, (x) A dF (x) = dx;

la forme différentielle w, est appelée la forme de Leray de U, (t).
Si ¢ €S (Q}), et site QF, on pose

(17) &@0=J b (%) o, (x).
| Up ()

Si ¢ est la fonction caractéristique de Z7, la fonction S, (t) = S, (¢, t) est appelée
la série singuliere locale de F en p. ’

THEOREME 1.12. Soit peF; si F est fortement non-dégénérée, la
fonction S, (&, t) est intégrable sur Q, et on a, pour £eQ,,

Sy (4, &) = G, (9, 8);

de plus, si n>d ona
Gp ((b: _t) = Sp ((ba t)
pour teQy et ¢eS(Q)).
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Démonstration. La relation (16) implique que si ¢ € S (Q}), on a la relation

(18) J d (x)dx = J dtj ¢ (x) o, (%) ;
F(x)# 0 Q) Up (1)

puisque F est fortement non-dégénérée, I'hypersurface U, (0) est non singuliere
hors de I'origine, et donc de mesure nulle ; ceci prouve que S, (¢, t) est intégrable.
D’autre part

"

I

S, (4, 8) S, (9, 1) %, (§2) dt

*
JQ,

o

= %o (81) J b, (x) @ (x)
Q) Up (1)

(‘

= ¢ (x) x, (EF (x)) dx

JF(x #0

= G,(9,9),

puisque U, (0) est de mesure nulle. Ceci €tablit la premiére relation que nous
avions en vue. Enfin, le Corollaire 1.7. (si p € P) ou le Théoréme 1.9. (si p = 0)
montrent que la fonction G, (¢, ) est intégrable sur Q, si n > d; la premiere
relation que nous avons établie implique donc, via la formule d’inversion de
Fourier, que 'on a

G, (&, —1) = 5, (0, 1)

pour presque tout t € Q,; mais le théoreme de Lebesgue et le théoreme des
fonctions implicites montrent que la fonction S, (¢, t) est continue si ¢ # 0 (cf.
[6], p. 75); ceci établit donc la seconde assertion du théoreme 1.12.

Remarque 1.13. A titre d’exercice, et bien que cela ne soit pas utilisé par la
suite, montrons comment on peut retrouver, lorsque F est la forme de Fermat,
I'expression usuelle de la Série Singuliére. La relation

S,(8) = G, (—1)

se réécrit

=1 + 2 J\ _EIZ*Gp((:) Xp(_tié) d&a

e=1
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puisque G, (&) = 1 si £ € Z, d’aprés le théoréme 1.1.; ce theoreme implique

encore que I'on peut écrire 'expression précédente sous la forme

e=1

S,() =1+ ), J Ype (1) Xp (—tp~*N) p¥dn
Z*

D

ou 7} est la classe de  modulo p°Z,, et ou vy,. est défini par la relation (8); il
s’ensuit que 'on a

(19) S,() =1+ 3 AP,

e21

ou on a posé, si g = p°,
Ag) = J Yo () %, (—=tn/q) ¢~ " dn .
Z*

Mais en posant | = a + g{avec a € (Z/qZ)* et { € Z,, il vient immédiatement

(20) A(q) = ) v,(a)exp (—2inta/q);

(@, q) =1

si F est la forme de Fermat, on a

(21) Yo (@ = (7" ) exp (2imax?/q))",

x mod g

et les relations (19), (20) et (21) donnent expression de la série singuliére locale
figurant par exemple dans [4], P.N.IT et [1], [3].
Posons maintenant, si pe P et si g = p®avece = 1,

M,(t) = 4 {xe(Z/gZ)'| F (x) = t}.

PROPOSITION 1.14. Avec les notations précédentes, si q est assez grand, on

S,(0) = M, (0/g" "

Démonstration. La fonction S, est localement constante sur Qp (cf. [6],
p. 83); il s’ensuit que pour tout t # 0, il existe un entier e tel que

Sp(s) = S,(t) st |s—t[<p°=gq;
soit o la fonction caractéristique de ’ensemble

{x<QUIIF(x)—t] <gqj}.




SERIE SINGULIERE ET PROBLEME DE WARING 151

Si ¢ est la fonction caractéristique de Z7, on a alors, en vertu de la relation (18),

par ailleurs

=q "M,(1),

et la proposition 1.14. est donc démontrée.

