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Similairement
E(ei> e3) ahi2 + bh22 r e Z

E(e2, e4)ch12 + ch22

puis éliminant h12

(ad — bc)h12 — dr — bs

Par comparaison, on trouve donc

(**) qa + sb — pc — rd 0

Les nombres réels a, b, c, d sont donc Q-linéairement dépendants. Commençant

par choisir a, b, c réels Q-linéairement indépendants, on peut certainement

trouver d réel, différent de bc/a et Q-indépendant de a, b, c. Amplifiant tous ces

nombres par un même facteur réel non nul au besoin, on pourra satisfaire (*) tout
en conservant des nombres Q-indépendants. Le réseau correspondant L n'aura

pas la propriété mentionnée dans le théorème de base. Par exemple, on pourrait
prendre

a y/2,by/3,cy/5,

2. Partie analytique de la démonstration

Nous supposerons ici que le tore complexe V/L (notations de la sec. 1)

satisfait la condition donnée dans le théorème de base, donc qu'il existe une
forme hermitienne H définie positive sur V de partie imaginaire entière sur les

couples d'éléments de L, et démontrerons que ce tore admet un plongement
projectif complexe. Le produit scalaire hilbertien est donc dénoté par H(u, v)

(u\v). Nous conviendrons que ce produit scalaire est C-linéaire en la seconde
variable (sic)

v i— H(u, v) C-linéaire (pour tout u s V),

H(u, av) clH(u, v) (pour tous u, v e V et a g C).

Appelons B la partie réelle de H et £ la partie imaginaire de H de sorte que

H(u, v) B(u, v) + iE(u, v)

et

H(v, u) H(u, v) B(u, v) — iE(u, v).
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On voit donc que, par définition de B et E,

B(v, u) B(u, v) et E(v, u) — — E(u, f
La forme R-bilinéaire B est symétrique (et définie positive comme H puisque
ß(u, u) H(u, u) > 0 si m 7^ 0), tandis que la forme R-bilinéaire E est alternée

(i.e. antisymétrique). Chacune des deux formes B ou E détermine

complètement H. Par exemple, on a

H(u, if) B(w, if) -h iE(u, if),
et aussi

iH(w, f) i£(w, f) — E(u, f) ;

par comparaison des parties réelles et imaginaires de ces quantités (égales!), on en

tire
B(u, f) E(u, if) et E(u, v) — B(u, if).

La positivité de H (ou de B) se reconnaît donc sur E de la façon suivante

E(u, iw) > 0 si u / 0

De même, H(iu, if) H(u, f) fournit E(iu, if) E(u, f). Inversement, partant
d'une forme alternée E satisfaisant E(iu, if) E(u v), la définition

H(u, f) £(w, if) -h iE(u, f)

fournit une forme hermitienne (vérification par calcul direct!), définie positive
lorsque E(u, iu) > 0 pour w # 0. Les propriétés de H sont donc traduites en les

propriétés suivantes de E

J E est une forme R-bilinéaire alternée (à valeurs réelles),

| E(iu, if) £(w, f) (w, feF) et E(u, iu) > 0 pour 0 / «eK

La forme alternée entière £ sur L va nous permettre de décomposer ce réseau

comme somme directe de deux sous-réseaux sur chacun desquels elle est

isotrope.

Lemme (Frobenius : Oeuvres complètes, vol. I, p. 493). Il existe une base x)

el9..., en, Xl9..., X„ de L telle que

E(eh ej) E(Xh Xj) 0,

E{eb Xj) dfiij (nul si i # 7, dt si i j)

^ One telle base sera appelée dorénavant base symplectique.
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avec des entiers dt satisfaisant

di + 1 multiple de dt (pour i ^ n — 1).

Preuve. Montrons simplement comment on commence la démonstration

de ce lemme classique d'algèbre (c'est une forme du théorème des diviseurs

élémentaires ou un aspect de la réduction des formes alternées...). Pour chaque

0 ^ a e L on considère l'idéal Ia {E(a, b):be L} c Z. Posons Ia daZ avec

un entier positif da bien déterminé. Définissons alors dx Inf da
a^O

Min da ^ 0. Si d1 0, il y a un élément a ^ 0deLavec/a 0 donc tel que
a f 0

L(a, v) 0 (pour tout v e V par R-linéarité) donc tel que E(aia) 0

contredisant la positivité de E (ou de H). On. a donc dx > 0 et on prend e1,X1eL
avec E{eu XJ dv La démonstration continue alors par induction, extrayant
le plan hyperbolique engendré par ces deux vecteurs par considération du

supplémentaire orthogonal.
Nous dénoterons par L1 le sous-groupe engendré par les e{ et par L2 le sous-

groupe engendré par les Xt. On a donc

L Lx © L2, rang(Lf) n, E triviale sur chaque Lt.

