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Substituant cette expression dans les relations trouvées pour y(a +A) et prenant
A = A; € L, (correspondant aux éléments de la base duale de (e¢;) = L,), on voit

Ya+X) = Ya) + 2in(z]—25) + 2imm;  (m; = my).
Mais la linéarité de \ donne directement
Y(a+X) — Yla) = 2inZv,fi(A)).
Par comparaison, on trouve donc
flz' =2 +Zme) = z] — 2 + m; = Zv fi}) = Zv,fi(h).
Cette égalité de composantes fournit I’égalité vectorielle

"

zZz — Z/ = ZVI)“I - Zmlel

avec
heLl, mece€lL,

et la démonstration sera terminée dés qu’on aura remarqué que les v, sont des
entiers
(z"—ZeL,+ L, = L=z" = Z€V/L).

Qr on a vu en cours de route

V(a+A) = Y(a) + 2inmy(n, € Z lorsque A € L)
et en substituant 'expression linéaire affine de

V(a) = 2inZva, + v

on trouve sans peine v, = n, € Z. g.e.d.

3. COMMENTAIRES CONCERNANT LA PARTIE ANALYTIQUE
DE LA DEMONSTRATION

Pour. démontrer le théoréme de plongement, nous avons considéré les

espaces vectoriels S, formés des fonctions entiéres f sur V satisfaisant les
équations fonctionnelles

fz+}) = ez f(2) (ReL).
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Rappelons aussi que les facteurs exponentiels e,(z) sont déterminés par

ek - 1 )\,ELI,
e;(z) = exp —inf,(A+2z) AelL,.

En particulier, I'espace S, est formé de fonctions entiéres L-périodiques, donc
constantes d’apres le théoréme de Liouville: S, = C. On peut aussi observer que
le produit d’une fonction de S, par une fonction de S, est une fonction de S, ,,,
ce qui suggere de considérer 'anneau gradué

k=20

des fonctions theta. Par exemple, la multiplication par la fonction theta de
Riemann 0 € S, induit des applications injectives S, — S; . ;. Comme on a déja
vu que ces espaces S, ont des dimensions finies, les dim(S,) forment une suite
croissante. Plus précisément

PROPOSITION. Ona dim(S,) = Pf(E)" k" (E étant laforme alternée sur le
réseau L de rang 2n dans lespace vectoriel V de dimension complexe n).

En particulier
Pf(E) = dim(S,) et

dim(S,) = k" si E est unimodulaire.

Démonstration. Nous supposerons a nouveau E unimodulaire sur L (le cas
général s’en déduisant facilement). Nous avons vu que les coefficients de Fourier
a,(AeL,) d’une f € S, satisfont aux relations de récurrence

Bovip = D e BT (uely) .
Si A, est un élément fixé de L,, la relation de récurrence précédente impose
a, = ay, e™VEOTR) gi A = Qo + kvery + kL, .
Prenons a,, = 1 et montrons que la suite de coefficients de Fourier

a, = eV pour A = Ay + kve kg, + kL,
a =0 pour A ¢ A, + kL,

définit bien une fonction f = 6, €S, pour A, € L,. Lorsque A, parcourt un
systéme de représentants de L, mod kL,, on obtient évidemment des éléments
linéairement indépendants de S, (les supports des suites de coefficients de
Fourier A — a, correspondants forment une partition de L,, donc sont disjoints).
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Ces éléments forment une base de S, d’ou

— det(k-id,) = k".

