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la formule de Künneth. Par exemple, pour k 2, le théorème de Künneth

montre que les 2-cellules entières

cXyL : (s, t) -+ sX + tp mod L (X, pcL)

[0, l]2 -4 V/L

engendrent H2{V/L, Z) (dans la sec. 4 nous n'avons utilisé que l'intégralité de ces

cellules particulières). L'intégralité d'une 2-forme alternée sur L caractérise les

éléments de H\V/L, Z).
La construction transcendante des surfaces de Hopf présente tout de même

quelque analogie avec celle des tores complexes (de dimension 2). En effet,

lorsque dimc(L) 2, on peut effectuer un quotient par un réseau L en deux

temps. Choisissant d'abord une base complexe de V dans un système de

générateurs de L, on peut identifier V à C2 et un facteur direct L1 de L à Z2. Donc

V/LV/Lx© L2 C2/Z L'2

où L'2 dénote le sous-groupe image de L2 dans le quotient. Avec l'exponentielle
normalisée

e(z) exp(27nz),

on peut identifier C/Z à Cx et

V/L Cx x Cx/L'2

où L2 est un sous-groupe discret (de rang 2) de Cx x Cx. Les surfaces de Hopf
étaient obtenues comme quotient de C x C — (0, 0) par un sous-groupe discret
(de rang 1 de Hx).

La principale différence entre les deux situations envisagées provient du fait
que les tores complexes sont toujours kàhlériens, et en particulier leur H2 est non
nul, tandis que les surfaces de Hopf ne le sont pas.

6. Classification de variétés abéliennes

Commençons par déterminer les applications holomorphes entre tores
complexes.

Proposition. Soient V/L et V'/L' deux tores complexes et /:
V/L -> V'/L une application holomorphe. Alors J{v) f0(v) f(0) où f0
est un homomorphisme provenant d'une application C-linéaire F : V -> V
telle que F(L) cz L'.
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Démonstration. Remplaçant / par / — /(0), on peut supposer /(0) nul
(dans V'/L) puis relever la composée

V -+ V/L L V'/L

au revêtement universel V de V'/L :

K.

^V'/L.
Choisissons même le relèvement F tel que F(0) 0. Comme les points z et z

4- X(XeL) ont même image (dans V/L), la différence F(z + X) — F(z) doit être un
élément de L et l'application (continue!) z \-+ F(z + X) — F(z) envoie l'espace

connexe V dans l'espace discret L : elle est constante et on a

F(z + X) F(z) + cx (cx F(Xj).

Les dérivées partielles de F (par rapport à une base de V) sont ainsi holomorphes
et L-périodiques donc bornées. Le théorème de Liouville montre qu'elles doivent
être constantes et F est (C)-linéaire (linéaire homogène si on a choisi F(0) nul).

Il résulte immédiatement de la proposition précédente que lorsque

7 : V/L - V'/L

est un homomorphisme holomorphe, le relèvement F : V - V a une restriction
Ff: L - L additive (i.e. Z-linéaire) qui caractérise complètement F et /. Ainsi

Homho/(K/L, V'/L) - Homz(L, L)

f Ff
est bijective. En particulier, si L L,

Endhol(V/L) EndZ(L) End(Z") Mn(Z)
et

AuthoiWL) Aut(L) G/(Z") Gln(Z).

Passons aux variétés abéliennes. Lorsque A V/L est une telle variété, il
existe une forme alternée

E : L x L -» Z (ou A2L^Z)



VARIÉTÉS ABÉLIENNES COMPLEXES 125

dont l'extension R-bilinéaire (encore notée E) V x V - R satisfait

| E(u, iu) > 0 si 0 # u g K

| £(îm, w) £(w, y) (m,- v e V)

(cf. sec. 2), et il est plus intéressant de classer les couples (A, E). On peut observer

que L se déduit intrinsèquement de A par formation de l'homologie (entière)

A i—» Ui(A) HM* Z) H^A),

de sorte que dans la donnée (A, £), on peut considérer que E est un ' ment de

Homz( A 2H1(A), Z).