ProrosITION 1.15. Supposons n > d .= 3, etla forme F non-dégénérée
sur Q,. On a alors pour tout teQ,:

S, (1) — 1] < Cpm ™9,

si pgXZ(F)uX(d), ou C nedépend quede n et d.

Démonstration. Le théoreme 1.12. affirme que S, (1) = Gp (—1t); et puisque
G, = 1 sur Z, il s’ensuit que

ISp(t)—IISJ |G, () dE;

l&lp>1

en invoquant le theéoreme 1.3, on en déduit que

ISp(t)—lléj | €177 dE

|Elp>1
< (1 _p— 1) (1 _pl— (n/d))—l pl — (n/d)
g (1_21~ (n/d))fl pl“ (n/d)

ce qui pfouve la proposition 1.15.

COROLLAIRE 1.16.  Supposons les conditions (SS 1) et (SS 2) satisfaites et
soit ¢ une fonction décomposable de S (AT);
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a) le produit infini

Sf(d)z t) = H Sf(d)p: t)

peP
converge, et

Sp(d,1) < 1;

b) Supposons que U, (t) soit non vide si t est assez grand et aussi que la
condition suivante soit remplie :

(SS3) Pourtout peP, la fonction ¢, estla fonction caractéristique de
VA
p

Alors, si t est assez grand, on a

Sp(d,t)» 1.

Démonstration. Le a)est une conséquence directe de la proposition 1.15. On
déduit aussi de cette proposition que 'on a

IT1S,0>1,

pexr’

ou ¥’ est le complémentaire d’un ensemble fini. En effet, choisissons s tel que
1 <s < (n/d) — 1;o0n a alors

1 _ Cp—l(n/d) 2 1 _ p~s

pour tout p ¢ X (C), ou Z (C) est un ensemble fini; si on pose

Y =Z(C)UZ(duZ(F),

ou C est la constante ﬁgurani dans l'inégalité de la proposition 1.15., on a

(22) [1S,0)=]](1—p™) » 1.

pezr’ pex’

Par ailleurs, si U, (t) # @, alors U, (t) # (D pour tout p € P, et on sait que
I’ensemble

{xe(@Z/p°Zy | F (x) = t}
est non vide pour tout e > 1 si et seulement si U, (¢) est non vide; la proposition
1.14. montre donc que st U, (t) # @, alors S, (t) > ¢ pour tout p e P, ce qui
prouve que I'on a

(23) 15,01,

pet’
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et les relations (22) et (23) établissent donc la partie b) du corollaire 1.16.
Signalons en passant le résultat suivant (cf. la démonstration du lemme 11 de

[1]):

ProrosiTiON 1.17. Si F estla formede Fermat et si n est un entier pair
verifiant n = 4d, alors U, (t) est non vide.

6. LA FORMULE GLOBALE. Le corollaire 1.16. implique que le produit des
mesures (®,), sur U, (t), pour p € P, définit une mesure o, sur 'ensemble U (?)
des points adéliques de la variéte F (x) = t. Si ¢ € S (A”"), on pose

Sa(d, 1) = J O (x) o, (w);

Uy )

le corollaire 1.16. montre que cette intégrale converge, et les théorémes 1.11. et
1.12. impliquent le

THEGREME 1.18.  Si les conditions (SS 1) et (SS 2) sont satisfaites, on a

Sa(d, 1) = G, (9, —1).
Supposons maintenant

(SS4) Ia forme F est anisotrope sur R.

" Sous la condition (SS 4), I'intégrale

So (1) = J o, (x)
Uo (1)

est convergente, et 1l est clair que 'on a

So (t) = Vo t®ad~1

Vo = f ®; (x).
Uo (1)

avec

Posons, pour te Z ,

Sf(t) = H Sp(t)a

peP
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ou S, (¢) est la série singuliére locale de F en p, et

Sa(t) = So(0) S, (1);

la fonction S, (t) est appelée la série singuliere globale de la forme F.
Introduisons enfin une derniere condition:

(SSS) Ilexiste T > 0 telle quela fonction ¢y €S (R") soit égale a1l sur le
compact

(xeR"|F(x) < T).

