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la formule de Kiinneth. Par exemple, pour k = 2, le théoréme de Kiinneth
montre que les 2-cellules entieres

Cui(s,8) = sh+ tpmod L (A, pel)
[0, 11> — V/L

engendrent H,(V/L, Z)(dans la sec. 4 nous n’avons utilisé que 'intégralité de ces
cellules particuliéres). L’intégralité d’une 2-forme alternée sur L caractérise les
éléments de H3(V/L, Z).

La construction transcendante des surfaces de Hopf présente tout de méme
quelque analogie avec celle des tores complexes (de dimension 2). En effet,
lorsque dim(V) = 2, on peut effectuer un quotient par un réseau L en deux
temps. Choisissant d’abord une base complexe de V dans un systéme de
générateurs de L, on peut identifier ¥ a C? et un facteur direct L, de L a Z*. Donc

VIL = VIL, ® L, = C¥Z? / L,

ou L) dénote le sous-groupe image de L, dans le quotient. Avec 'exponentielle
normalisée
e(z) = exp(2miz),

on peut identifier C/Z a C* et
VIL = C* x C*/L,

ou L} est un sous-groupe discret (de rang 2) de C* x C ™. Les surfaces de Hopf
¢taient obtenues comme quotient de C x C — (0, 0) par un sous-groupe discret
(de rang 1 de H™).

La principale différence entre les deux situations envisagées provient du fait
que les tores complexes sont toujours kdhlériens, et en particulier leur H? est non
nul, tandis que les surfaces de Hopf ne le sont pas.

6. CLASSIFICATION DE VARIETES ABELIENNES

Commengons par déterminer les applications holomorphes entre tores
complexes. |

PROPOSITION.  Soient  V/L et V'/L' deux tores complexes et f:
VIL - V'/L' une application holomorphe. Alors  flv) = fo(v) f(0) ou f,
est un homomorphisme provenant d’une application C-linéaire F:V — V'
telle que F(L) = L'
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Démonstration. Remplagant f par f — f(0), on peut supposer f(0) nul
(dans V'/L) puis relever la composée
s
V- V/IL - V'L

au rev€tement universel V' de V'/L:

v
<
\V’/L’.

Choisissons méme le relévement F tel que F(0) = 0. Comme les points z et z
+ MA€L) ont méme image (dans V/L), la différence F(z+)) — F(z) doit étre un
elément de L et 'application (continue!) z — F(z+A) — F(z) envoie I'espace
connexe V dans I'espace discret L: elle est constante et on a

Fz+X) = F(z) + ¢, (¢, = F(A)).

Les dérivées partielles de F (par rapport a une base de V) sont ainsi holomorphes
et L-périodiques donc bornées. Le théoreme de Liouville montre qu’elles doivent
étre constantes et F est (C)-linéaire (linéaire homogene si on a choisi F(0) nul).

Il résulte immédiatement de la proposition précédente que lorsque
f:VIL > V'/L

est un homomorphisme holomorphe, le relévement F: V' — V' a une restriction
F,: L - L additive (i.e. Z-linéaire) qui caractérise completement F et f. Ainsi

Hom,,(V/L, V'/L) > Homg(L, L)
’ f — Ff

est bijective. En particulier, si L = L,

End,,(V/L) = Endy(L) = End(Z") = M,(2)
et
Aut, (VL) = Aut(L) = GIZ") = GI(Z).

Passons aux variétés abéliennes. Lorsque A = V/L est une telle variété, il
existe une forme alternée

E:LxL—-Z (ou A’L— Z)
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dont I'extension R-bilinéaire (encore notée E) V x V — R satisfait

E(u,iuy >0 s10 #uel
E(iu, iv) = E(u,v) (u,veV)

(cf. sec. 2), et il est plus intéressant de classer les couples (4, E). On peut observer
que L se déduit intrinséquement de A par formation de ’homologie (entiere)

A my(A) = H(A, Z) = Hy(4),
de sorte que dans la donnée (A4, E), on peut considérer que E est un ' ment de
Homy,(A*H(A), Z).

