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112 A. ROBERT

Il est clair par construction que l'ensemble des pôles de p est L-invariant (en

dimension n > 1, les diviseurs ont une dimension > 0 et il n'est guère possible de

sommer les translatées d'une fonction méromorphe sur V pour obtenir une
fonction méromorphe sur V/L). En particulier, p a un pôle double en chaque
point du réseau L. Sa dérivée p' a un pôle triple en ces mêmes points. On peut voir

que p est un quotient de deux fonctions thêta de S2 et que p' est un quotient de

deux fonctions de S3. Une base de S2 a d'ailleurs deux éléments et fournit une

application projective sur P^CJ, donc sur la sphère de Riemann. Cette

application identifie les points z et — z et est un revêtement (les quatre points de

\L/L étant ramifiés).

Toujours dans le cas n 1, montrons comment la fonction thêta de

Riemann s'apparente aux fonctions thêta de Jacobi. La série

00
9

1 qn
— 00

converge pour | q \ < 1. Son carré est

I<f2+m2 Z
NZ 0

où cN dénote le nombre de couples (n, m) g Z2 avec n2 + m2 N. De même, la

puissance quatrième de Z q"2 est la fonction génératrice du nombre de

représentations d'un entier positif comme somme de quatre carrés parfaits. Pour
calculer ces fonctions, Jacobi a posé q einT(lm x > 0 => | q \ < 1)

00
9

0(x) X einn T.
— oo

Plus généralement, il étudie les fonctions

e3(Z; x) Z e'""2t e2imz
— 00

dont la précédente est la valeur en z 0 (thêta nullwert). La série de Fourier de

Riemann est donc exactement de ce type : L Z © xZ, L1 Z, L2 xZ.

4. Partie cohomologique de la démonstration

Nous allons démontrer ici que si le tore complexe V/L est une variété

abélienne, il existe un produit scalaire hilbertien sur V de partie imaginaire
entière sur les couples d'éléments de L. L'idée de la démonstration est simple.

Partant d'un plongement projectif
i: V/L -> Pm,
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l'image en cohomologie d'un générateur c1 de H2(Pm) fournit une classe de

cohomologie i*(Ci) de degré 2 du tore. Prenant l'interprétation de de Rham des

groupes de cohomologie, il y a dans la classe i*^) une unique 2-forme
différentielle harmonique (ou de façon équivalente ici invariante par translations)
dont la restriction à l'origine fournit la 2-forme alternée E Im(//)(on a vu dans

la sec. 2 que la partie imaginaire d'une forme hermitienne détermine cette
dernière univoquement). Pour mener à bien ce programme, il est nécessaire de

calculer la cohomologie des espaces projectifs et des tores complexes. On pourra
montrer ensuite que si

A V/L, oo représentant harmonique de cl9 E co0rigine,

alors

co e H{1,1}(A) c H\A, C) => E{iu, iv) E(u, v),

co e H2(A, Z) => E entière sur L x L
co positive => E positive (i.e. E(u, iu) > 0 si u ^ 0).

Proposition. Uhomologie entière d'un espace projectif complexe Pm

PW(C) est donnée comme suit

H2i(P», Z) Z pour i 0, 1,..., m

^2; + i(P"\ Z) 0 pour i entier

Démonstration. L'espace Pm est défini par quotient de Cm + 1 - {0}. La
classe de (z0, z1;zj sera dénotée par [z0, zm] (coordonnées homogènes
dans l'espace projectif). On a un plongement

Cm c, Pm donné par {zu^[1, zlfzm]
Le complémentaire de l'image (l'hyperplan à l'infini d'équation z0 0)
s identifie naturellement à 1 espace projectif Pm 1

par les coordonnées
[zi> znJ-Ainsion obtient la décomposition

pm _ çm u pm -1 (r^unjon disjointe).