Il vient donc immeédiatement :

ProposITION 1.19.  Sous les conditions (SS1) a (SS5), on a

Sa(t) = Sx(d,1)

CHAPITRE II. LE THEOREME DE HARDY-LITTLEWOOD

Dans ce chapitre, on considere la forme de Fermat
(1) F(x) = x4+ ..+ x¢

oud est un entier pair; et on va étudier le comportement asymptotique de la suite

(2) N = #{xeZ'|F(x) =t},

lorsque t € N tend vers l'infini. Le théoreme de Hardy-Littlewood (cf. [4],
P.N. II) s’énonce ainsi:

THEOREME 2.1. Supposons d >3 et n > 2%
On a alors

N@) =S, (1+0(™%)

lorsque t tend vers linfini, avec 6 > 0.
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Remarquons que pour établir le théoréme 2.1., il suffit de démontrer que I'on
o) N () = Sa() + 067713
on a en effet
(4) Sa(t) = So (1) Sy (1)

mais le corollaire 1.16. et la proposition 1.17. impliquent que 'on a

(5) 1« S;(t) <1,
et |
(6) So (8) = Vo ™74,

ceci montre que la relation (3) implique le théoréme 2.1.
On pose maintenant

R=1[t"]+1,

et || x|lp = Max (| x;lg, - | Xplo) 81 X = (x4, .., X,) € R". On constate que si
| x|lo > R — 1, alors F (x) > t.

Soit y gla fonction caractéristique de I'intervalle | x |, < R dela droite réelle,
et  une fonction C* positive sur R, telle que

et y(x) =0si|x|, = 1/3; on pose
(7) | ®o = Ar * V,

de telle sorte que la fonction @, est C* sur R, que le support de ¢, est inclus dans
Pintervalle| x |, < R + (1/3),et quele support de la dérivée de @, est inclus dans
Pensemble R — (1/3) < | x|, < R + (1/3). Lafonction ¢, est donc constante et
égalea 9y (0) = I'si|x|o < R —(1/3),etnullesi| x|, = R + (1/3).

Pour tout p € P, on note ¢, 1a fonction caractéristique de Z, dans Q,. Ceci
dit, pour x € A, on pose

(8) : ¢x) = [T ¢,(x);

peP

sipe Petsix = (xy, .., x,), on pose, dans ce chapitre II,

(9) d)p (X) = (pp (xl) q)p (X")
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de telle sorte que 'on a, si x € A",

(10) ¢ (x) = @ (x1) - ¢ (x,).
Avec ces notations, on a
(11) Nt = #{xeQ"|d(x) =1 et F(x)=t},

puisque la condition ¢ (x) = 1 est équivalente aux deux conditions x € Z}, pour
tout pe P, et ¢o(x) = 1;0rsi F(x) =t ona ¢y(x) = 1. Pour § € A, nous
allons étudier la somme trigonométrique

(12) f@© = Z(:) ¢ (x) x (x€),

qui est une somme finie puisqu’elle porte au plus sur les x € Z telsque | x |, < R.
Il vient immédiatement

(13) FE = 2 &) x(EF(x).

xeQn

Lafonction f (£)"est 'analogue de la fonction de Gauss de F, en ce sens que dans
la relation (13) on somme sur Q au lieu d’intégrer sur A. En regroupant dans (13)
les vecteurs x ayant méme image par F, il vient

fE =2 x@E) Y ox);

teQ F(x) =1
puisque les relations ¢ (x) # 0 et x € Q" impliquent x € Z" et ¢, (x) # O,

puisque pour x € Z", on a

do(x) =1 st [[xfo<R-—1
et '
(bO(x) =0 Si Hx”() = R,

et puisqu’enfin si || x ||, = R, on a F (x) > t, il s’ensuit que
(14) Y d(x) =N
F(x)=1

siteZ;etsit¢Z tous les termes de cette somme sont nuls. On a donc

(15) fE =) NOxE),

teZ

et en utilisant la formule d’inversion de Fourier, qui s’applique bien évidemment
ici puisque la somme du second membre de (14) est finie, on parvient au résultat
suivant:
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PROPOSITION 2.2. Si teN on a, avec les notations précédentes,

N (1) = j £ ®) x (—t8) dE .
A/Q

Posons maintenant, pour § € A,

(16) g€ = j ¢ (x) x (x?€) dx .

PROPOSITION 2.3. Si n>2d et d =3, alors

Sa(t) = J g (&) x (—1tg) dg.

