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Similairement
E(ey, e3) = ahy, + bhyy = reZ,

E(e,, e4) = chy, + chyy = seZ,
puis éliminant h,,
(ad—bc)h,, = dr — bs.
Par comparaison, on trouve donc
(**) ga+sb—pc—rd=0.

Les nombres réels a, b, ¢, d sont donc Q-linéairement dépendants. Commengant
par choisir a, b, ¢ réels Q-linéairement indépendants, on peut certainement
trouver d réel, différent de be/a et Q-indépendant de a, b, c. Amplifiant tous ces
nombres par un méme facteur réel non nul au besoin, on pourra satisfaire (*) tout
en conservant des nombres Q-indépendants. Le réseau correspondant L n’aura
pas la propriété mentionnée dans le théoréme de base. Par exemple, on pourrait
prendre

a:ﬁ,bz\/g,c=ﬁ,d=\/7.

2. PARTIE ANALYTIQUE DE LA DEMONSTRATION

Nous supposerons ici que le tore complexe V/L (notations de la sec. 1)
satisfait la condition donnée dans le théoréme de base, donc qu’il existe une
forme hermitienne H définie positive sur V' de partie imaginaire entiére sur les
couples d’¢léments de L, et démontrerons que ce tore admet un plongement
projectif complexe. Le produit scalaire hilbertien est donc dénoté par H(u, v)

= (u|v). Nous conviendrons que ce produit scalaire est C-linéaire en la seconde
variable (sic)

v — H(u, v) C-linéaire (pour tout ue V),
H(u, av) = aH(u, v) (pour tous u,ve Vet a e C).
Appelons B la partie réelle de H et E la partie imaginaire de H de sorte que

H(u,v) = B(u, v) + iE(u, v)

et

H(v,u) = H(u,v) = B(u,v) — iE(u, v).




96 A. ROBERT

On voit donc que, par définition de B et E,
B(v, u) = B(u,v) et E(v,u) = —E(u,v).

La forme R-bilinéaire B est symétrique (et définie positive comme H puisque
B(u, u) = H(u,u) > 0siu # 0), tandis que la forme R-bilinéaire E est alternce
(l.e. antisymétrique). Chacune des deux formes B ou E détermine
complétement H. Par exemple, on a

H(u, iv) = B(u, iv) + iE(u, iv),
et aussi
iH(u, v) = iB(u, v) — E(u, v);

par comparaison des parties réelles et imaginaires de ces quantités (€gales!), on en

tire
B(u, v) = E(u, iv) et E(u,v) = — B(u, iv).

La positivité de H (ou de B) se reconnait donc sur E de la fagon suivante
E(u,iu) > 0 st u # 0.

De méme, H(iu, iv) = H(u, v) fournit E(iu, iv) = E(u, v). Inversement, partant
d’une forme alternée E satisfaisant E(iu, iv) = E(u v), la définition

H(u, v) = E(u, iv) + iE(u, v)

fournit une forme hermitienne (vérification par calcul direct!), définie positive
lorsque E(u, iu) > 0 pour u # 0. Les propriétés de H sont donc traduites en les
propriétés suivantes de E

E est une forme R-bilinéaire alternée (a valeurs reéelles),
E(iu, iv) = E(u, v) (u, veV) et E(u, iu) > 0 pour 0 # ue V.

La forme alternée entiére E sur L va nous permettre de décomposer ce réseau
comme somme directe de deux sous-réseaux sur chacun desquels elle est
isotrope.

LemMME (Frobenius: Oeuvres complétes, vol. I, p. 493). Il existe une base )
€1y er €y My, s hy, de L telle que

E(e;, ej) = E(A; xj) = 0,
E(ei, )\41) = d,ﬁu (nul Sll Sé j, = di Si l = J)

!y Une telle base sera appelée dorénavant base symplectique.
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avec des entiers d; satisfaisant

d; ., multiple de d; (pour i <n —1).