Un tel élément E, ayant les propriétés indiquées ci-dessus est appelé polarisation
de A et le couple (A, E) est une variété abélienne polarisée. Lorsque E est

unimodulaire, on dit que la polarisation est principale et A est polarisée

principalement par la donnée de E.

Remarque. Choisissant une base (eh Xj)1^îtj^n de L dans laquelle E

s'exprime sous forme réduite de Frobenius

| E{eh ej) E(Xh Xj) 0

[ E(eb Xj) 5ijdi (di + 1 multiple de dt pour 1 ^ i < n),

on voit que E peut être considérée comme forme unimodulaire sur le réseau L
engendré par les et et les Xj/dj, de sorte que A' VIL est polarisée principalement
(par E). Le noyau de la projection canonique A -> A' (correspondant à

l'inclusion L a L) est fini et d'ordre Hd3{= Pf(E)), et A apparaît comme
revêtement fini de la variété abélienne principalement polarisée A'.

Similairement, on peut construire un réseau E c= L et une multiple —E
m

unimodulaire, d'où un revêtement fini A" -» A principalement polarisé. De
façon générale, on peut donc dire que toute variété abélienne A est « comprise
entre » deux variétés abéliennes principalement polarisées

A" -+ A -> A' (revêtements : noyaux finis).

Conservons donc les notations précédentes en supposant que le réseau L de
V est muni d'une polarisation principale E. La base symplectique choisie

(é?i,..., en, X,1;..., À,„)
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sera dénotée plus simplement (ei)l^i^2n °u (e) (de sorte que Xj ej + n). On a

donc par hypothèse

j) E{ßn + p n + j) 0

E(eh en+j) bu (1

II sera utile de travailler dans une autre base (e) {e'j)1^j^2n de l'espace
vectoriel réel VR sous-jacent à V (restriction des scalaires à R) définie comme suit

(e'){ieu ien,eue„) (i y/^1)

Dans cette base (e'), la matrice J de la multiplication par i ^/— 1 dans VR est

donnée par

d'où

ie'; i2e: — e\j n + j

J (_°1 o")^2„(Z).

En accord avec les notations de la sec. 2, notons V1 le sous-espace vectoriel réel

(de dimension n) engendré par les vecteurs eu en. La forme alternée E est

isotrope sur V1 et sur iV1 (invariance par multiplication par i). Donc la matrice
représentative de E dans la base (e') a la forme

En identifiant E à sa matrice représentative, l'invariance par multiplication par i
se traduit plus précisément par la relation 1)

lJEJ - E

Effectuant les produits matriciels par blocs, on trouve l'identité

x) Identifiant u et v à des vecteurs colonnes dans la base (e'\ on écrit E{u, v)

lu- E v (produits matriciels lignes par colonnes!).
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montre que F doit être symétrique et E est donnée par la matrice

E ] antisymétrique (Asymétrique).

qui

\F 0 /
La positivité de E s'exprime aussi facilement :

u 7^ 0 => 0 < E(u, iu) îuEJu

(F 0\
d'où EJ définie positive. Mais la matrice EJ est simplement I I. Donc

F est symétrique définie positive

Les formes C-linéaires coordonnées de V dans la base (eu en) ont été dénotées

par fj : ce sont les extensions C-linéaires des

v i— E(v, Xj) : V1 -+ R

Elles satisfont bien aux relations j]{ek) bjk qui montrent que

Z X Zj.
j= 1

Prenant en particulier z Xk on va écrire

hY,fßk)ej YZjkei lj(xjk + iyjk)ej
puis

h lyjkiej +

qui fournissent les composantes des vecteurs Xk dans la base (e'). Posons

(Zjk) Z X + iY +

fy\Les composantes des Xk sont les colonnes de la matrice II (matrice 2n x n

réelle). Les relations E(eh Xj) (rappelons que nous supposons E

unimodulaire) peuvent être rassemblées sous la forme matricielle

(0 UEQ-(0 lj(° "X)= '.««J«)-

Effectuons ce produit par blocs

FY (F 0)(p 1„.
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Cela prouve que la matrice Y est inversible, d'inverse F: Y1 F.1) En
particulier, Y est symétrique. L'isotropie de E sur l'espace engendré par les

