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Substituant cette expression dans les relations trouvées pour y\f(a + À,) et prenant
X XjE L2 (correspondant aux éléments de la base duale de (ef) c= Lx), on voit

\|f(a + Xj) \|/(û) + 2in(Zj — z)) + 2mmj (m,- mXj).

Mais la linéarité de v|/ donne directement

\|/(a + Xj) - \|f(a) 2iizLvJAXj).

Par comparaison, on trouve donc

//z"-z' + Lmzpz) z"j - z'j + mj £vz/z(^-)

Cette égalité de composantes fournit l'égalité vectorielle

z" — z' 3=5 Zvz^z — Emzez

avec «
'

rAz g L2, mz et g

et la démonstration sera terminée dès qu'on aura remarqué que les vz sont des

entiers
(z" — z'eL1 + L2 — L^>z" z'eV/L)

Or on a vu en cours de route

\|f(a + X) \|/(ûi) + 2innx(nx g Z lorsque Xe L)

et en substituant l'expression linéaire affine de \|/

\|/(a) 2mZvzaz + v

on trouve sans peine vz nt g Z. q.e.d.

3. Commentaires concernant la partie analytique
DE LA DÉMONSTRATION

Pour, démontrer le théorème de plongement, nous avons considéré les

espaces vectoriels Sk formés des fonctions entières / sur V satisfaisant les
équations fonctionnelles

f(z + X)ex(zff(z)
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Rappelons aussi que les facteurs exponentiels ex(z) sont déterminés par

ex 1 XeLl9
ex(z) exp — infx(X + 2z) le L2

En particulier, l'espace S0 est formé de fonctions entières L-périodiques, donc
constantes d'après le théorème de Liouville : S0 C. On peut aussi observer que
le produit d'une fonction de Sk par une fonction de St est une fonction de Sk+l,

ce qui suggère de considérer l'anneau gradué

S © sh C © s, © s2 ©
fc^O

des fonctions thêta. Par exemple, la multiplication par la fonction thêta de

Riemann 0 g Sx induit des applications injectives Sk - Sk + 1. Comme on a déjà

vu que ces espaces Sk ont des dimensions finies, les dim(Sk) forment une suite

croissante. Plus précisément

Proposition. On a dim(Sfc) Pf(E)n kn (E étant laforme alternée sur le

réseau L de rang 2n dans l'espace vectoriel V de dimension complexe n).

En particulier
Pf(E) dim^i) et

dim(Sk) — kn si E est unimodulaire.

Démonstration. Nous supposerons à nouveau E unimodulaire sur L (le cas

général s'en déduisant facilement). Nous avons vu que les coefficients de Fourier
ax(keL2) d'une / e Sk satisfont aux relations de récurrence

a,+k, a.e^2^ (peL2).

Si X0 est un élément fixé de L2, la relation de récurrence précédente impose

ax aXo einfv(2Xo+kv) si X — X0 + kv e X0 + kh2

Prenons aXo 1 et montrons que la suite de coefficients de Fourier

ax einfvi2Xo+kv) pour X X0 + kv e X0 + kh2

ax 0 pour X $ X0 + kL2

définit bien une fonction / BXoe Sk pour X0 e L2. Lorsque X0 parcourt un

système de représentants de L2 mod kh2, on obtient évidemment des éléments

linéairement indépendants de Sk (les supports des suites de coefficients de

Fourier X i— ax correspondants forment une partition de L2, donc sont disjoints).
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'2

Ces éléments forment une base de Sk d'où

dim(Sk) [L2 : kL2] [Zn : kZn]

det(/c • idn) k".

Pour justifier l'affirmation, il s'agit de montrer que la suite de coefficients de

Fourier attachée à un choix de X0 e L2 satisfait effectivement la relation de

récurrence caractérisant les équations fonctionnelles valables dans Sk, puis que la

série de Fourier correspondante converge bien vers une fonction entière. Le

premier point se vérifie par calcul : prenons X X0 + kv g X0 + kL2 et p g L

%+tM a*o+*<v + m exp{m/v+M(2 + k(v + \ij)}.

