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5. COMMENTAIRES CONCERNANT LA PARTIE COHOMOLOGIQUE
DE LA DEMONSTRATION

C’est la partie cohomologique de la preuve (section précédente) qui permet de
donner un exemple de tore complexe non projectif (cf. sec. 1, remarque 4). 11 est
plus facile de construire une variété analytique (lisse) compacte non projective. A
cet effet, on peut construire les surfaces de Hopf comme suit. On regarde le corps
des quaternions réels

H=R®Ri ® R ® Rk

(2=j2=k*= —1cet ij=k.) comme espace vectoriel complexe de
dimension 2

H = (R®Ri)) & (RBRi)j = C P Cj.
On choisit ensuite un quaternion réel ¥ > 1 de sorte que le sous-groupe
I'={y":neZ} c H"
du’groupe multiplicatif des quaternions non nuls est discret (donc fermé).
L’espace homogene
X, = H*/T (dimeX, = 2)

est une variéte analytique (lisse) compacte (cC’est méme un groupe de Lie

complexe puisque 7y est réel, donc I' contenu dans le centre de H *). La
décomposition polaire

H* - $3 x R*
q — (q/\ql, \qi)

ou §* dénote la sphére unité de I'espace H = R*, est un difffomorphisme. Elle
induit un difffomorphisme

X, 3 SPxRYT = 83 x 8.

Y\

Comme I'homologie d’une sphére est donnée par la décomposition cellulaire

S" = R" U {0} (opérateur bord trivial)
H{(S",Z) = Zsii = O0oun, H, = 0 sinon ,
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la formule de Kiinneth permet de calculer ’'homologie de X, ('homologie des
spheres est sans torsion; d’ailleurs, il suffirait de calculer ’'homologie sur un
corps, par exemple Q, R ou C). En particulier :

H(SY) @ H(S®) = Opour k + [ = 2
implique
H,(X,)) = Hy(S'xS’) =0

puis H*X,, C) = 0. Mais, pour toute variété projective X, on a
H*(X, C) # 0. En effet, si X est plongée dans un espace projectif P™(C), la
restriction de la forme de Fubini-Study de P™(C) a X fournit une 2-forme fermée
positive o sur X dont la classe de cohomologie est nonnulle 0 # [w] € H3(X, C)
(st la forme o était exacte, toutes les puissances extérieures ® A ® A ... A ®
seraient aussi exactes et en particulier, considérant la puissance égale a la
dimension complexe de X, fx o A ... A o = 0ce quin’est pas le cas, puisque
cette puissance extérieure est une forme volume sur X : I'intégrale précédente est
positive — on suppose naturellement dim¢e X > O!).

Puisque tous les tores sont difftomorphes, on ne peut trouver d’obstruction a
un plongement projectif aussi simple que pour les surfaces de Hopf. Il a été
nécessaire de faire intervenir lintégralit¢é de la forme de Fubini-Study.
L’homologie d’un tore, 1.e. d’'un produit de cercles, est aussi donnée par la
formule de Kiinneth (Thomologie d’un cercle S* étant sans torsion, ’homologie
du tore est engendrée par H,)'). Mais les calculs faits dans la section précédente
permettent d’étre méme plus explicites. Prenons en effet un tore V/Let unentierk |
avec 0 < k < dimg(V). Toute forme differentielle de degré k sur V/L peut étre |
considérée comme k-forme L-périodique sur V et développée en série de Fourier.
Seuls les termes constants de la série de Fourier nous intéressent (toute forme
fermée est cohomologue a ses termes constants). Par restriction a I'origine, on
obtient donc une k-forme alternée sur V. On en déduit les isomorphismes I

HYV/L,R) S Alt(V,R) = A* V* L
puis "

dimg HY(V/L, R) = (Z) si n = dimg(V).

Lorsqu’on désire établir des isomorphismes analogues sur Z, on doit utiliser i

1) Puisque V est contractible, V' — V/L s’identifie au revétement universel du tore V/L
et m,(V/L) = L. En particulier H,(V/L, Z) = L.
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la formule de Kiinneth. Par exemple, pour k = 2, le théoréme de Kiinneth
montre que les 2-cellules entieres

Cui(s,8) = sh+ tpmod L (A, pel)
[0, 11> — V/L

engendrent H,(V/L, Z)(dans la sec. 4 nous n’avons utilisé que 'intégralité de ces
cellules particuliéres). L’intégralité d’une 2-forme alternée sur L caractérise les
éléments de H3(V/L, Z).

La construction transcendante des surfaces de Hopf présente tout de méme
quelque analogie avec celle des tores complexes (de dimension 2). En effet,
lorsque dim(V) = 2, on peut effectuer un quotient par un réseau L en deux
temps. Choisissant d’abord une base complexe de V dans un systéme de
générateurs de L, on peut identifier ¥ a C? et un facteur direct L, de L a Z*. Donc

VIL = VIL, ® L, = C¥Z? / L,

ou L) dénote le sous-groupe image de L, dans le quotient. Avec 'exponentielle
normalisée
e(z) = exp(2miz),

on peut identifier C/Z a C* et
VIL = C* x C*/L,

ou L} est un sous-groupe discret (de rang 2) de C* x C ™. Les surfaces de Hopf
¢taient obtenues comme quotient de C x C — (0, 0) par un sous-groupe discret
(de rang 1 de H™).

La principale différence entre les deux situations envisagées provient du fait
que les tores complexes sont toujours kdhlériens, et en particulier leur H? est non
nul, tandis que les surfaces de Hopf ne le sont pas.

6. CLASSIFICATION DE VARIETES ABELIENNES

Commengons par déterminer les applications holomorphes entre tores
complexes. |

PROPOSITION.  Soient  V/L et V'/L' deux tores complexes et f:
VIL - V'/L' une application holomorphe. Alors  flv) = fo(v) f(0) ou f,
est un homomorphisme provenant d’une application C-linéaire F:V — V'
telle que F(L) = L'
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