Procédant itérativement, on parviendra finalement à

Pra C"1 u C"1 u Cm"2 u u C u {00}.
C'est une décomposition cellulaire de l'espace projectif, chaque espace C' étant
une cellule de dimension 2 i(au sens de la topologie algébrique : R* est une cellule
de dimension k). L'opérateur bord diminuant les dimensions d'une unité doit être
trivial (nul en toute dimension) : il n y a pas de bord non nul et chaque cellule
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fournit un générateur de l'homologie entière. Il est peut-être plus convenable de

se représenter les générateurs de l'homologie comme adhérences des cellules

précédentes

C7 CuC"1 u... uCu {00} (cPm).

Par exemple, un générateur de H2 (Pm, Z) est donné par la droite projective P1

c= Pm (toutes les droites projectives sont homologues dans Pm), et cette droite
projective s'identifie, avec sa structure analytique à la sphère de Riemann
C u {00}.

Comme nous travaillerons finalement avec des formes différentielles,
donnons une 2-forme dont la classe dans H2 (Pm, C) est duale du 2-cycle entier
défini par la cellule C (ou son adhérence P1) de Pm.

Dénotons par k la projection canonique Cm+1 — {0} -> Pm contractant les

droites homogènes (complexes) en des points. Lorsque a est une section

holomorphe de n définie dans un ouvert U a Pm (il y a de telles sections dès que
U est simplement connexe, par exemple si U est un ouvert affine principal Ut
défini par zt # 0)

on peut calculer la 2-forme (à valeurs complexes) sur U

^-ôô log II er II2.
2tc

Ici, la norme utilisée est la norme canonique de Cm + 1

Il Z P Il (Zt) P X |Z;|2
0 < i < m

(elle dérive du produit scalaire hermitien canonique sur Cm + *) et les opérateurs d

et d sont fournis par la structure complexe (de U): en coordonnées, la

différentielle extérieure d de de Rham s'écrit

^(d/dzùdziA -h ^(d/dz^ZiA d + d.
i i

On vérifie sans peine que (% est indépendante du choix de section holomorphe a
sur U : tout autre choix doit être de la forme a' /a où / est une fonction
(scalaire) holomorphe sur U et ne s'annulant pas. Ainsi

ôd log II a' II2 ôd log II a H2 + ôd log |
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Localement, choisissant des branches convenables de logarithmes complexes, on

peut écrire log | / |2 log / + log / et donc

dd log | / |2 « dd(\og f -flog /) (localement).

Mais log / étant holomorphe, ô log / 0 et dd log / 0. De plus,

0 d2 (d + d)2 dd + ~dd {d2 d2 0)

implique de même

dd log f —dd log / — d(0) 0

Choisissant un recouvrement (l/f) de Pm par des ouverts sur lesquels il existe de

telles sections holomorphes a£ de n (par exemple les ouverts affines Ut : zf + 0),

les 2-formes cof correspondantes doivent se recoller

| U.nUj —
| UjnUi

(d'après l'indépendance du choix des sections choisies pour les calculer) et fournir
une 2-forme globale co bien définie sur tout Pm. C'est la 2-forme de Fubini-Study.

Proposition. La 2-forme de Fubini-Study estfermée, invariante par l'action
du groupe unitaire de Cm+1, de classe de cohomologie entière. Plus précisément,
la classe de cohomologie de la forme de Fubini-Study dans H2 (Pm, C) est la
duale du générateur [P1] g H2{Pm, Z).

Démonstration. On a

(d + d) (d-d) d2 - d2 + dd - dd -2dd,
d'où

dd -y(d-d).
Ainsi

<% =• f35logD a II2 - 9)log II er II2,
2.11 4K

©ü dr\=> d&u 0 (pour les ; recouvrant Pm)

d'où co fermée. Pour démontrer l'invariance de co par le groupe unitaire U(m+ 1)
de Cm+1, prenons une transformation geU(m+l). Pour une section
holomorphe ct de ndéfinie sur un ouvert U, on pourra choisir la section go de 7i

sur l'ouvert gU.
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On a par définition

geU(m+l)
d'où

II gv(gz) || || ct(z) ii

Lorsque z et gz appartiennent à U, on a

ainsi

go(gz) ct(z) (zeU),

|| a{gz)|| || cj(z) ||

L'invariance de co en résulte.