Démonstration. La définition (16) de g et les définitions (8) et (10) de ¢ et ¢
impliquent que 'on a

(17) g@E) = G, (9,9

pour tout & € A;eticiles conditions (SS 1) & (SS 5) du chapitre I sont remplies;; le
théoreme 1.18. implique que I'on a

J g &) x(—t)dg = GA (¢, —1) = Sa (P, 1)
et par la proposition 1.19, on a

Sa (1) = S5 (t)

pour t' < t, ce qui démontre la proposition 2.3.
Les propositions 2.2. et 2.3. montrent que la relation (3) se réécrit:

(18) j f @) x (=) dg — J g ) x (—t8)dg = 0(™P717%).
A/Q A

Pour établir cette relation, nous allons utiliser une partie M de A, 'ensemble

majeur, tel que f (§)" et g (€)" soient négligeables hors de M et tel que la différence
f(E)" — g (§)" soit négligeable dans M. En fait, si 8 > 0, on pose

(19) M= {EeA| |Elp <R et Q() < R%

ou Q (&) est défini par la relation (12) du chapitre 1.

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 11
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LEMME 24. Soit n laprojectionde A sur A/Q. Alorssi 0 < A < B,
la restriction de m a l'ensemble

{EeAl [Elo<(2B) " et Q8 < 4}

est injective.

Démonstration. St & et &' sont dans A, on a les relations:
(20) Q(E+E&) < Max (Q(8), 0 (¥)),
(21) Q(=8 = Q).
Si & et &' sont dans 'ensemble décrit dans le lemme, on a donc
QE—E)<A et |E—E],< B!
d’ou s’ensuit
1E -8 QE-E)<AB™ < 1.

OrsineQ* ona

Inle@M) = 1;

il s’ensuit que si & — &' € Q, alors & = &
On notera M I'image de I'ensemble majeur M (défini par la relation (19)) par
I'application 7; le lemme 2.4. montre que © est une bijection de M sur M. On

appelle M larc majeur de A/Q, et on pose
(22) m = (A/Q) — M;

Pensemble m est larc mineur. Le résultat le plus délicat dans la démonstration du

théoréme de Hardy-Littlewood est ’évaluation de f (£)" sur m. On va établir le
résultat suivant: '

THEOREME 2.5. Supposons n > 2D et & < 1. On a alors

j_u f© I dg « R4,

avec 0, > 0.
La démonstration du théoréme 2.5. repose sur des résultats d’approximation
diophantienne. Le premier est simple:
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LEMME 2.6. Quel que soit N > 0, la restrictionde m a Pensemble

(23) D(N) = {E€A| |E[QE <N™' et Q) <N

est surjective.

En effet, soit £ € A il existe un x, € Q telque §; = xo — § € Z, pour tout p,
ie. O (§;) < 1. Par ailleurs, le theoreme d’approximation de Dirichlet implique
qu’il existe x; € Q tel que |

| &1 — Xy o <Q(x;))"*N ' et Q(x) < N.

Posons &, = &, — x;;0na Q (§) < Max (Q (E,), @ (x,)) < Max (L, N) < N
et il s’ensuit donc que &, € D (N).
Le deuxiéme résultat est plus subtil: C’est l'inégalité de Weyl :

LEMME 2.7. Soit K un polynéme a coefficients réels, de degré d et de
coefficient du terme de plus haut degré égal a o.:

K(x) = ox? + o, x71 + .,

et supposons que le nombre o admette une approximation par un nombre
rationnel a/Q tel que

@0 =1,0>1, |a_g|<ég.

Alors, pour tout € > 0, ona

04| Y exp (inK (9)] < CRIT (R7UD) 4 0014 (RijQ)=(11D)

|xlo=R

avec D =291 etou C nedépend quede d et .
Pour une démonstration de ce résultat, nous renvoyons le lecteur a [1],
lemma 1. Si & = (§,) € A, posons

&} = =&+ ) <&, >,

peP

ou le nombre rationnel < &, > est défini par la relation (2) du Chapitre I. On a

(€)
(25) =25
5<% "oq

oul’entier Q (&) est défini comme d’habitude par la relation (12) du Chapitre I, et
ou les entiers a (§) et Q (§) sont premiers entre eux. De plus

(26) fE =Y x(x%) = Y exp(2inx?{E}).

|x| <R |x|<R
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Supposons maintenant que 'image 7 (§) de £ dans A/Q soit dans ;; puisque
la fonction f est invariante sous Q, le lemme 2.6. permet de supposer que I'on a