Preuve. Montrons simplement comment on commence la démonstration
de ce lemme classique d’algébre (c’est une forme du théoréme des diviseurs
élémentaires ou un aspect de la réduction des formes alternées...). Pour chaque
0 # ae L on considére Iidéal I, = {E(a,b):be L} = Z. Posons I, = d,Z avec

un entier positif d, bien déterminé. Définissons alors d; = Inf d,
a%0

= Mind, > 0.Sid, = 0,ilyaunélémenta # 0de Lavecl, = Odonctel que
a¥0
E(a,v) = 0 (pour tout veV par R-linéarité) donc tel que E(a;ia) = 0

contredisant la positivité de E (oude H). Onadoncd; > Oetonprende;, A, € L
avec E(e;, M) = d,. La démonstration continue alors par induction, extrayant
le plan hyperbolique engendré par ces deux vecteurs par considération du
supplémentaire orthogonal.

Nous dénoterons par L, le sous-groupe engendreé par les e; et par L, le sous-
groupe engendré par les A;. On a donc -

L =L, & L,, rang(L;) = n, E triviale sur chaque L;.
De plus, la forme E permet d’identifier un élément b de L, a un homomorphisme
E(,b): L, » Z,a— E(a,b).
On obtient ainsi un homomorphisrﬂe injectif (plongement)
E: L, » Homg(L,,Z) = Z-dual de L, .

Comme la base duale de (e;) dans Homg(L,, Z) est constituée des formes d; ! A,
on voit que le plongement précédent a une image d’indice fini égal au produit des
d; (ce produit est appelé Pfaffien de E). En particulier, lorsque touslesd; = 1, on
dit que E est unimodulaire, dans ce cas L, s’identifie au Z-dual de L, (via E).

Pour plonger V/L dans un espace projectif, il s’agit de construire des fonctions
sur cette varieté, donc de définir des fonctions L-périodiques sur V.
Commengons par considérer plus simplement des fonctions L;-périodiques,
données par des développements de Fourier selon les exponentielles de base
relatives a L,. Ces considérations d’analyse vont fournir « toutes » les fonctions
L,-périodiques sur V; = L; ®z R comme séries en les

v exp(2mi Mv)) (A € Homg(L,, Z)).
Nous considérerons plus particuliérement les exponentielles
v exp(2miE(v, A))  (AeL,).

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 7
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Ces dernieres fournissent une base des fonctions sur V,, invariantes parles d; ! ¢,
donc en particulier aussi des fonctions sur le tore réel V,/L,. (Le.lecteur qui
souhaite simplifier au maximum la démonstration pourra supposer E
unimodulaire dés a présent.) Pour fabriquer des fonctions analytiques sur ¥, nous
complexifierons simplement V; en permettant a v de varier dans V; @z C. Il est
donc important de savoir que V; engendre tout V sur C.

LEMME. Ona V =V, @iV, etdonc V =V, QrC.

Preuve. Comme V, et iV, ont méme dimension réelle n, il suffit de montrer
que V; niV; = {0}. Ceciestclaircarsiue V, niV,,onau = v, = iw, (avec
v, et w; dans V;) qui implique

H(u,u) = E(u, iu) = E(v, —wy{) = 0

par trivialité de E sur L, et donc aussi sur V;. On en conclut u = 0.

Pour étendre holomorphiquement les exponentielles exp(2miE(., 1)) il suffit
de considérer les extensions C-linéaires f,(v) des E(v, A) (permettant ainsi a v
de varier dans V entier, plus seulement dans V;). Une telle extension C-linéaire
est définie par

ﬁ(vl +lU,1) - E(Ul, )\1) + iE(Ull, )L) 5
et 'exponentielle holomorphe L,-périodique sur V' correspondante
V 3z exp(2rifi(z)) (A€ L, ou HomgL,, Z)).

Les séries de Fourier que nous aurons a considérer auront la forme

S ¢ exp(2mifi(2))

reL2

avec des coefficients ¢, € C non tous nuls (décroissant suffisamment rapidement
a 'infini pour assurer une « bonne » convergence). Les fonctions décrites par de
tels développements peuvent étre considérées comme fonctions sur V/L, (mais
pas sur V/L!).