vecteurs Xk s'exprime de façon analogue

Puisque FY YF 1, la relation précédente montre que X est aussi

symétrique. En fait, nous savions déjà que Z X + iY est symétrique (lemme
de sec. 2 utilisé pour démontrer les équations fonctionnelles de 0). La positivité
de E a fourni F » 0 que nous pouvons exprimer de façon équivalente par Y

F~1 » 0. En résumé, le choix d'une base symplectique de L nous a permis de

construire une matrice symétrique Z e M„(C) de partie imaginaire définie

positive.

Définition. On appelle demi-plan généralisé de Siegel Hn l'espace formé des

matrices symétriques de Mn(C) de partie imaginaire définie positive

Hn {Ze Mn{C) : 'Z Z et Im(Z) » 0}

Identifions E à C" par le choix de base el9..., en. Le réseau L apparaît alors

comme engendré par Z" et les colonnes (ou lignes!) de la matrice Z. Inversement,
montrons comment toute matrice Z g Hn fournit un réseau L (engendré par les

vecteurs el9..., en de la base canonique de Cn et les colonnes de Z) pour lequel

C"/L possède une polarisation principale (donc est une variété abélienne). Il s'agit
de trouver une forme hermitienne sur C" dont la partie imaginaire soit
unimodulaire sur L. L'examen du cas trivial n 1 indique comment procéder : il
s'agit de diviser la forme hermitienne canonique tûv par la partie imaginaire de

z( Z). Je prétends que la forme hermitienne sur Cw donnée par la matrice réelle

symétrique Y1 a les propriétés requises. Cette forme hermitienne est donc
donnée (pour des vecteurs colonnes u et v de C") par

H(u, v) « 'ûY'h.

Puisque Y 1 est symétrique réelle et définie positive, H est bien un produit
scalaire hilbertien et E Im(H) est automatiquement R-bilinéaire alternée,

invariante par multiplication par i et positive. Il ne reste qu'à en vérifier

*) En dimension finie, FY 1„ => Y injective => Y inversible.
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l'intégralité et l'unimodularité. Ecrivons encore L © L2 avec Lx — Z"

et L2 engendré par les colonnes de Z. Puisque Y est une matrice réelle, H sera

réelle sur L1 et E nulle sur ce sous-réseau. De même si Xk désigne la ke colonne

de Z, les produits scalaires

H(XpXk) %Y lXk

sont les coefficients matriciels de

tZY1Z ZY lZ (X-iY)Y~\X + iY)

{X-iY){Y~lX + iln) réel + i{X-YY~lX) réel.

Les E(XP Xk) 0 sont des entiers! Finalement, les H(ep Xk) tejY~1Xk sont les

coefficients matriciels de

IY~lZ Y-^X + iY) Y~'X + iln,
d'où

E(ep Xk) )j, k)e coefficient de In bjk

L'intégralité et l'unimodularité de E sur L sont donc prouvées. Plus précisément,
la forme alternée E prend les valeurs normalisées sur les couples de vecteurs de

base ep Xk tout comme la forme initiale ayant conduit à la matrice Z : les deux
constructions sont bien inverses l'une de l'autre.