L'exposant vaut (au facteur in près)

/V(2À,0 + kv)+ /v(/c|i) + /„( + fc(v + p))

Tjkv)

fv(2X0 + kv) + /(i(2X.0 + 2kv+ /cp)

U2X0 + kv)+ /m(2 X +kv)

d'où bien
n _ a pinf (2X + fcn)

La décroissance rapide de ces coefficients

0Xo + kv e2inf^) einkf^)

est aussi claire puisque le module du premier terme croît comme l'exponentielle
d'une fonction linéaire de v et le deuxième décroît comme une gaussienne (en

v g L2). La convergence en z, uniforme sur tout compact de V est alors assurée et

la somme de la série de Fourier holomorphe dans V entier. On peut dire plus

simplement que l'on construit une fonction 0O en prenant X0 0 (par une suite

de coefficients de Fourier particulièrement simples ax, X e kL2) et que nous
obtenons les autres éléments de base de Sk par une translation convenablement
tordue de ces coefficients sur les autres classes mod kL2 de L2. Il est alors clair

que le même principe s'applique dans le cas non unimodulaire en prenant les

classes de kL2 dans Homz(Ll5 Z) et on trouve la formule de dimension annoncée.

Les espaces Sk s'interprètent aussi comme espaces de sections holomorphes
de fibrés (holomorphes de rang 1) sur V/L. Le système (ex)XeL est un cocycle de L à

valeurs dans l'espace des fonctions entières ne s'annulant pas sur V On entend

par là qu'on a des relations

<W(z) e*.(z + K)ey(z)(X,X'eL).
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On obtient ces relations en écrivant les équations fonctionnelles satisfaites par

0(z + X + X') 0(z' -h X) ^jl(z/)0(z') (z' z -t- X

Le membre de gauche est par définition ex+r(z)0(z) et celui de droite
ex(z')ey(z)Q(z). Puisque 0 n'est pas identiquement nulle, on peut simplifier par
cette fonction obtenant les relations de cocycle par prolongement analytique à

partir de l'ouvert non vide où 0 # 0. Les systèmes {ex)XeL sont naturellement
aussi des cocycles de L. Montrons comment on définit un fibré holomorphe de

rang 1 à partir d'un cocycle. Prenons par exemple le cocycle (<ex). Sur le fibré

trivial F x C - V, le groupe discret L agit (de façon équivariante) par

X • (z, t) (z + X, ex(z)t) (XeL, ze F, teC)

(l'action sur la base étant simplement donnée par les translations). L'espace des

orbites
[z, £] orbite de (z, t)

est un fibré sur V/L :

F x C -> F x L C 9 [z, t] [z + X, e,(z)t]

I i
K -> V/L 9z( z + X).

Ses sections sont les applications de la forme z [z, 0(z)]. Par définition de la
relation d'équivalence

[z, 0(z)] « [z + X, ex(z)d(zj]

et ce point s'exprime aussi par [z + X, 0(z + X)] d'où les relations fonctionnelles
satisfaites par 0. La continuité (resp. Fholomorphie) d'une telle section s'exprime

par la continuité (resp. l'holomorphie) de 0 sur F. A chaque cocycle de L à

valeurs dans l'espace des fonctions entières ne s'annulant pas sur F, on associe

ainsi un fibré inversible, i.e. un élément de H1(V/L, (9x) (ce groupe abélien est en

général noté additivement, mais lorsqu'on interprète ses éléments comme des

fibrés inversibles, la loi de groupe est donnée par le produit tensoriel des fibrés :

Yinverse d'un fibré s'identifiant au fibré dual). La construction précédente fournit

un homomorphisme

H^LSiV, n*(9x)) H\V/L,(9X).