Pour z fixé dans ¥, le module de exp(2mifi(z)) croit en A comme
I'exponentielle d’une fonction linéaire de A. Pour assurer une convergence rapide
de la série de Fourier (convergence simple en z ou convergence uniforme sur tout
compact de V), il suffit de prendre des coefficients ¢, dont le module décroit de
fagon gaussienne (exponentielle d’'une forme quadratique définie négative). Or
nous avons a notre disposition la forme f,(A). Puisque

Im fi(A) = E}, A) = E(My, ihy) = H(Ay, Ay) = 0
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(nousavonsécrituni e L, = V = V; @ iV sousla formeA = A, + iAj,0ul,
et A, € V, et avons utilisé l'isotropie de E sur V)), il s’agit de prendre

¢, = exp(infy(A)) d’ou | ¢, | = exp — nlm fi(A)
= exp — TH(A, M) .

Tlest clairque 0 # A e L, = A, # Oetdonc H(Ay, A}) > Ocarsi}j était nul, A
— ), appartiendrait a V; or V, nV, = {0} (V; et V, = L, ®zR sont
supplémentaires). Ceci assure la décroissance gaussienne des | ¢, |, la forme
quadratique apparaissant en exposant
77 LoV étant le carré de la norme (euclidienne)
1 /7272 associée au produit scalaire H, via

/ projection de L, sur iV,

/
/
LN, T 9, I X2 = HQY, Ay = H(iAY, 1AY)

Y Le dessin illustre la situation, mais on

‘ prendra garde de ne pas croire que V; et

/ iV, sont orthogonaux (v, et iv; sont C-

A ‘f proportionnels donc non H-

' A V orthogonaux, Vi = {0} puisque V; C-
engendre V).

La fonction theta de Riemann est ainsi définie par la série de Fourier

0z) = ¥ exp{infy(A) + 2infi(2)}  (z€V).

L>

Cette série converge uniformément sur tout compact de V' et définit donc une
fonction holomorphe sur V (invariante par les translations de L,). Pour pouvoir
calculer 6(z+ p) avec p € L,, nous avons besoin du lemme suivant.

LEMME. Ona fi(n) = fJ(A) pour tous A, peL,.

Vérifions laffirmation du lemme en comparant les parties réelles et
imaginaires des deux membres. D’une part

Im fi(n) = filky) = E(W), A) = E(uy, ik})
= E(ipy, —Ay) = EQ, i) = EQL p) = fu(A) = Im f,(A)
(avec des notations p = p; + ip; correspondant a la décomposition

V=Va@IiV>L,).
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D’autre part

Re fi() = filh) = E(uy, M) = E(uy, id))
= E(p; +ipl, iky) = E(u, ihy).
Or E est isotrope sur L,, donc E(u, ) = 0 et donc

E(w,ivy) = —E(@ Ay) = EAy, ) = fu(hy) = Re f,(1).

Nous sommes alors en mesure de démontrer les équations fonctionnelles

B(z+p) = exp{—infy(n) — 2inf(2)} 0()  (neLy).
Par définition
0z+p) = ) exp{infiA) + 2infi(z+p)} .

L2

Dans cette somme, effectuons la permutation A+ A — p de lindice de
sommation (puisque p € L,, on translate simplement dans L,). Le terme général
de la série est donc

exp{inf,,(h—p) + 2inf_z+mw)} .
Calculons simplement 'exposant
fimdh—w) + 2fi- 2+ 1)

= M) — AW — LA + AW + 240 — 210

+ 2/(2) — 2f2) = (M) + 24(2) — fuW) — 2/(2)
par la propriété de symétrie démontrée ci-dessus.

Plus généralement, nous écrirons
Bz+A) = ez) 0(2) (AeL)

avec
{ e, =1 si Ael; et

e,(z) = exp{—inf,(\) — 2inf,(z)} si A€ L,.

Il n’est d’ailleurs pas difficile de calculer la fonction e, en général, c’est-a-dire
lorsque A = A; + A, € L, + L, = L. Eneflet, par L,-périodicité de 6, on a ¢,
= ¢,,- Mais
exp —in{fy, +1,(A1+2A;) + zfxlﬂz(z)}
= exp —infy,(A)) - e,(z) = exp —inE(A,, A,) - e,(2)
d’ou

ek(Z) = @ (Z) = eiﬂE(le»z)' e“in{fx(l)-f-Zfl(z)} )
2 W
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On retrouve bien le facteur exponentiel ci-dessus lorsque A; = 0 (i.e. lorsque A
= \, € L,). En général, expression est semblable avec le signe

erERLA) — 41 (= 41 si A €2L,)).