Un tel élément E, ayant les propriétés indiquées ci-dessus est appelé polarisation
de A et le couple (A, E) est une variété abélienne polarisée. Lorsque E est
unimodulaire, on dit que la polarisation est principale et A est polarisée
principalement par la donnée de E.

Remarque. Choisissant une base (e, A));<; j<» de L dans laquelle E
s’exprime sous forme réduite de Frobenius

E(e;, e)) = E(\;, 7\,‘) =0,
E(e;, A;) = 8;d; (d;,, multiple de d; pour 1 < i < n),

on voit que E peut étre consideree comme forme unimodulaire sur le réseau L
engendré parlese;etlesA;/d;, desorteque A = V/L est polarisée principalement
(par E). Le noyau de la projection canonique A — A’ (correspondant a
Pinclusion L < L) est fini et d’ordre Ild{= Pf (E)), et A apparait comme
revétement fini de la variété abélienne principalement polarisée A’

C : , ) 1
Similairement, on peut construire un réseau L' < L et une multiple —E
m

unimodulaire, d’ou un revétement fini A” — A principalement polarisé. De
fagon générale, on peut donc dire que toute variété abélienne A est « comprise
entre » deux variétés abéliennes principalement polarisées

A" - A - A (revétements: noyaux finis) .

Conservons donc les notations précédentes en supposant que le réseau L de
V' est muni d’une polarisation principale E. La base symplectique choisie

(€15 ves €py Ay oy Ay)
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sera dénotee plus simplement (e;); <;<,, ou (e) (de sorte que A; = ¢;,,). On a
donc par hypothese |
E(en j) = E( €n+is n+j) =0,

E(e;, .+ ;) = & (I<i,j<n).

Il sera utile de travailler dans une autre base (¢') = (€)); < <2, de 'espace
vectoriel réel Vg sous-jacent a V (restriction des scalaires a R) définie comme suit

(€) = (iey, ..., ie,, €4, e,) (I =/ —1).

Dans cette base (¢'), la matrice J de la multiplication pari = ./ —1 dans V est
donnée par

e, = i%e; = —e,.;,
ie,; = le; = ¢ (1<j<n),
d’ou
J:(O 1">GM2(Z).
-1, 0 "

En accord avec les notations de la sec. 2, notons V] le sous-espace vectoriel réel
(de dimension n) engendré par les vecteurs e, ..., ¢,. La forme alternée E est
isotrope sur V, et sur i¥; (invariance par multiplication par i). Donc la matrice
représentative de E dans la base (¢) a la forme

[0 —'F
E: .
F 0
Enidentifiant E a sa matrice représentative, 'invariance par multlphcatlon par i
se traduit plus précisément par la relation 1)

‘JEJ = E.

Effectuant les produits matriciels par blocs, on trouve I'identité

ﬁﬁﬁﬁﬁﬁ o) )

1) Identifiant u et v a des vecteurs colonnes dans la base (¢'), on écrit E(u, v)
= 'u- E - v (produits matriciels lignes par colonnes!).
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qui montre que F doit étre symétrique et E est donnée par la matrice

0 —F : . Y
E = F oo antisymétrique (F symétrique) .

La positivité de E s’exprime aussi facilement:

u#0=0< E(y,iu) = uEJu

F 0
d’ou EJ définie positive. Mais la matrice EJ est simplement (O F>' Donc

F est symétrique définie positive .

Les formes C-linéaires coordonnées de V dans la base (¢4, ..., €,) ont été dénotées
par f;: ce sont les extensions C-linéaires des

Elles satisfont bien aux relations fie,) = 0 qui montrent que

n
z =) fl2)e;: fz) = z;.
j=1
Prenant en particulier z = A, on va écrire

Ay = ij(xk)ej = szkej = Z(Xjk+iyjk)ej

puis
Mo = Y ypde; + ) xpe;
qui fournissent les composantes des vecteurs A, dans la base (¢’). Posons

(zp) = Z = X + 1Y = (xp) + i(yp) -

, Y
Les composantes des A, sont les colonnes de la matrice <X> (matrice 2n x n

reelle). Les relations E(e, A) = o,; (rappelons que nous supposons E
unimodulaire) peuvent étre rassemblées sous la forme matricielle

Y 0 —F\ /Y
(0 1n)E<X> = (0 LJ(F 0 ><X>-= 1, € M,(R).
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Cela prouve que la matrice Y est inversible, d’inverse F: Y ! = F.!) En
particulier, Y est symétrique. L’isotropie de E sur I'espace engendré par les
vecteurs A, s’exprime de fagon analogue

-or el )
X F 0 X

Y
= (XF —YF) (X>=>‘XFY — YFX.