Pour justifier I'affirmation, il s’agit de montrer que la suite de coefficients de
Fourier attachée a un choix de A, € L, satisfait effectivement la relation de
récurrence caractérisant les équations fonctionnelles valables dans S,, puis que la
série de Fourier correspéndante converge bien vers une fonction entiére. Le
premier point se vérifie par calcul: prenons A = Ay + kvedr, + kL,etpe L,

D+kp = Dg+kv+p) — eXP{infv+p(27\'0 + k(V+u))} .
»L’exposant vaut (au facteur in pres)

Fd2ho+kv) + filkp) + fi(2ho + k(V+p)
———

Ju(kv)
= f2ho+kv) + fi(2Kho+ 2kv+ kp)

= f2ho+kv) + f2A+ku)
d’ou bien

— inf (2Mh+kp)
a)\..*_ku — axe H «

La décroissance rapide de ces coefficients

2i11:fk‘0 v) einkfv(v)

o+kv = €

est aussi claire puisque le module du premier terme croit comme I’exponentielle
d’une fonction linéaire de v et le deuxieme décroit comme une gaussienne (en
v € L,). La convergence en z, uniforme sur tout compact de V est alors assurée et
la somme de la série de Fourier holomorphe dans V entier. On peut dire plus
simplement que ’on construit une fonction 8, en prenant A, = 0 (par une suite
de coeflicients de Fourier particulicrement simples a,, A € kL,) et que nous
obtenons les autres éléments de base de S, par une translation convenablement
tordue de ces coefficients sur les autres classes mod kL, de L,. Il est alors clair
que le méme principe s’applique dans le cas non unimodulaire en prenant les
classesde kL, dans Hom,4(L,, Z) et on trouve la formule de dimension annoncée.

Les espaces S, s'interpretent aussi comme espaces de sections holomorphes
de fibres (holomorphes de rang 1) sur V/L. Le systeme (e, ), est un cocycle de L a
valeurs dans ’espace des fonctions entiéres ne s’annulant pas sur V. On entend
par la qu’on a des relations

er+lz) = ez+X) e(z) (A Nel).
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On obtient ces relations en écrivant les équations fonctionnelles satisfaites par
0z+A+)N) = 0Z +A) = (2)0(z) (Z = z+)).

Le membre de gauche est par définition e, ,,(2)0(z) et celui de droite
e,(z")e, (2)0(z). Puisque 0 n’est pas identiquement nulle, on peut simplifier par
cette fonction obtenant les relations de cocycle par prolongement analytique a
partir de 'ouvert non vide ou 8 # 0. Les systémes (e}),., sont naturellement
aussi des cocycles de L. Montrons comment on définit un fibré holomorphe de
rang 1 a partir d’'un cocycle. Prenons par exemple le cocycle (e¢;). Sur le fibré
trivial ¥ x C — V¥, le groupe discret L agit (de fagon équivariante) par

A(z,t) = (z + A e2)t) (heL, zeV, teC)

(Paction sur la base étant simplement donnée par les translations). L’espace des
orbites
[z, t] = orbite de (z, 1)

est un fibré sur V/L:
VxC-oVx,Cs[z,t] =[z+ A e2)t]

| |
V = VL 34=7+M).

Ses sections sont les applications de la forme Z +— [Z, 6(z)]. Par définition de la
relation d’équivalence

[Z,000)] = [Z + A, e(2)0(2)]

et ce point s’exprime aussi par [Z + A, 6(z+A)] d’ou les relations fonctionnelles
satisfaites par 0. La continuité (resp. ’holomorphie) d’une telle section s’exprime
par la continuité (resp. '’holomorphie) de 8 sur V. A chaque.cocycle de L a
valeurs dans I’espace des fonctions entiéres ne s’annulant pas sur V, on associe
ainsi un fibré inversible, i.e. un élément de H*(V/L, 0) (ce groupe abélien est en
général noté additivement, mais lorsqu’on interprete ses éléments comme des
fibrés inversibles, la loi de groupe est donnée par le produit tensoriel des fibres:
I'inverse d’un fibré s’identifiant au fibré dual). La construction précédente fournit
un homomorphisme

HY(L,T(V, n*0*)) -» H'(VIL, 0™).

Ici, 0 représente le faisceau des fonctions holomorphes ne s’annulant pas sur
V/L,m: V — V/L est la projection canonique de sorte que I'image inverse T*0 ™
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est le faisceau des fonctions holomorphes ne s’annulant pas sur ¥, ayant pour
sections globales les éléments de

LV, n*0*) = HYV,n*0*) = {f:V — C* entiére} .
Plus généralement, Grothendieck définit des fleches
H(G, (X, n*%)) -» HYG\X, ¥)

dans le cas d’un groupe discret G agissant (continument, librement et
proprement) sur un espace topologique (pas trop mauvais)... (cf. Mumford [1]
p. 22 qui se référe a Grothendieck [1], spécialement p. 195).