Il ne reste qu'à déterminer quand deux matrices Z et Z' e Hn fournissent des

variétés abéliennes principalement polarisées isomorphes. Par là, on entend
naturellement que les couples correspondants (A, E) et (A\ E') sont isomorphes :

il existe un isomorphisme analytique / : A - A qui transporte la forme E sur E'

g gf \ L - L (Xl9 X2eE)

g : V -> V E'(gXl9 gX2) E(Xl9 X2)

f : A -> A'

Pour trouver cette condition sous la forme usuelle, nous identifierons les

éléments de C" à des vecteurs lignes. Le réseau L est engendré par les vecteurs de
la base canonique de C" et par les vecteurs lignes de Z (ibid. pour L). La condition
d'isomorphie (analytique) des tores complexes Cn/L et Cn/L donnée au début de
cette section revient à l'existence d'un isomorphisme C-linéaire de Cn appliquant
L sur L. Par notre convention de regarder maintenant les vecteurs de C" comme
des lignes, l'action de la matrice représentative de g est donnée par une
multiplication matricielle à droite : g(u) uMg. L'isomorphisme en question
s'exprime par

L L -Mg(MseG!„(C)).
L'Enseignement mathém., t. XXVIII, fasc. 1-2. q
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La base (ei)1^i^2n de L(en + k étant la ke ligne de Z) est envoyée sur une base de

L : (eiMg) i ^ £ ^ 2n est une base de L. Il y a donc une matrice y e Gl2n(Z) effectuant le

passage entre les deux bases de L

e'jZ Y;* ekMg (e'je;- pour; 1,«).
Ecrivant ces relations linéaires l'une au-dessous de l'autre, on obtient l'identité
matricielle

fZ'\
_

fZM\
_

(A B\ fZM\
_

/(AZ + B)M\

\I y\IMj ~ \C D

(M Mg et y désignant la matrice (yjk) écrite dans un ordre convenable! 1)). On
en tire

CZ + D inversible et (CZ + Z))-1 M
puis

Z' {AZ + B)M (AZ + B){CZ + D)~1

avec

"'{c
Lorsque y est compatible aux polarisations, les deux bases (e'j) et (e}M) sont

symplectiques et y envoie la seconde dans la première. La matrice de E' étant J
dans ces deux bases, on doit avoir

'yjy J •

Définition. Le groupe symplectique Spn est le sous-groupe de Glln défini par

geSpno ge Glln et *gjg J

On parlera ainsi du groupe symplectique réel Spn(R), du groupe symplectique

entier Spn(Z),... Si g est une matrice symplectique, on a

de%)2 det{'gjg) det(J) - 1

d'où de%) ±1. Plus précisément, utilisant le pfaffien (défini sur les matrices

alternées et caractérisé par les conditions

det(E) Pf(E)2, Pf(J) AlPfCgEg) dtt(g)Pf(E)\

(D C\ (A Bs
1) Plus précisément (yjk) { I et y I
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on voit que le déterminant d'une matrice symplectique est +1 :

Spn <= Sl2n 1).

Pour pouvoir formuler proprement la condition d'isomorphie des variétés

abéliennes principalement polarisées correspondant aux matrices Z et Z' g Hn, il
faut introduire l'action de Spn(R) ou Spn{Z) dans Hn.

Proposition. Soient g ^ ^ e Spn(R) et Z g Hn. Alors CZ + D

est inversible et

g-Z (AZ -f B) (CZ + D)~1 e Hn.

De plus, (g, Z) i— g • Z définit une action continue et propre de Spn(R) dans

H„.
Pour ne pas interrompre le cours normal de nos déductions, renvoyons la

démonstration de cette proposition à la fin de la section.

Le théorème de classification est le suivant.

Théorème. A toute matrice Z g Hn, on associe la variété abélienne

principalement polarisée (A, E) définie comme suit :

A Cn/L où L est le réseau engendré par la base canonique de C" et les

colonnes (ou lignes) de Z,

E partie imaginaire de la forme hermitienne H donnée par la matrice
(réelle) Y~1 dans la base canonique (Y Im(Z)).