Considérons Iespace vectoriel S, formé des fonctions entiéres sur V' et
satisfaisant les équations fonctionnelles

fz+)N) = @) fz)  (Rel).

Il est clair que pour k > 1,0* € S, de sorte que ces espaces ne sont pas réduits a
{0} (les coefficients de Fourier ¢, de 6 sont non nuls pour A € L, donc § n’est pas
identiquement nulle!). Voici comment on peut fabriquer d’autres €léments de S;.
On observe tout d’abord qu’une translatée de 6 n’appartient pas souvent (!)a S
puisqu’elle satisfait .

0,z+)N) = 8(z—a+A) = e N THNETD §(z—q)
0,(z+M) = 2™ ¢,(z) 0,(2) (AeL,) .

Un produit fini de translatées va donc satisfaire
k
H 0,,(z+1) = 2m5H). n 0,,(2) - ex(2)*

et appartenira S, désque ), a; = 0. Les fonctions (enfin!) permettant de plonger
projectivement V/L seront des quotients f/g ou f et g appartiennent a un méme
Si. Ce sont donc des fonctions méromorphes L-périodiques sur V. Pour éviter de

parler des quotients (donc de poles...), on peut simplement considérer des
applications

2 (fo(2)s ooy fl2)): V - €1

pour une famille finie

(fdo<i<m © S, (disons k assez grand).

Comme les f; satisfont les mémes équations fonctionnelles, donc sont multi-
pliées par un méme facteur lorsqu’on remplace z par z + AMAeL), les points z et
z + A ont les mémes images projectives et on obtiendra ainsi des applications

V/L — P™C) (a condition que les f; n’aient pas de zéro commun...). Voici un
énonceé plus précis.

THEOREME DE LEFSCHETZ. Les espaces S, ont une dimension finie et

pour k > 3, toute base f, .., f,, de S, fournit un plongement projectif
VIL - P™
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Démonstration.  Pour ne pas masquer I'idée générale, nous supposerons que
E est unimodulaire donc que toutes les exponentielles de base (sur V) L,-
périodiques sont données par les 2miE(, A) ou A parcourt L,. Toute f €5,
possede une restriction a V; quiest L,-périodique et peut étre développée en série
de Fourier. Les équations fonctionnelles

fz+w = e2) f(2)  (neL,)
fournissent des identités pour les développements de Fourier

Y a, e2m =t
L2

_ e*ink{fu(p)Jr-qu(z)} Z a, eZnifk(Z)
= e LN g e

= o inkS (W) Z @tk e2mify(2)

Identifiant les coefficients des exponentielles de base, on trouve

a, e2nif;»(u) —inkfp(p)

= Oy t+xp €

d’ou

sy = A kS (W + 2infy () — a, oIS (21 k)

(en vertu de la symétrie de 'expression f,(p), lemme ci-dessus). Connaissant les a,,
dans un parallélipipéde de taille k, les autres coefficients s’en deéduisent
inductivement :

f - (ax)xeparanélipipede de L

S, —» C¥

est injective et donc dim S, < k" est finie (on montrera plus loin que cette
dimension est exactement k"). Montrons maintenant que lorsque k > 2, les
fonctions dans S, n’ont pas de zéro commun. Pour cela, soit z € V un élément
arbitraire. Nous allons construire une f € S, avec f(z) # 0.. Comme nous
I’avons déja observé, les produits de translatées de la fonction theta de Riemann
permettent de définir des ¢léments de S,

0

aj

0,, .0, €8, désque a; +..+q =0.

I1 suffit de choisir les points a; de fagon que 0,(z) # 0, c’est-a-dire de fagon que
les z — a; n’appartiennent pas a la variété des zéros de 0. Ceci est possible car
dénotant par Z cette variété des zéros de 0 (on peut voir qu’elle n’est pas vide,
mais ceci n’est pas requis ici) les conditions z — a; ¢ Z reviennenta a, ¢ z — Z.
Or Z n’a pas de point intérieur (0 est analytique et non identiquement nulle) et il
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enest de méme de Z — zetz — Z:laréunion de ces fermés n’aura pas non plus
de point intérieur et il sera facile de choisir les a,(i >2) dans leur complémentaire
(ouvert dense) de sorte que Y a;¢ Z — z et on posera simplement a, =