L'intégralité de la classe de cohomologie [co] de co résultera de la formule plus

En effet, le groupe H2(Pm, Z) Zc est de rang 1. Pour calculer l'intégrale
proposée, il faut passer en coordonnées (la formule de Stokes montre que cette

intégrale est indépendante du représentant choisi dans la classe c car co est

fermée, et ne changerait d'ailleurs pas non plus par adjonction d'une forme
exacte à co car c est fermée). Sur l'ouvert affine U U0 (défini par z0 # 0, cet

ouvert est dense) nous prendrons naturellement la section (holomorphe!) a de n
donnée par

On peut même choisir l'expression des points de cet ouvert ayant z0 1. On a

donc

precise

j c co 1, c classe d'une droite dans H2(Pm, Z).

z [z0,..., zm] (1, zjzo,.., zjz0).

Il ct(z) II2 1 + Z Z|Z|

5 log II CT II2 Z zA~i/(l + Z -) '

i + L
La restriction à la droite Z! z, zt- 0 (i^2) donne

2tc dz A dz
— œ

(l + M2)2'axe z z
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Mais dz A dz (dx + idy) A (dx — idy) —2i dx A dy de sorte que

i f dz A dz
co

2tc J (1 +1 z |2)2

'

2tt

* dx A dy

(T+m¥
2n

On passe en coordonnées polaires JJ dxdy — J dr r J dcp et on trouve

1

Cû

2tc
dcp

dp

o (1 + P)2

0

2r dr

o (1 + r2)2

1

1 + p
1

Nous aurons encore besoin de savoir que la 2-forme de Fubini-Study est

positive. Puisqu'elle est invariante par le groupe transitif U(m -h 1), il suffit de voir
qu'elle est positive en un point, disons l'origine [1, 0,..., 0] e Pm. Ce point
appartient bien à la carte-affine U0(z0 ^ 0) dans laquelle nous avons donné une

expression explicite de co :

^origine Z ^ ^^ii)origine •

ZK

Rappelons-nous que dzt est le champ constant de formes linéaires (complexes)
coordonnées de sorte que (dzf)originc f et similairement (dz"f)origine F
(complexe conjugée de f : elle est antilinéaire). On a donc

«»origine ~Z(/i<8>7r~

et

®origine(^5 ^) Z(/i(^)./X^)

^ Z(ui(iu)i - ui(iu)i)

1

— > >0 si U 7^ 0
71

(La seule difficulté de ce calcul consiste à ne pas confondre l'indice de sommation
i variant de 1 à m et i yf—ï

L
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Observons encore que la 2-forme de Fubini-Study co est de type (1, 1) au sens

de Hodge. Comme

H\X, C) H(2'0) © H{1>1} © H{0> 2),

H{°' 2) conjugué de H{2, 0) (donc de même dimension!)

on a toujours dimCH2(X, C) dimcH{1'1} + 2 dimcH(2' 0) et dans notre cas,

dimc H2(Pm, C) 1 => Hi2' 0) H{0> 2) 0

Plus simplement, on remarque que l'expression explicite de co dans une carte ne
fait intervenir aucune expression dzt A dzj ni dzt A dzj mais seulement des

dzt A dzj. En tout point a e Pm, on a donc

coa(iu, iv) coa(u, v).

On peut passer à la considération de la restriction de la 2-forme de Fubini-
Study à la variété abélienne plongée projectivement

i: A V/L c* Pm

/*co «(-h co (Fubini-Study).