Alors, pour toute y g Spn(Z), les variétés abéliennes principalement polarisées
correspondant à Z et y • Z sont isomorphes et Fassociation

Z ^ (A, E)
définit une bijection

o /m, ri ^ f classes d'isomorphismes de variétés
Spn{Z)\Hn — <

l abéliennes principalement polarisées

Autrement dit, le réseau L associé à Z g Hn est somme de Z" et de ZZn (ou
Z"Z selon qu'on travaille avec des vecteurs lignes ou colonnes!), et

E(u,v) ImÇuY~1v) ^7 (ri7Y~îv — tuY~ 1v). 2)

On montre sans peine que Spl Sl2.

2) Il serait plus cohérent de travailler avec des vecteurs lignes u et v et donc d'écrire
E(w, v) Im{uY uv).
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On a déjà démontré que si les variétés abéliennes principalement polarisées
(A, E) et (A', E') correspondant aux matrices Z et Z' g Hn sont isomorphes, il
existe y e Spn{Z) avec Z' y • Z. Un instant de réflexion montre que les

constructions peuvent être renversées

{A, E) (A\ E')o3 ye Spn(Z): Zf y Z

Le théorème est alors complètement démontré.
Revenons à la démonstration de la proposition.

Lorsque g ^ est symplectique, i.e. lgJg

(*) XAC et XBC symétriques, lAD — lCB

Pour Z e M„(C) symétrique, on peut calculer

(CZ + D)%4Z + ß) (ZtC + tD){AZ + B).
On trouve

ZCCv4)Z + Z(lCR) + (lDZ)Z + lDB

et en utilisant les relations (*)

Z(tCA)Z + ZÇCB) + Z + CBQZ + lDB

On trouve de même

{AZ + B)*{CZ + D)

ZÇAQZ + Z + Z('Cß) + ÇBQZ + XBD

Soustrayant terme à terme (et utilisant encore la symétrie donnée par (*))

(CZ + D)%4Z + ß) - {AZ + B)*(CZ + D)

Z - Z 2i Y.

Si Y » 0, prenant un vecteur colonne complexe u,

(CZ + D)u =* 0 => lü(CZ + DY 0

=> 2i tûYu 0 => u 0

J, on doit avoir

/(= u.1)

*) Donc A I => C symétrique; D I => £ symétrique; q ou D nul => B et C
inversibles ; B ou C nul => /I et D inversibles ; J e Sp„(R).
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Donc Y» 0 => CZ + Dinjective=> CZ + inversible. PourZ e H„, on peut

donc définir

g-Z (AZ + B)(CZ +Dy1si ^ e Sp„(R).

Observons encore

\CZ + D){g -Z -'(g-Z)) (CZ + D)

'(CZ + D) (AZ + B)- '(

Z - !Z 0

par un calcul analogue à celui qui vient d'être fait. Donc est symétrique.

Ecrivons g Z X'+ iY'etmontrons que Y' est définie positive

(CZ + D)* Y

~(Z'C + 'D)(g Z- (g-Z)*) (CZ + D) » 0.

Donc g • Z g Hn et il en résulte immédiatement que (g, Z) i— g • Z définit une

action continue de Spn(R) dans Hn. Pour voir que cette action est propre, il suffit
de vérifier qu'elle est transitive et que le stabilisateur d'un point, disons il e Hn est

compact dans Spn(R). Or les relations (*) montrent que les familles de matrices de

Gl2n(R)

fl B\
ou B est symétrique

0 /
A 0

0 'A'1
où A est inversible

sont formées de matrices symplectiques. On a respectivement

/ B\
o

+

A 0

0 «4-V
Z AZM-

Ainsi, si Z X + iY g Hn on peut écrire Z iY + X • iY
\0 I

(puisque X est symétrique, la matrice considérée est bien symplectique) puis

Z-IÜ
0 / î

Y~ 2
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L'orbite de il est ainsi Hn tout entier. Le stabilisateur de cette matrice il e Hn est

défini par

il g-il (iA + B) (iC + D)'1

i{iC + D) iA + B,
C -B et A D

Ce calcul montre que le stabilisateur de il e Hn est formé des matrices

symplectiques ^ ^ Les relations (*) montrent que %AA + fBB / : La

somme des carrés des coefficients (réels) de A et de B vaut ainsi

TrÇAA) + Tr(lBB) Tr{I) n

En particulier, ces coefficients restent bornés dans le sous-groupe K stabilisateur
de il : K est compact. De plus, l'action définie ci-dessus fournit un iso-

morphisme d'espaces homogènes

Spn(R)/K * Hn.