i=2

= 4

— Y a; Il résulte de ce point que pour toute base (fo, ..., f,) de Si(k=2) les f;

i22
n’ont pas de zéro commun et application z i (fi(z)) définit une application
V/L — P™(C). Il nous reste a montrer que ces applications sont des plonge-
ments lorsque k > 3. Ceci se fait en deux temps. On commence par voir que
leurs différentielles sont injectives en chaque point (condition d’immersion), puis
que les applications sont injectives. Contentons-nous de traiter le cas k = 3 qui
fournit le premier plongement. Pour pouvoir calculer la différentielle en
question, il est convenable d’introduire des coordonnées dans V. Rappelons que
nous supposons L (ou E) unimodulaire et que nous avons introduit une base

€15 oy €py My, ooy A, de L
avec

fle) = ij(ei) = E(e; X)) = §;;

(ne pas confondre ces f;— extensions C-linéaires des E(., A ;) — avec les éléments
de base de S, ... il sera prudent de revenir sous peu a une notation moins
ambigu€). Nous avons aussi démontré que les éléments e, ..., e, forment une C-
base de V(V = V; @ il}). Cest celle que nous choisirons. Dans cette base, les
fonctions coordonnées z = Xz, > z; s'identifient aux f;: z; = f{(z)

(f): V3 C, 2z (z).

Dénotons maintenant ‘par (6;) une base de S, et considérons lapplication
analytique
0): V- C""1 — {0} - P"(C)
zZ (ei(z)) = [042)] .

La propriete d'immersion revient a dire que les vecteurs tangents aux courbes
coordonnées sont indépendants entre eux et du vecteur rayon (contracté en un
point de I'espace projectif). Nous devons donc démontrer que les vecteurs

r = (0(2), ., 0,,(2))
t = (880/0z, .., 00,,/0z) (z) (1<I<n)
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sont C-linéairement indépendants. Une relation linéaire entre ces vecteurs peut
€tre écrite

=

n
soit, scalairement

aoei(Z) — Zalael/azl(Z) (O < i < m)

(1l est bon de se souvenir que le point z € V est fixé). La méme relation linéaire
devra avoir lieu dans tout I'espace S5 engendré par les 6;:

2,®(z) = Z,00/0z(z) pour toute ® € S5 .
Nous allons exprimer cette relation linéaire pour les fonctions particuliéres
0 = @ab = ea-+-b 0—a e—be S3

produit de translatées de la fonction theta de Riemann. Le point z étant encore
fixé, on aura identiquement en a et b

% O,45(2z) = X0,00,,/0z(z) .

Introduisons la fonction méromorphe

U = Zo,d(log 0)/0z, .

Par définition,

8 log 8(z +a) 0 log ©

V(z+a) = Yo oz, = Zaz——azl—““(z)

et

V(z+a) + Y(z+b) + Y(z—a—b)
Q) b 6®ab
= Z 1a log - Zal / O ,(2)

= oc(,@a,,'(z)/@ab(z) = 0 indépendant de a et b!

Mais pour tout a, on peut choisir b de fagon que ni z + b niz—a —b
n’appartiennent a I'ensemble des pdles de et I’égalité juste prouvée montre que
Y(z+a) # oo. Ceci prouve que V est entiere (a €tait arbitraire). D’autre part, la
dérivation logarithmique des identités fonctionnelles satisfaites par 0

B(z+A) = exp {—infi(A) — 2infi(z)} - 6(z) (reL,)
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donne
0 log 6 df, 0logH

—= —2.
o2, (z+A) in 2, + o2, (2)

d’ou

Y(z4+A) = —2in Zoc,%];l + Y(z) .

l

Les fonctions f, étant linéaires, les 0 f,/0z, sont des constantes et

oV/0z; est L,-périodique (et L,-périodique ausst!) .

Ces fonctions entiéres dY/0z; sont donc bornées (elles s’identifient a des fonctions
sur l'espace compact V/L) et le théoréme de Liouville indique qu’elles sont

constantes
0y/0z; = c; (constante).