Puisque FY = YF = 1, la relation précédente montre que X est aussi
symétrique. En fait, nous savions déja que Z = X + iY est symétrique (lemme
de sec. 2 utilisé pour démontrer les équations fonctionnelles de 0). La positivité
de E a fourni F » 0 que nous pouvons exprimer de fagon équivalente par Y

= F~! > 0. En résumé, le choix d’une base symplectique de L nous a permis de

construire une matrice symétrique Z e M, (C) de partie imaginaire définie
positive.

Définition. On appelle demi-plan généralisé de Siegel H,I’espace formé des
matrices symétriques de M ,(C) de partie imaginaire définie positive

H,={ZeM(C):'Z = Z et Im(Z) » 0} .

Identifions V' a C" par le choix de base ey, ..., e,. Le réseau L apparait alors
comme engendré par Z." et les colonnes (ou lignes!) de la matrice Z. Inversement,
montrons comment toute matrice Z € H, fournit un réseau L (engendré par les
vecteurs e, ..., ¢, de la base canonique de C” et les colonnes de Z) pour lequel
C"/L posséde une polarisation principale (donc est une variété abélienne). 11 s’agit
de trouver une forme hermitienne sur C" dont la partie imaginaire soit
unimodulaire sur L. L’examen du cas trivial n = 1 indique comment procéder : il
s’agit de diviser la forme hermitienne canonique ‘uv par la partie imaginaire de
z(= Z). Je prétends que la forme hermitienne sur C" donnée par la matrice réelle
symétrique Y ! a les propriétés requises. Cette forme hermitienne est donc
donnée (pour des vecteurs colonnes u et v de C") par

H(u,v) = 'uY 'v.

Puisque Y ! est symétrique réelle et définie positive, H est bien un produit
scalaire hilbertien et E = Im(H) est automatiquement R-bilinéaire alternée,
invariante par multiplication par i et positive. 11 ne reste qu’a en vérifier

1Y En dimension finie, FY = 1, =Y injective = Y inversible.
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Pintégralité et I'unimodularité. Ecrivons encore L = L, @ L, avec L, = Z7
et L, engendré par les colonnes de Z. Puisque Y est une matrice réelle, H sera
réelle sur L, et E nulle sur ce sous-réseau. De méme si A, désigne la k° colonne

de Z, les produits scalaires
H(}\’_}’ )\.k) = thY41}\‘k

sont les coefficients matriciels de
‘7Y 'Z = ZY 'Z = (X—-iY)Y HX +iY)
= (X—=iY) (Y 'X+il,) = réel + i(X—YY 'X) = réel.

Les E(A;, &) = 0sont des entiers! Finalement, les H(ej, A,) = ‘e;Y ™ 2, sont les
coefficients matriciels de

1Y 'Z = Y {X+iY) = Y IX +il,,
d’ou
E(e;, ) = )j, k)° coefficient de I, = 9, .

L’intégralité et 'unimodularité de E sur L sont donc prouvées. Plus précisément,
la forme alternée E prend les valeurs normalisées sur les couples de vecteurs de
base e;, A, tout comme la forme initiale ayant conduit a la matrice Z: les deux
constructions sont bien inverses I'une de 'autre.

