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112 A. ROBERT

Il est clair par construction que I’ensemble des poles de p est L-invariant (en
dimensionn > 1, les diviseurs ont une dimension >0 et il n’est guére possible de
sommer les translatées d’une fonction méromorphe sur V pour obtenir une
fonction méromorphe sur V/L). En particulier, p a un pdle double en chaque
point du réseau L. Sa dérivée p’ a un pole triple en ces mémes points. On peut voir
que p est un quotient de deux fonctions theta de S, et que p’ est un quotient de
deux fonctions de S;. Une base de S, a d’ailleurs deux éléments et fournit une
application projective sur P!(C), donc sur la sphére de Riemann. Cette
application identifie les points z et — z et est un revétement (les quatre points de
1L/L étant ramifiés).

Toujours dans le cas n = 1, montrons comment la fonction theta de
Riemann s’apparente aux fonctions theta de Jacobi. La série

Y. ¢ (¢eC)
converge pour | g | < 1. Son carré est

zqn2+m2 _ Z chN

N20

ou cy dénote le nombre de couples (n, m) € Z* avec n*> + m* = N. De méme, la
puissance quatrieme de X q"2 est la fonction génératrice du nombre de
représentations d’un entier positif comme somme de quatre carrés parfaits. Pour
calculer ces fonctions, Jacobi a posé g = ¢™(Imt > 0= |q| < 1)

v ¢]

o) = 3 e
—
Plus généralement, il étudie les fonctions

©
93(2 ’C) — einnzt eZinnz
D=2

dont la précédente est la valeur en z = 0 (theta nullwert). La série de Fourier de
Riemann est donc exactement de ce type: L = Z @ 1Z, L, = Z,L, = 1Z.

4. PARTIE COHOMOLOGIQUE DE LA DEMONSTRATION

Nous allons démontrer ici que si le tore complexe V/L est une variété
abélienne, il existe un produit scalaire hilbertien sur V de partie imaginaire
entiére sur les couples d’éléments de L. L’idée de la démonstration est simple.

Partant d’un plongement projectif
i: VL - P™,
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'image en cohomologie d’un générateur ¢, de H*(P™) fournit une classe de
cohomologie i*(c,) de degré 2 du tore. Prenant I'interprétation de de Rham des
groupes de cohomologie, il y a dans la classe i*(c,) une unique 2-forme
différentielle harmonique (ou de fagon équivalente ici invariante par translations)
dont la restriction a I’origine fournit la 2-forme alternée E = Im(H)(on a vu dans
la sec. 2 que la partie imaginaire d’'une forme hermitienne détermine cette
derniere univoquement). Pour mener a bien ce programme, il est nécessaire de
calculer la cohomologie des espaces projectifs et des tores complexes. On pourra
montrer ensuite que si

A = V/L, ® = représentant harmonique de ¢;, E = Oorigine ,
alors
oe H" Y(4) =« H*A, C) = E(iu, iv) = E(u, v),
o e H¥(A, Z) = E entiére sur L x L,

o positive = E positive (i.e. E(u, iu) > 0siu # 0).

PROPOSITION.  L’homologie entiére d’un espace projectif complexe P™
= P™(C) est donnée comme suit

H,(P™" Z) = Z pouri = 0,1, .,m
H, . ((P™" Z) = 0 pour i entier.

Démonstration. L’espace P™ est défini par quotient de C™*! — {0}. La
classe de (zq, zy, .., z,,) sera dénotée par [z, z,, ..., z,,] (coordonnées homogénes
dans I'espace projectif). On a un plongement

C™ o P™ donné par (zy, .., z,) — [1, 2y, .., z,] .

Le complémentaire de Iimage (I'hyperplan a Pinfini d’équation zo = 0)
s'identifie naturellement a l'espace projectif P™! par les coordonnées
[z, . Z,,]. Ainsi on obtient la décomposition

P" = C" U P" ! (réunion disjointe) .
Procédant itérativement, on parviendra finalement a
P =CruC"luC"?u..uCu{w}.