Lorsquon interpréte ainsi S, comme espace de sections du fibré #*
correspondant au cocycle (€}),..

S = D(V/L, £ = HYVIL, £9),

la finitude de la dimension de S, résulte d’'un théoréme de Kodaira. Le vanishing
theorem de Kodaira donne d’ailleurs aussi

HWV/L, %) =0 pouri >0

(& est un fibré positif et la classe canonique Ky, est nulle puisque V/L est
parallélisable de sorte qu’il existe des formes différentielles invariantes par
translation, de diviseur vide). Il en résulte que la caractéristique d’Euler-Poincaré
holomorphe

¥(— 1)ydim H{(V/L, &) = dim HYV/L, &)

se réduit a la dimension de S;. Le théoréme de Riemann-Roch permet de
retrouver cette dimension a partir de la premiére classe de Chern de #. Ces
remarques ont pour but de montrer comment les principales étapes de la
démonstration analytique s’insérent dans un contexte général.

- Passons a quelques commentaires concernant le cas n = 1, L étant ainsi un
réseau de la droite complexe C. Le théoréme de plongement a ’aide des fonctions
0 de S, se réalise dans un espace projectif de dimension m = dim(S;) — 1 =
3" — 1 (la dimension de S, est donnée par la proposition ci-dessus), donc de
dimension 2 lorsque n = 1. On obtient ainsi les modéles de C/L comme courbes
projectives planes. Il est plus facile dans ce cas de travailler avec les fonctions de

Weierstrass p et p’. Rappelons simplement que p est définie comme somme d’une
serie de fonctions méromorphes

1 1 1
p(Z) = 2 + O#Zx:eL {(Z—?&)z - P} .
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Il est clair par construction que I’ensemble des poles de p est L-invariant (en
dimensionn > 1, les diviseurs ont une dimension >0 et il n’est guére possible de
sommer les translatées d’une fonction méromorphe sur V pour obtenir une
fonction méromorphe sur V/L). En particulier, p a un pdle double en chaque
point du réseau L. Sa dérivée p’ a un pole triple en ces mémes points. On peut voir
que p est un quotient de deux fonctions theta de S, et que p’ est un quotient de
deux fonctions de S;. Une base de S, a d’ailleurs deux éléments et fournit une
application projective sur P!(C), donc sur la sphére de Riemann. Cette
application identifie les points z et — z et est un revétement (les quatre points de
1L/L étant ramifiés).

Toujours dans le cas n = 1, montrons comment la fonction theta de
Riemann s’apparente aux fonctions theta de Jacobi. La série

Y. ¢ (¢eC)
converge pour | g | < 1. Son carré est

zqn2+m2 _ Z chN

N20

ou cy dénote le nombre de couples (n, m) € Z* avec n*> + m* = N. De méme, la
puissance quatrieme de X q"2 est la fonction génératrice du nombre de
représentations d’un entier positif comme somme de quatre carrés parfaits. Pour
calculer ces fonctions, Jacobi a posé g = ¢™(Imt > 0= |q| < 1)

v ¢]

o) = 3 e
—
Plus généralement, il étudie les fonctions

©
93(2 ’C) — einnzt eZinnz
D=2

dont la précédente est la valeur en z = 0 (theta nullwert). La série de Fourier de
Riemann est donc exactement de ce type: L = Z @ 1Z, L, = Z,L, = 1Z.

4. PARTIE COHOMOLOGIQUE DE LA DEMONSTRATION

Nous allons démontrer ici que si le tore complexe V/L est une variété
abélienne, il existe un produit scalaire hilbertien sur V de partie imaginaire
entiére sur les couples d’éléments de L. L’idée de la démonstration est simple.

Partant d’un plongement projectif
i: VL - P™,
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