Il ne reste qu’a déterminer quand deux matrices Z et Z' € H, fournissent des
varietés abéliennes principalement polarisées isomorphes. Par 1a, on entend
naturellement que les couples correspondants (A4, E) et (4’, E') sont isomorphes:
il existe un isomorphisme analytique f: 4 — A’ qui transporte la forme E sur E’

g=g9g;L-oL (A, Ayel)
g: V-V E'(ghy, ghy) = E(Xy, &y)
f:A-> A

Pour trouver cette condition sous la forme usuelle, nous identifierons les
elements de C” a des vecteurs lignes. Le réseau L est engendré par les vecteurs de
la base canonique de C" et par les vecteurs lignes de Z (ibid. pour ). La condition
d’isomorphie (analytique) des tores complexes C"/L et C"/L, donnée au début de
cette section revient a I'existence d’un isomorphisme C-linéaire de C" appliquant
L sur L. Par notre convention de regarder maintenant les vecteurs de C" comme
des lignes, I'action de la matrice représentative de g est donnée par une
multiplication matricielle a droite: g(u) = uM,. L’isomorphisme en question
s’exprime par

L=L-M, (M,eGL(C)).

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 9
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La base (¢;); <;<2. de L (e, 4, étant la k° ligne de Z) est envoyée sur une base de
L:(e;M,) <i<anestune basede L. Il y a donc une matrice y € Gl 2,,(Z) effectuant le
passage entre les deux bases de I

e; =Y vieM, (€5 =-e¢ pourj=1,.,n).

Ecrivant ces relations linéaires I’'une au-dessous de 'autre, on obtient I'identité
matricielle

z\ ZM\ (A B\ [(ZM (AZ + B\M
(1) = +(h) - (€ ) () - (& om)
(M = M,etydésignant la matrice (y;,) écrite dans un ordre convenable! ')). On
en tire
CZ + D inversible et (CZ+D)"! = M,
puis

Z' = (AZ+BM = (AZ+B)(CZ+D)"!
avece

A B
v={, ,)eGlZ).

Lorsque y est compatible aux polarisations, les deux bases (¢)) et (e;M) sont
symplectiques et y envoie la seconde dans la premiere. La matrice de E’ étant J
dans ces deux bases, on doit avoir

Yy = J.
Définition. Le groupe symplectique Sp, est le sous-groupe de Gl,, défini par
geSp, <> geGl,,et'glg = J.

On parlera ainsi du groupe symplectique réel Sp,(R), du groupe symplectique
entier Sp,(Z), ... Si g est une matrice symplectique, on a

det(g)® = det('gJg) = det(J) =

d’ou det(g) = =+ 1. Plus précisément, utilisant le pfaffien (défini sur les matrices
alternées et caractérisé par les conditions

det(E) = Pf(E)%, Pf(J) = +1, Pf(‘gEg) = det(g)Pf(E)),

) D C A B
') Plus précisément (y;) = B 4 ety = .
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on voit que le déterminant d’'une matrice symplectique est +1:
Spn = SlZn 1) :

Pour pouvoir formuler proprement la condition d’isomorphie des variétés
abéliennes principalement polarisées correspondant aux matrices Z et Z' € H,, 1l
faut introduire I'action de Sp,(R) ou Sp,(Z) dans H,.

A B
PROPOSITION.  Soient g = <C D)eSp,,(R) et ZeH, Alors CZ + D

.

est inversible et
g-Z = (AZ+B)(CZ+D)"'eH,.

De plus, (g, Z)— g Z définit une action continue et propre de Sp,(R) dans
H

-
Pour ne pas interrompre le cours normal de nos déductions, renvoyons la
démonstration de cette proposition a la fin de la section.

Le théoreme de classification est le suivant.

THEOREME. A toute matrice Z € H,, on associe la variété abélienne
principalement polarisée (A, E) définie comme suit :

A = C"/L ou L estleréseau engendré par la base canoniquede C" et les
colonnes (ou lignes) de Z,

E = partie imaginaire de la forme hermitienne H donnée par la matrice
(réelle) Y™' dans la base canonique (Y = Im(Z)).