C’est une décomposition cellulaire de I'espace projectif, chaque espace C! étant
une cellule de dimension 2i (au sens de la topologie algébrique : R* est une cellule
~ dedimension k). L’opérateur bord diminuant les dimensions d’une unité doit étre
trivial (nul en toute dimension): il n’y a pas de bord non nul et chaque cellule
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fournit un générateur de ’homologie entiere. Il est peut-étre plus convenable de
se representer les générateurs de 'homologie comme adhérences des cellules
précédentes

C=CuCltu.uCuimn} (cPm.

Par exemple, un générateur de H, (P™, Z) est donné par la droite projective P!

< P™ (toutes les droites projectives sont homologues dans P™), et cette droite
projective s’identifie, avec sa structure analythue a la sphere de Riemann
C u {0}

Comme nous travaillerons finalement avec des formes différentielles,
donnons une 2-forme dont la classe dans H2 (P™, C) est duale du 2-cycle entier
défini par la cellule C (ou son adhérence P!) de P™.

Dénotons par n la projection canonique C"*! — {0} — P™ contractant les
droites homogenes (complexes) en des points. Lorsque o est une section
holomorphe de n définie dans un ouvert U = P™ (il y a de telles sections dés que
U est simplement connexe, par exemple si U est un ouvert affine principal U,
défini par z; # 0)

L]___i——+ CW+1'— }

(\ / Moo = idy,

on peut calculer la 2-forme (a valeurs complexes) sur U

i —
muzﬂaalog | o|I?.

Ici, la norme utilisée est la norme canonique de C™*!

lzI>=1@)I*= 3 Izl

o<ism

(elle dérive du produit scalaire hermitien canonique sur C”* ') et les opérateurs 9

et 0 sont fournis par la structure complexe (de U): en coordonnées, la
différentielle extérieure d de de Rham s’écrit

Y. (0/6z)dz; A + Y, (8/0z)dz N = 0 + 0.

On vérifie sans peine que ®, est indépendante du choix de section holomorphe ¢
sur U: tout autre choix doit étre de la forme o = fo ou f est une fonction
(scalaire) holomorphe sur U et ne s’annulant pas. Ainsi

20log || o' ||> =ddlog | o>+ ddlog| f|*.
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Localement, choisissant des branches convenables de logarithmes complexes, on
peut écrire log | f|> = log f + log f et donc

00 log | f 12 = dd(log f+log f) (localement).

Mais log f étant holomorphe, 0 log f = 0 et 00 log f = 0. De plus,
0=d>=(3+0)* = 80 + 00 (0% = &* = 0)

implique de méme

00 log [ = —ddlog f = —8(0) = 0.

Choisissant un recouvrement (U,) de P™ par des ouverts sur lesquels il existe de
telles sections holomorphes o; de © (par exemple les ouverts affines U;: z; # 0),
les 2-formes w; correspondantes doivent se recoller

O;|v;nu; = O u;ny;

(d’apres I'indépendance du choix des sections choisies pour les calculer) et fournir
une 2-forme globale w bien définie sur tout P™. C’est la 2-forme de Fubini-Study.

PROPOSITION. La 2-forme de Fubini-Study est fermée, invariante par l'action
du groupe unitaire de C™" ', de classe de cohomologie entiére. Plus précisément,
la classe de cohomologie de la forme de Fubini-Study dans H? (P™, C) est la
duale du générateur [P'] e H,(P™ Z).

Démonstration. On a

I = —
Oy =5_00log| o I? = (0—dlog || o |2,

iy
4n
®y = dn =doy = 0 (pourles U = U, recouvrant P™)

d’ou o fermee. Pour démontrer I'invariance de o par le groupe unitaire U(m + 1)
de C""!, prenons une transformation ge U(m+1). Pour une section

holomorphe o de n définie sur un ouvert U, on pourra choisir la section goden
sur 'ouvert gU.
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On a par définition

- \er(Hﬁl) go(gz) = o(z) (zeU),
Jot

ou
go I'go(gz) | = |l o(2) | .
Lorsque z et gz appartiennent a U, on a

U ainsi
oU lolgz) || = 1 o2) || .