Nous étudierons cette restriction par introduction de coordonnées réelles

(xj)i ^j4Zn sur V obtenues en choisissant une base de L. Nous identifierons cette

2-forme à une 2-forme Z2"-périodique sur R2n

® Z ajk dxj A dxk ((ajk) antisymétrique)
j, k

avec coefficients lisses ajk g ^^(R^/Z2"). Comme co est fermée, on doit avoir

0 d(b Yj dcijk A dxj A dxk
j,k

Z (dcijk/dxp)dxp A dXj A dxk
A k, p

En regroupant les termes semblables, on trouve les relations de cocycle

d'aJk + dJaki + dkaij=0 d/ôxp).

Développons alors en série de Fourier ces coefficients ajk:

aJk(x)I ajAQe2*»1*

(l'indice / parcourt le réseau entier Z2" et Z1x1 + Z2x2 + ...)•
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Lemme. La 2-forme â> est cohomologue à la 2-forme

Y ajk(0)dXj A dxk.

Cette dernière forme (à coefficients constants) n'est rien d'autre que la forme

moyenne de co : elle est invariante par translations. C'est aussi le représentant

harmonique de la classe de cohomologie définie par co sur le tore réel R2"/Z2".

Preuve du lemme. Il suffit de construire une primitive de la 2-forme

r| £ î(o>* - ajk(0))dXj A dxk

Y ajk(l)e2nilx dxj A dxk.
j,k,lf o

On cherche donc une forme

At{I)e2wilx dxt
i iitelle que

dQ Y ajMe2nilx dxj A dxk.
h Kit o

Comme toutes les fonctions considérées sont lisses, les développements de

Fourier considérés sont rapidement convergents (suites de coefficients aßt) -» 0

plus vite que || / \\~p pour tout entier p e N lorsque || / || - oo) il est légitime de

dériver ces séries terme à terme et on trouve les conditions

liAJtl) - IjAll) ai}{l) (/ # 0).

Choisissant un indice i avec lt ^ 0 et le coefficient A^I) arbitraire, on posera pour

i ^ '

Aß (IjAß + a,ß)/l,.

Il résulte immédiatement des conditions de cocycle pour le système des atj que
ces Aß) satisfont bien toutes les conditions imposées, et le lemme est ainsi
démontré.

Dénotons par

Z ajk(0)Adxk
j<k

cette forme moyenne. Elle est de classe entière

[co*] [i*(û] g H2(A, Z)

comme image réciproque de la classe entière de la forme de Fubini-Study. Son
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intégrale sur un 2-cycle entier (surface fermée) de A doit donner un entier.
Prenons en particulier les 2-cycles donnés par la paramétrisation

cx,:[0, 1 ¥-+A= V/L (X, peL)

(s, t) i— sX + tp(mod L)

(lorsque X est non proportionnel à p, l'image du cycle cest un tore usuel —
dimR 2 — immergé dans A : c'est même un tore plongé dans A si {X, p} est

contenu dans une base de L). On doit donc avoir

Jc co* entier (pour X, p e L).

Utilisant la paramétrisation donnée pour calculer ces intégrales, on trouve
(tenant compte du fait que le champ de formes bilinéaires co* est constant)

m* co*rigine(X„ H) jo ds dt ECk, n)

avec
E co*rigine (forme R-bilinéaire alternée).

C'est la propriété d'intégralité souhaitée sur L x L. Pour conclure la

démonstration, il reste à voir que E est positive et invariante par multiplication
simultanée des arguments par i (type (1, 1)). Comme la valeur à l'origine de la 2-

forme co* est obtenue par moyenne (relativement à la mesure de Haar normalisée
du groupe V/L, c'est aussi l'image de la mesure de Lebesgue, identifiant V à R2"

par choix d'une base de L), des formes R-bilinéaires alternées positives

coa (a e A, co: 2-forme de Fubini-Study),

la positivité de E est évidente. Cette opération de moyenne ne change pas non
plus le type (elle ne touche que les coefficients des formes dxj A dxk., pas les

dxj A dxk elles-mêmes)

E(u, v) co*rigine(u, v) \ A^pm (»Ja, v)da

et coz(iu, iv) — coz(w, v) (pour tout z e Pm) implique E(iu, iv) E(u, v).


	4. Partie cohomologique de la démonstration