Alors, pour toute vy e Sp,(Z), les variétés abéliennes principalement polarisées
correspondant a Z et vy-Z sont isomorphes et 'association

Z — (A, E)
définit une bijection
SpZ)\H, = {

classes d’isomorphismes de variétés
abéliennes principalement polarisées

Autrement dit, le réseau L associé¢ a Z € H, est somme de Z" et de ZZ" (ou
277 selon qu'on travaille avec des vecteurs lignes ou colonnes!), et
! .
E(u,v) = Im('uY 'v) = ?(IiY-IU*IuY_llf) )
i

') On montre sans peine que Sp, = Sl

%) Il serait plus cohérent de travailler avec des vecteurs lignes u et v et donc d’écrire
E(u,v) = ImuY ™ ')
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On a déja démontré que si les variétés abéliennes principalement polarisées
(A, E) et (A', E') correspondant aux matrices Z et Z' € H, sont isomorphes, il
existe y € SpZ) avee Z' = v+ Z. Un instant de réflexion montre que les
constructions peuvent étre renversées

(A, E) = (A, E)<3yeSp(Z):Z =v-Z.

Le théoréme est alors completement démontré.
Revenons a la démonstration de la proposition.

(A : : : .
Lorsque g = (C D> est symplectique, 1.e. ‘gJg = J, on doit avoir
(*) ‘AC et 'BC symétriques, ‘AD — 'CB = 1 (= 1) .1

Pour Z € M,(C) symétrique, on peut calculer

(CZ+D)*(AZ+B) = (Z'C+'D)(AZ+B).
On trouve ‘
Z('CA)Z + Z('CB) + ((DA)Z + 'DB

et en utilisant les relations (*)

Z('CA)Z + Z('CB) + Z + (‘BC)Z + 'DB.

On trouve de méme |
(AZ + B)*(CZ+ D)

— Z(AC)Z + Z + Z('CB) + (‘BC)Z + 'BD.

Soustrayant terme a terme (et utilisant encore la symétrie donnée par (*))
(CZ+D)¥(AZ+ B) — (AZ+ B)*(CZ + D)
=7Z—-7Z=2Y.

Si Y » 0, prenant un vecteur colonne complexe u,
(CZ+Du = 0= "WCZ+D)* =0

=2i'uYu=0=u=0.

Y Donc A = I = C symétrique; D = I = B symétrique; A ou D nul = Bet C
inversibles; B ou C nul = A et D inversibles; J € Sp,(R).
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Donc Y » 0 = CZ + Dinjective = CZ + D inversible. Pour Z € H,, on peut
donc définir

g-Z = (AZ+B)(CZ+D)™! sig=< )eSp,,(R).

C D
Observons encore
(CZ+D) (g -7 — ’(g-Z)) (CZ+D)
= (CZ+D)(AZ+B) — (AZ+B) (CZ+ D)
- Z —'Z =0 '

par un calcul analogue a celui qui vient d’étre fait. Donc g - Z est symétrique.
Ecrivons g- Z = X' + iY’' et montrons que Y’ est définie positive

(CZ+D)* Y/(CZ+ D)
= %(Z“fCJr’D)(g'Z —(@2))(CZ+D) = Y » 0.

Donc g - Z € H, et il en résulte immédiatement que (g, Z) — ¢ - Z définit une
action continue de Sp,(R) dans H,. Pour voir que cette action est propre, il suffit
de vérifier qu’elle est transitive et que le stabilisateur d’un point, disons il € H,, est
compact dans Sp,(R). Or les relations (*) montrent que les familles de matrices de
Gl,,(R)

| <I B) \ »
ou B est symetrique ,

0 I
A O \ . .
0 t4-1) O A est inversible ,

sont formeées de matrices symplectiques. On a respectivement

IBZ Z + B
0 I N ’

A 0 t
o iq-1) Z=AZ'4.

Ainsi, st Z = X +iYeH, on peut écrire Z = iY + X = ((I) f)-iY

(puisque X est symétrique, la matrice considérée est bien symplectique) puis

1
I X\/Y2 0
2= 3)(¢ )i
Y 2
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L’orbite de il est ainsi H, tout entier. Le stabilisateur de cette matrice il € H, est
defini par

il =g¢g-il = (A+B)(iC+D)" ',
i(iIC+D) =iA + B,
C= —-BetAd=0D.
Ce calcul montre que le stabilisateur de il € H, est formé des matrices

A
symplectiques ( ) Les relations (*) montrent que ‘A4 + ‘BB = [: La

—B A
somme des carrés des coefficients (réels) de A et de B vaut ainsi

Tr(AA) + Tr('BB) = Ti(l) = n.