Ainsi, Vs est linéaire affine. Puisqu’elle est holomorphe, elle est C-lin€aire affine et
par L,-périodicité (ce sous-groupe est engendré par une C-base de V) elle est
méme constante (les ¢; sont nuls):

V(z+A) = Y(z) (en particulier pour A € L,)
d’ou
Zdl afx/azl = 0 .

Mais lorsque A parcourt une base de L,, disons la base (A;), les f,
correspondantes forment un systéme des coordonnées complexes sur ¥ (ce sont

les fonctions f; introduites précedemment) et la matrice (0f,/0z;) est non .
singuliére (c’est la matrice identité avec le choix indiqué). Donc les o, sont tous
nuls et la relation lin€aire ‘envisagée entre r et les ?, est triviale, prouvant leur
indépendance linéaire. Il ne reste plus qu’a démontrer I'injectivité de

8): VL - P™(C)
zmod L [042)] .

Prenons z' et z” € V avec [0,(z')] = [0,(z")]. Il existe donc un scalaire 0 # o e C
tel que

0,(z) = a0/(z") (0<i<m)
d’ou aussi :
O(z) = a ©(z") pour toute O € S,
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(puisque les 6; engendrent S,). Revenant aux produits de translatées de la
fonction theta de Riemann ®,, utilisés dans la partie précédente de la
démonstration, on aura

0(z'+ a)0(z' + b)B(z' —a—b) _
0(z' +a)(z" +b)0(z' —a—b)

Pour chaque a fixé dans V, on peut trouver b € V de fagon que
Z+b,z"+b,z27 —a—>b,z" —a—>b

n’appartiennent pas a la variété des zéros Z de 0 (il s’agit d’éviter quatre
translatés de +Z qui sont fermés sans point intérieur). L’identité ci-dessus
montre alors que la fonction — a priori méromorphe —

a— 8z’ +a)/0(z" + a)

est entiere et sans zéro. On peut ’écrire comme exponentielle d’'une fonction
entiere:

0z +a)/0(z" +a) = e¥?@ .
La L,-périodicité¢ de 8 montre que

evath — i) (XeLl) ,
et donc
V(a+A) = Y(a) + 2min, (Ael,).

Prenant ensuite A € L,
0z +a+A) = ¢(z+a)(z’+a) (AeL,)

et une relation analogue avec z” au lieu de z'. On en tire
V@t _ pW(@) = inl (N 21, (2 +a) =~ £,0)~ 2;(z" +a))
— V@ p2inf;(z" =2
puis
V(a+A) = Ya) + 2inf,(z"—2) + 2imm, (rel,).

Ainsi, (a+A) — Y(a) est indépendant de a pour tout A € L et la considération
des dérivées partielles d\/0a, comme ci-dessus, fournit

0y/da, entiere, L-périodique (donc bornée)
et donc constante, de sorte que  est C-linéaire affine. On écrira

\I](a) = 21752\’1 a, + V.
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Substituant cette expression dans les relations trouvées pour y(a +A) et prenant
A = A; € L, (correspondant aux éléments de la base duale de (e¢;) = L,), on voit

Ya+X) = Ya) + 2in(z]—25) + 2imm;  (m; = my).
Mais la linéarité de \ donne directement
Y(a+X) — Yla) = 2inZv,fi(A)).
Par comparaison, on trouve donc
flz' =2 +Zme) = z] — 2 + m; = Zv fi}) = Zv,fi(h).
Cette égalité de composantes fournit I’égalité vectorielle

"

zZz — Z/ = ZVI)“I - Zmlel

avec
heLl, mece€lL,

et la démonstration sera terminée dés qu’on aura remarqué que les v, sont des
entiers
(z"—ZeL,+ L, = L=z" = Z€V/L).

Qr on a vu en cours de route

V(a+A) = Y(a) + 2inmy(n, € Z lorsque A € L)
et en substituant 'expression linéaire affine de

V(a) = 2inZva, + v

on trouve sans peine v, = n, € Z. g.e.d.

3. COMMENTAIRES CONCERNANT LA PARTIE ANALYTIQUE
DE LA DEMONSTRATION

Pour. démontrer le théoréme de plongement, nous avons considéré les

espaces vectoriels S, formés des fonctions entiéres f sur V satisfaisant les
équations fonctionnelles

fz+}) = ez f(2) (ReL).



	2. Partie analytique de la démonstration