L’invariance de o en résulte.

L’intégralité de la.classe de cohomologie [w] de ® résultera de la formule plus
précise

few =1, ¢ = classe d’une droite dans H,(P™, Z).

En effet, le groupe H,(P™ Z) = Zc est de rang 1. Pour calculer 'intégrale
proposée, il faut passer en coordonnées (la formule de Stokes montre que cette
intégrale est indépendante du représentant choisi dans la classe ¢ car o est
fermée, et ne changerait d’ailleurs pas non plus par adjonction d’une forme
exacte a o car c est fermée). Sur ouvert affine U = U, (défini par z, # 0, cet
ouvert est dense) nous prendrons naturellement la section (holomorphe!) cde n
donnée par

Z = [2gy o0 Zml 2 (1, 21/205 oy Zm/Z0) -

On peut méme choisir I’expression des points de cet ouvert ayant z, = 1. On a
donc

lo@) 1> =1+ ) zz,
dlog | o> =Y zdz/1+Y ),

ddlog |l o|? = Za( Z> A dz,

; N\ dz; z;z;dz; N\ dz;

—; 1+Z Z, (1+X)?

La restriction a la droite z; = z,z; = 0(i>2) donne

_ dz N\ dz
ez =2 (L+]z[H?

2r
—
i




1
{

;
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Mais dz A dz = (dx+idy) A (dx—idy) = —2idx A dy de sorte que

o dz N\ dz 2,1’ dx N dy
T ) av P T T T m J s

2rn
On passe en coordonnées polaires ([ dxdy.. = [ drr{ do .. et on trouve
0 0
J f J 2r dr
W =
. 1 +r?)
=J _ "o
o (14+p)* L+ plo

Nous aurons encore besoin de savoir que la 2-forme de Fubini-Study est
positive. Puisqu’elle est invariante par le groupe transitif U(m + 1), il suffit de voir
quelle est positive en un point, disons lorigine [1,0, .., 0] € P™. Ce point
appartient bien a la carte affine Uy(z, # 0) dans laquelle nous avons donné une
expression explicite de o:

Z (dz; A\ dzZ)origine -

(Dorigine - 27_r &
<ism

Rappelons-nous que dz; est le champ eonstant de formes linéaires (complexes)
coordonnées de sorte que (dz)yigine = f; €t similairement (dZ)yigine = f;
(complexe conjugée de f;: elle est antilinéaire). On a donc

©

i
origine — EEZ(ﬁ®ﬁ—ﬁ®ﬁ)

et

Ooriginet ) = 5= Y00 i) — Tiu) f()
= é Z(ul@ - u_i(iu)i)

1 — .
=;Zuiui>0 siu#0.

(La seule difficulté de ce calcul consiste a ne pas confondre I'indice de sommation

ivariantde lameti = ./ —1..)).
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Observons encore que la 2-forme de Fubini-Study o est de type (1, 1) au sens
de Hodge. Comme

HZ(X, C) — H(Z,O) @ H(l, 1) @ H(O, 2) ,

H®? = conjugué de H*> ? (donc de méme dimension!)

on a toujours dimcH?*(X, C) = dimcH"' Y + 2 dimcH® ? et dans notre cas,
dime H(P™ C) = 1 = H® 9 = HO.2 _ ¢

Plus simplement, on remarque que I'expression explicite de ® dans une carte ne
fait intervenir aucune expression dz; A dz; ni dz; A dz; mais seulement des
dz; N\ dz;. En tout point a € P™, on a donc

0 (iu, iv) = o, (u, v) .
On peut passer a la considération de la restriction de la 2-forme de Fubini-
Study & la variété abélienne plongée projectivement
i:A = VL P"
i*o «— o (Fubini-Study).