En particulier, ces coefficients restent bornés dans le sous-groupe K stabilisateur
de il: K est compact. De plus, I'action définie ci-dessus fournit un iso-
morphisme d’espaces homogénes

SpR)/K = H,.

Remarque. Les matrices particulieres

A O I B
(O AV)(AG;GI,,(R)),(0 I)(BEM,,(R),‘B = B)etJ

(A = ‘A~ 1!) engendrent le groupe symplectique Sp,(R). Appelons en effet G
< Sp,(R) le sous-groupe engendré par ces matrices et prenons une matrice

, A B L .
symplectique g = c D arbitraire. Puisque

P 0\(fA B\(Q O\ [(PAQ *

o p'J\c bpJ\0o @Qv) \ * *)°
on peut choisir convenablement P et Q pour que PAQ soit diagonale avec
éléments diagonaux égaux a 0 ou 1. On peut donc supposer que 4 a déja cette

forme
A = <1d 0 )
0 On—d

Décomposons similairement C (blocs de méme taille que ceux de A)

£ e <C11 C12>.
C21 C22

NSRS
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Comme g est symplectique

tAC — 1 O Cll C12 _ Cll C:2>
0 0/\C,, Cy, 0

doit étre symétrique: C,, = 0. Le déterminant de g est non nul, donc les
colonnes de g sont linéairement indépendantes. En particulier, les colonnes de

* 0

A [ * 0

c/ A\ * 0
* Cy

doivent étre linéairement indépendantes: det(C,,) # 0. On peut ainsi choisir le
nombre réel b de fagon que le bloc A" = A 4+ bC de

I bI\(4 B\ [(A+bC B+ bD
o 1/)\c D) C D

soit non singulier: ce bloc est le bloc supérieur de

1, + bC,, 0
(A + bc> - bC  bCyy
¢ Ci, 0
Ci,  Cp
et
det(A) = det(1,4+bC,,) det(bC,,)

On peut donc supposer des le départ que A est non singuliére et la premiére
réduction permet de supposerque A = I = 1, est'identité. Multiplions alors g

a gauche par
I 0 I C
= J 1
(Lo 3)=( 0
On obtient

I 0\/I B I B i e
c MNe p)=l o (C = "AC doit étre symétrique) .

Les conditions symplectiques (*) montrent alors immédiatement que D’ = [ et
B’ symeétrique de sorte que g € Sp,(R) appartient au sous-groupe G engendré par




136 A. ROBERT

les matrices particuliéres. Comme les matrices particuliéres ont visiblement
toutes déterminant unité, cela démontre que Sp,(R) = SI,,(R) sans devoir avoir
recours au pfaffien. Observons aussi que les transformations de H, produites par
les matrices particuliéres sont respectivement

Z+— AZ'A,Z—Z + BetZw+— —Z 1.

S’il est évident a priori que les deux premieres familles conservent la positivite de
la partie imaginaire Y de Z, ce fait peut étre vérifié comme suit pour la derniere
transformation. Posons donc

1 1 1 1

Z =X +iY = Y2(Y 2XY z2+il)Yz

de sorte que

1 1 1

1
—Z7 ' = Y (Y TIXY 24il) Y2,

1 1
Il s’agit de voir que la partie imaginairede —(Y "2XY "2 +il) "' est bien définie
1 1
positive (la matrice S + il = Y 2XY 2 + il est toujours inversible puisque S

est symétrique réelle, donc n’a pas la valeur propre —i ...). Mais on vérifie sans
peine que

(S—i)(S*+1)~' = (S*+ 1)~ (S—il) est inverse de S + il
(comme toutes ces matrices commutent entre elles, on peut €tre tenté de calculer

cet inverse avec les regles usuelles des quotients: c’est légitime). Il ne reste plus
alors a vérifier que (S*+ 1)~ ! >» 0 ce qui est clair!




	6. Classification de variétés abéliennes