(27) €10 Q(E) < R™*® et Q(E) < R

Mais la relation (25) implique

a(g)
{8 — =1 =1€lo;
SATE ’
on déduit donc des deux relations précédentes que
a (&) 1 1
1 {&} - <

| < — < :
Q® “QER"T" Q)

et on peut appliquer le lemme 2.7. de Weyl avec K (x) = x? {£}; le membre de
gauche de la relation (24) n’est autre que l’expression (26) de f (§); si nous
examinons le membre de droite de la relation (24) avec les valeurs qui lui sont -
données maintenant, on voit que

RYQ (&) » R®
par la relation (27); et on a aussi
Q (&) > R®;
d+46.

en effet la relation (27) implique que ||, < R™%"°; si on avait en outre
0 () < R®alorsr () serait dans M ce qui est contraire a I’hypothése. On a donc
finalement, s1 6 < 1,

(27.1) f () « RLFe=@D)

Le troisieme résultat que nous allons utiliser est I'inégalité de Hua:

LEMME. Pour tout ¢ >0, ona

(27.2) J | (&) PP dE « R?P~da%e
A/Q

Démonstration. Soit Z Iensemble produit de tous les Z, pour peP.

L’ensemble
D" =10, 1[ x Z

est un domaine fondamental de A/Q dans A, autrement dit la restriction de
la projection ma D™ est injective et pour toute fonction g continue sur A/Q, on a

j g () dg = f f g (8o, &) dSp dE .
A/Q 0J1Z
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SiteD¥,etsixeZ,ona
1 (X€) = %o (x%o)
ce qui implique

f© = fo(Go)>

ou on a pose¢, pour &, € R,

fo o) = Z Xo (xdio)-

|x] <R

On a donc

J | £ (©)*P dE = j | fo (Bo) [*” d&o
A/Q 0

et pour prouver (27.2) il suffit de montrer que 'intégrale du membre de droite de
la relation précédente est majorée par R*?~79%¢ ce qui est I'inégalité de Hua
comme énoncée et démontrée dans [1], lemma 2.

Pour démontrer le théoréme 2.5., il suffit de remarquer que

J | f(&)]"dE < sup |f(§)|"_2DJ‘ | f(©)*Pdg;
AQ AIQ

EeA/Q

en utilisant (27.1) et (27.2), on voit que le membre de droite de cette expression est
majoré par RT, avec

T =®n—-2D)(1+¢e— (/D) +2D—d+ ¢,
on a donc
T =n—-d-20,,
avec
0, = (8/D)(n—2D) — e(n—2D—1),

donc 0, est positif dés que n > 2D, ce qui établit le théoréme 2.5.

Posons maintenant g (§)" = G (&), conformément a la relation (17).

THEOREME 2.8. Lorsque t tend vers linfinietsi n> 2d, ona
J |G (E)]dE « R*47%,
A-M ,
avec 6, > 0.

Démonstration. Si&e€ A — M, on a

|G| > R7™ ou Q(§) > R®;
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On a donc
(28) J G(E)dE < 14 (R)J; + 1,(R)J,(R),
A-M
avec
»
10 (R) = | Go (E;o) l d&o ’
J ]&O|>R*d+
Jf = |Gf(E_;f)|dE.~f,
J Ay
I, (R) = | G (Ep) | dEy,
Jow®>r®
et

Jo (R) = J | Go (o) | dEo -
R

Rappelons que la fonction G, dépend de R puisqu’elle dépend de ¢ ; les relations
(7) et (9) montrent que ¢, (§,) < 1, et que 'on a

by (0) <« R".
La proposition 1.10. montre que 'on a

(29) | Go (Eo) | « Max (R™4, &)~

et 1l s’ensuit que

J | Go (8o) 1 dEp < J R" dE + J | & |70 dg
R lgj<R—4 lg]>R—d
& Rn—d + (R—-d)l—(n/d) ,

« R" 4,

D’autre part, la proposition 1.8. implique I'inégalité

I;(R) « f Q &)~V dE,;
Q(E)>R
si nous écrivons n/d = ¢ + g avec ¢ > 2 et € > 0, 1l vient

I;(R) « R‘”’J Q (&) “dg,

As
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et la relation (13) du chapitre I montre que l'intégrale figurant dans le membre
de droite converge; on a donc

(30) I,(R)J,(R) « R*™47%%,

D’autre part, et en faisant usage de la relation (29), il vient

Iy (R) « J | €10 ™9 dE,
|Elo>R—d+3

et donc
(31) I, (R) <« RU-®a-1) — pn-d=¢

avec € > 0; et puisque, toujours par la proposition 1.8., I'integrale J, est.
convergente, les relations (28), (30) et (31) établissent 'estimation €énoncée dans le
théoréme 2.8.