Remarque. Les matrices particulières

g ^ (AeG/„(R^ e M„(R), 'B et J

(Av Gl-1) engendrent le groupe symplectique Spn(R). Appelons en effet G

Spn{R) le sous-groupe engendré par ces matrices et prenons une matrice

symplectique g \ arbitraire. Puisque

P 0 \ (A B\ (Q 0 ^ fPAQ
0 PVJ\C DJ\ 0 Q

*

* *

on peut choisir convenablement F et Q pour que PAQ soit diagonale avec

éléments diagonaux égaux à 0 ou 1. On peut donc supposer que A a déjà cette

forme

A h o

Of! - d/

Décomposons similairement C (blocs de même taille que ceux de A)

C
Cn C12

^21 C22
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Comme g est symplectique

fAC
1 o\/cn c12\ (cxl c
0 Oy \C2i C22/ V o

-12
*

doit être symétrique: C12 0. Le déterminant de g est non nul, donc les

colonnes de g sont linéairement indépendantes. En particulier, les colonnes de

doivent être linéairement indépendantes : det(C22) / 0. On peut ainsi choisir le

nombre réel b de façon que le bloc A' A + b'C de

I bl\ (A B\
_

(A + bC B -h bD

0 I )\C DJ
^ \ C D

soit non singulier : ce bloc est le bloc supérieur de

A + bC

C

+ bCn 0 \bC bC22\

Cn 0

Ci2 C '^22

et
det(A') det(ld + èCn) det(hC22)

b"~d det(C22) det(ld + 6Cn).

On peut donc supposer dès le départ que A est non singulière et la première
réduction permet de supposer que A I 1„ est l'identité. Multiplions alors g
à gauche par i D-'-G
On obtient

/ 0^

~C I
1 B) B'\

)\C DJ \0 D'j (C lAC doit être symétrique).

Les conditions symplectiques (*) montrent alors immédiatement que D' I qt
B' symétrique de sorte que g e Spn(R) appartient au sous-groupe G engendré par
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les matrices particulières. Comme les matrices particulières ont visiblement
toutes déterminant unité, celà démontre que Spjïl) c= Sl2n(R) sans devoir avoir
recours au pfaffien. Observons aussi que les transformations de Hn produites par
les matrices particulières sont respectivement

Zv^ AZlA,Z\-+Z + B et Z h-> -Z1

S'il est évident a priori que les deux premières familles conservent la positivité de

la partie imaginaire Y de Z, ce fait peut être vérifié comme suit pour la dernière

transformation. Posons donc

Z X + iY 4(y4xy4 + î/)4
de sorte que

111 1
— Z~1 - Y-2(Y'2XY~2Jril)-1 Y'2

Y Y
Il s'agit de voir que la partie imaginaire de — Y~2X Y~ 2 + i/)~1 est bien définie

Y y
positive (la matrice S + il Y~2XY~2 + U est toujours inversible puisque S

est symétrique réelle, donc n'a pas la valeur propre — i...). Mais on vérifie sans

peine que

(S — il) (S2 + /)_1 (S2 + /)_1 (S —il) est inverse de S + il

(comme toutes ces matrices commutent entre elles, on peut être tenté de calculer

cet inverse avec les règles usuelles des quotients : c'est légitime). Il ne reste plus
alors à vérifier que (S2 +J)-1 » 0 ce qui est clair!
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