Nous étudierons cette restriction par introduction de coordonnées réelles
(x;)1 <j<2nSur V obtenues en choisissant une base de L. Nous identifierons cette
2-forme & une 2-forme Z?*"-périodique sur R*"

® = ) aydx; A dx, ((a;) antisymétrique)
ik

avec coefficients lisses a; € € ©(R%"/Z*"). Comme & est fermée, on doit avoir
j k

= Y (0a;/ox,)dx, N dx; N\ dx,.

Jok, p

En regroupant les termes semblables, on trouve les relations de cocycle
day + day; + a;; = 0 (0P = 0/0x,).
Développons alors en série de Fourier ces coefficients aj,
aplx) = Zajk(l)ezn”'x ;

(indice [ parcourt le réseau entier Z*" et |- x = l;x; + I,x, + ..).
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LEMME. La 2-forme & est cohomologue d la 2-forme
Y a;(0)dx; A dx .

Cette derniére forme (& coefficients constants) n’est rien d’autre que la forme
moyenne de ®: elle est invariante par translations. C’est aussi le représentant
harmonique de la classe de cohomologie définie par & sur le tore réel R*"/Z*".

Preuve du lemme. 11 suffit de construire une primitive de la 2-forme

n = z l(ajk - ajk(()))dxj A d.xk

Jsk

= Y ayhe*™¥dx; A dx,.

J, kK, 1¥0

On cherche donc une forme
Q = Z Ai dxi = Z Z Ai(l)eZRilx dxi
i : i 1l

telle que
dQ = Y apDe*™ dx; A dx .

Jyk,1FO0

Comme toutes les fonctions considérées sont lisses, les développements de
Fourier considérés sont rapidement convergents (suites de coefficients a;(l) — 0
plus vite que || [ | ~? pour tout entier p € N lorsque || | | = o0) il est légitime de
dériver ces séries terme a terme et on trouve les conditions

LALD) — LA = a{) (I #0).

Choisissant unindice i avec l; # 0 et le coefficient A(l) arbitraire, on posera pour
J#FI
A = (LAD + a D)L -

Il résulte immediatement des conditions de cocycle pour le systéme des a;; que

ces A{l) satisfont bien toutes les conditions imposées, et le lemme est ainsi
démontré.

Dénotons par

j<k

cette forme moyenne. Elle est de classe entiere
[0*] = [i*0] e HY(A, Z)

comme image réciproque de la classe enti¢re de la forme de Fubini-Study. Son
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intégrale sur un 2-cycle entier (surface fermée) de A doit donner un entier.
Prenons en particulier les 2-cycles donnés par la paramétrisation

¢, [0,1]12 > 4 = VIL (), pel)
(s, t) > sA + tpu(mod L)

(lorsque A est non proportionnel a p, I'image du cycle c,, est un tore usuel —
dimg = 2 — immergé dans A: c’est méme un tore plongé dans A4 si {A, u} est
contenu dans une base de L). On doit donc avoir

j% o* entier (pour A, peL).

Utilisant la paramétrisation donnée pour calculer ces intégrales, on trouve
(tenant compte du fait que le champ de formes bilinéaires w* est constant)

1
jclp (D* = O):rigine(x’ “') f; jO dS dt = EO\'a H)
avec
E = of (forme R-bilinéaire alternée) .

origine

Cest la propriété d’intégralité souhaitée sur L x L. Pour conclure la
démonstration, il reste a voir que E est positive et invariante par multiplication
simultanée des arguments par i (type (1, 1)). Comme la valeur a I’origine de la 2-
forme m* est obtenue par moyenne (relativement a la mesure de Haar normalisée
du groupe V/L, c’est aussi I'image de la mesure de Lebesgue, identifiant V a R2”
‘par choix d’une base de L), des formes R-bilinéaires alternées positives

®, (ae A, o:2-forme de Fubini-Study),

la positivité de E est évidente. Cette opération de moyenne ne change pas non
plus le type (elle ne touche que les coefficients des formes dx; A dx,, pas les
dx; N\ dx, elles-mémes)

E(u, U) = m:rigine(u’ U) = j‘ACPm'ma(u’ U)da

et w,(iu, iv) = w,(u, v) (pour tout z € P™) implique E(iu, iv) = E(u, v).
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