THEOREME 2.9. Pour tout £€ M, ona

fE-9@<QER.

Démonstration. Posons

h(x, &) = ¢ (x) x (x),

ou ¢ est définie par la relation (8), de telle sorte que

f© = ZQh(xsi)
et

g (©) =J h(x, &) dx.

Posons aussi

il(y,&) = J‘ h(X,i)X(Xy) dx .

Alors on peut appliquer a la fonction h (x) = h (x, £)la formule de Poisson, et il
vient ‘

FE =73 hixe

xeQ

= Y h(y¢),

yeQ
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et donc

(32) fE =9g@E+ Y h(y¢.

y¥0

Si & € A posons g, (§) = Max (1, 1,l,) - X
Les fonctions h et h sont décomposables; nous noterons h, (resp h,) leurs
facteurs locaux.

LeEMME 2.10. La fonction y —. fzp (v, €), définie sur Q,, est constante
modulo Z, et a support dans q,(&)" ' Z,

Démonstration. Posons q,(£) = gq. Puisque ¢ > 1, si [ x; — x, | < g/,
alors x, et x, sont tous deux dans Z, ou tous deux en dehors, et on a

(pp (xl) = (pp (XZ) @
Si x, et x, ne sont pas dans Z,, on a

gp (xb &) = gp(xz, T;) =0.

Si x, et x, sont dans Z , on a

Ix(i —xgipg le _‘x2|p>

et donc
| x4& — x5E 1, < |x; — x2 [, 1E1,;
s1
le _x2| <q——la
on a donc

| x1€ — x381, < 1,

elil sensuil que x, (x{&) = x, (x3&) el par conséquent h, (x,, &) = h, (x,, £). La
fonction x — h, (x, £) est donc constante modulo g Z, et a support dans Z,; le
lemme s’ensuit immeédiatement par duailité. '

LeEMME 2.11. Si ueS(R), on pose

(33) nwﬁ=J‘|zuw+oPmﬁ
0 xeZ

Alors

(34) Slam) < /2/3) 0wl

y¥0
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Démonstration. En appliquant I'égalité de Parseval-Bessel a la fonction
périodique

u*(t) = ) u(x+1)),

xeZ
on obtient

1
2 laml? =J lu* () [P dt = [ul?,

yeZ 0

et en remplagant u par sa dérivée ', 1l vient
dn? 3 lya () 1> = Ilu .
y#0

En appliquant I'inégalité de Cauchy-Schwarz aux suites | y@i (y) | et | 1/y |, oi'y
parcourt Z — {0}, on en déduit

[;0 |4 (y) 12 < (n?/3) 1/4n®) | v 1T,
y
d’ou le lemme 2.11.

LEMME 2.12. Avec les notations précédentes,si 0 < a < R et e R on

Y, ho (v/a, &) « aR?| & | .

y¥0
Démonstration. Nous allons tout d’abord établir le résultat suivant. Soit
ue C,(R); on suppose que Suppu c [—R, +R] et on pose M (u)
= sup | u' (x) |. Alors
R

(35) (1/a) ;0 | (y/a) | < (1/3/3) R M ()

En effet appliquons le lemme 2.11 a la fonction v (t) = u (at); puisque ¥ (y)
= (1/a) 4 (y/a) on a

(1/a) ;O | (v/a) | < (1/2/3) | V' |, .

Mais puisque u (x) = Osi| x| > R,lafonctionv’ (x+¢t) = au’ (ax+ at) est nulle
si|x| > (R/a) + 1, donc a fortiori si | x| > 2R/a et

Yivx+l< Y aM @) = 2RM (),

|x]<2R/a
d’ou || v' ||; < 2RM (u) et la relation (35).
Ceci dit, on a
(d/dx) b (x, Eo) = %o (x"&o) (P (x) + 2imdx* "1 E; @4 (X)) ;
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ot on peut choisir \ de telle sorte que 0 <  (x) < 1, et alors

®o (x) = Y * g (x)

vérifie aussi 0 < @, (x) < 1; et puisque
®o (x) = V¥ (x+R) — V(x—R),

on a| @y (x)| < 2. En tenant compte du fait que

Qo(x) =0 si |x|>R + (1/3),
il vient donc finalement
(36) M ((d/dx) ho (x, &o)) < CR™H [ & o,

ou la constante C ne dépend ni de R ni de &,. En appliquant a h,, (x, £,)la relation
(35) et compte tenu de (36), on obtient le résultat du lemme 2.12.