Ici, (9x représente le faisceau des fonctions holomorphes ne s'annulant pas sur

V/L, 7i : F - F/L est la projection canonique de sorte que l'image inverse n*(9x
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est le faisceau des fonctions holomorphes ne s'annulant pas sur V, ayant pour
sections globales les éléments de

r(V, n*(9x) H°(V, n*(9x) {/: V -+ Cx entière}

Plus généralement, Grothendieck définit des flèches

Hp(G, F(X, TT*#")) -> Hp(G\X, #")

dans le cas d'un groupe discret G agissant (continûment, librement et

proprement) sur un espace topologique (pas trop mauvais)... (cf. Mumford [1]

p. 22 qui se réfère à Grothendieck [1], spécialement p. 195).

Lorsqu'on interprète ainsi Sk comme espace de sections du fibré iffc

correspondant au cocycle (ek)XeL

la finitude de la dimension de Sk résulte d'un théorème de Kodaira. Le vanishing
theorem de Kodaira donne d'ailleurs aussi

(if est un fibré positif et la classe canonique Kv/L est nulle puisque V/L est

p'arallélisable de sorte qu'il existe des formes différentielles invariantes par
translation, de diviseur vide). Il en résulte que la caractéristique d'Euler-Poincaré

holomorphe.

se réduit à la dimension de Sx. Le théorème de Riemann-Roch permet de

retrouver cette dimension à partir de la première classe de Chern de if. Ces

remarques ont pour but de montrer comment les principales étapes de la
démonstration analytique s'insèrent dans un contexte général.

Passons à quelques commentaires concernant le cas n 1, L étant ainsi un
réseau de la droite complexe C. Le théorème de plongement à l'aide des fonctions
0 de S3 se réalise dans un espace projectif de dimension m dim(S3) — 1

3" — 1 (la dimension de Sk est donnée par la proposition ci-dessus), donc de

dimension 2 lorsque n 1. On obtient ainsi les modèles de C/L comme courbes
projectives planes. Il est plus facile dans ce cas de travailler avec les fonctions de

Weierstrass p et p'. Rappelons simplement que p est définie comme somme d'une
série de fonctions méromorphes

sk T(y/u yk) h°(v/l, sek),

H\V/L, if) *= 0 pour i > 0

X(- îy'dim H\V/L, if) dim H°(V/L, &)
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Il est clair par construction que l'ensemble des pôles de p est L-invariant (en

dimension n > 1, les diviseurs ont une dimension > 0 et il n'est guère possible de

sommer les translatées d'une fonction méromorphe sur V pour obtenir une
fonction méromorphe sur V/L). En particulier, p a un pôle double en chaque
point du réseau L. Sa dérivée p' a un pôle triple en ces mêmes points. On peut voir

que p est un quotient de deux fonctions thêta de S2 et que p' est un quotient de

deux fonctions de S3. Une base de S2 a d'ailleurs deux éléments et fournit une

application projective sur P^CJ, donc sur la sphère de Riemann. Cette

application identifie les points z et — z et est un revêtement (les quatre points de

\L/L étant ramifiés).

Toujours dans le cas n 1, montrons comment la fonction thêta de

Riemann s'apparente aux fonctions thêta de Jacobi. La série

00
9

1 qn
— 00

converge pour | q \ < 1. Son carré est

I<f2+m2 Z
NZ 0

où cN dénote le nombre de couples (n, m) g Z2 avec n2 + m2 N. De même, la

puissance quatrième de Z q"2 est la fonction génératrice du nombre de

représentations d'un entier positif comme somme de quatre carrés parfaits. Pour
calculer ces fonctions, Jacobi a posé q einT(lm x > 0 => | q \ < 1)

00
9

0(x) X einn T.
— oo

Plus généralement, il étudie les fonctions

e3(Z; x) Z e'""2t e2imz
— 00

dont la précédente est la valeur en z 0 (thêta nullwert). La série de Fourier de

Riemann est donc exactement de ce type : L Z © xZ, L1 Z, L2 xZ.

4. Partie cohomologique de la démonstration

Nous allons démontrer ici que si le tore complexe V/L est une variété

abélienne, il existe un produit scalaire hilbertien sur V de partie imaginaire
entière sur les couples d'éléments de L. L'idée de la démonstration est simple.

Partant d'un plongement projectif
i: V/L -> Pm,
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