Démonstration du théoréeme 2.9. La relation (32) implique

yeQ¥

et le lemme 2.10 montre que la somme de droite ne porte en réalité que sur les
y € Q* tels que q,(€) ye Z, pour tout p e P, donc tels que Q (§) ye Z; par
ailleurs, puisque

(37) hy (9, &) = j Yo (X' +xy) dx

Zp

on a | fzp (¥, €,) | < 1etdonc

lh (1, &) | < | he (3, E0) |
1l s’ensuit

1 fE) —g@®I< Y ho(y/Q(E),E);

yeZ — {0}

utilisant le lemme 2.12 pour majorer le membre de droite, il vient

fE) —g) <RIEIQ(E),

et comme | &, | < R79"%si £ e M, le théoréme 2.9 est démontré.
THEOREME 2.13. Si & < d/2d+1), etsi n > 4d, ona

J [ x(—t5)dg = J g (€ x (—t&)dE + O (R"17%),

| avec 05 > 0.




SERIE SINGULIERE ET PROBLEME DE WARING 167

Démonstration. La proposition 1.6 montre que

g;(8) « QE) 1

par ailleurs

go (o) < R
on a donc
(38) g(®) < RQE).
Remarquons maintenant que si & < d/(2d+1) et Ee M, on a
(39) RPQ@E) <RQE "

en effet la relation Q (£) < R® implique, puisque & (1 + (1/d)) < 1 — &,

Q (é)l +(1/d) < RI—B )
Posons

K(E€ = fE&"—g(@";

si £ € M on a l'inégalite
(40) K@ <« R Q ()™
avec v > 2, comme on va le voir. Si on pose

k@ = /0@ —-g(@©)),

il vient, par la formule du bindme,

K€ «Max (k&g ") (<p<n),

mais le théoréme 2.9. affirme que

k(€ « R°Q(8);

les inégalités (38) et (39) montrent donc que 'on a
k() g (B 7« R1TEQ ()b
orsin>=3d+ 2,ona
1 — ((n—1)d) < =2,

ce qui établit (40) puisque 3d + 2 < 4d dés que d > 2.
Pour déemontrer le théoreme 2.13. il suffit donc d’estimer I'intégrale de K sur
M ; mais la relation (40) et la définition de M impliquent

J K (§) dE « J R1TO J Q(§)vdE,,;
M lgo| <R "4+ Q (¢) <R®
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puisque v > 2, I'intégrale

J Q(§) " d¢;

est convergente et on a donc
J\ K (&) dE., « Rn~d+1—26
M

ce qui établit le théoréeme 2.13. avec 6; = 1 — 20.

Nous pouvons maintenant démontrer le théoréeme 2.1. Rappelons que I'on a posé

D = 27! Supposons donc n > 2D, et dans la définition (19) de I’ensemble
majeur, choisissons & tel que

§ < df2d+1).

D’autre part soit 6 un nombre « suffisamment petit ». La proposition 2.2. affirme
que

N(t) = J [ @) x(—1t§) dE;
AIQ

nous avons vu dans le théoréme 2.5. que lorsque n > 2D, on a

J | f(€)["dE « R"™47°

et dans le théoréme 2.13., que si n > 4d,

J_ F@E x(—16)dg = j g (&) x (—t€)dg + O(R"™*7F).

Les trois relations précédentes impliquent donc que 'on a
N (1) = j g &) x (—tE)d& + 0 (R 7).
M
Rappelons que g ()" = G(§) et quesin > 2d,etd > 3,0on a

J_ |G (€)]dE « R"™47°

par le théoreme 2.8., et

|
g
g
|
i

Sa(t) = J G (§) x (—15) dg
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par la proposition 2.3. Puisque R? ~ t, on tire des trois relations précédentes que
sous les hypothéses faites (et en changeant 0 en 6/d), on a

N (1) = Sx(e) + 0™ 179

qui n'est autre que la relation (3) et le théoréme 2.1. est établi.
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