De plus, la forme E permet d'identifier un élément b de L2 à un homomorphisme

£(., b) : L1 -» Z, a i— E(a, b).

On obtient ainsi un homomorphisme injectif (plongement)

E : L2 - Homz(Lls Z) Z-dual de

Comme la base duale de (et) dans Homz(Ll5 Z) est constituée des formes df1 Xh

on voit que le plongement précédent a une image d'indice fini égal au produit des

dt (ce produit est appelé Pfaffien de E). En particulier, lorsque tous les dt 1, on
dit que E est unimodulaire, dans ce cas L2 s'identifie au Z-dual de Lx (via E).

Pour plonger V/L dans un espace projectif, il s'agit de construire des fonctions
sur cette variété, donc de définir des fonctions L-périodiques sur V.

Commençons par considérer plus simplement des fonctions Lr-périodiques,
données par des développements de Fourier selon les exponentielles de base
relatives à Lv Ces considérations d'analyse vont fournir « toutes » les fonctions
L-périodiques sur V1 L1 (g)z R comme séries en les

v h-* exp(2ni X(v)) (X e HomZ(L1? Z)).

Nous considérerons plus particulièrement les exponentielles

v i exp(2niE(v, X)) (XeL2)

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 7
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Ces dernières fournissent une base des fonctions sur Vu invariantes par les d[~1 et

donc en particulier aussi des fonctions sur le tore réel VJLv (Le. lecteur qui
souhaite simplifier au maximum la démonstration pourra supposer E

unimodulaire dès à présent.) Pour fabriquer des fonctions analytiques sur V, nous
complexifierons simplement V1 en permettant à v de varier dans V1 (g)R C. Il est

donc important de savoir que V1 engendre tout F sur C.

Lemme. On a V V1 (B iV1 et donc F — V1 ®R C.

Preuve. Comme V1 et iV1 ont même dimension réelle n, il suffit de montrer
que V1 n iV1 {0}. Ceci est clair car si u e V1 n iVu on a u iw1 (avec

v1 et wx dans Fx) qui implique

H(u, u) E(u, iu) E(v1? — wj 0

par trivialité de E sur L1 et donc aussi sur Vx. On en conclut u 0.

Pour étendre holomorphiquement les exponentielles exp(27u£(., À,)) il suffit
de considérer les extensions C-linéaires fx(v) des E(v, X) (permettant ainsi à v

de varier dans F entier, plus seulement dans Fx). Une telle extension C-linéaire
est définie par

MVi + iv'i) E(vi>

et l'exponentielle holomorphe L^périodique sur F correspondante

F a zh exp(27iifx(z)) (X e L2 ou Homz(Ll5 Z)).

Les séries de Fourier que nous aurons à considérer auront la forme

£ cx exp(2ti!A(z))
XeLi

avec des coefficients c^e C non tous nuls (décroissant suffisamment rapidement
à l'infini pour assurer une « bonne » convergence). Les fonctions décrites par de

tels développements peuvent être considérées comme fonctions sur V/L1 (mais

pas sur V/L\).

Pour z fixé dans V, le module de exp(27riA(z)) croît en X comme
l'exponentielle d'une fonction linéaire de X. Pour assurer une convergence rapide
de la série de Fourier (convergence simple en z ou convergence uniforme sur tout
compact de F), il suffit de prendre des coefficients cx dont le module décroît de

façon gaussienne (exponentielle d'une forme quadratique définie négative). Or
nous avons à notre disposition la forme fk(X). Puisque

Im fx(X) E(X\, X) E(X\, iX\) H(X\, X\) ^ 0
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(nous avons écrit un X e L2 c V Vx © i V\ sous la forme X — Xx + ^1? oùÀ^

et X\ e Vx et avons utilisé l'isotropie de E sur Vx), il s'agit de prendre

exp(m fx(X)) d'où | cJ exp - rclm fx(X)

exp — nH(X\, X\)

Il est clair que 0 ^ X e L2 => X\ ^ 0 et donc H{Xf X\) > 0 car si X\ était nul, X

Xx appartiendrait à Vx or V1 n V2 {0} (Vx et V2 L2 ®z R sont

supplémentaires). Ceci assure la décroissance gaussienne des | |, la forme

quadratique apparaissant en exposant
étant le carré de la norme (euclidienne)
associée au produit scalaire if, via

projection de L2 sur iVx

L2cV2

Il II2 K)

Le dessin illustre la situation, mais on
prendra garde de ne pas croire que Vx et

iV1 sont orthogonaux (vx et ivx sont C-

proportionnels donc non if-
orthogonaux, V\ {0} puisque Vx C-

engendre V).

La fonction thêta de Riemann est ainsi définie par la série de Fourier

0(z) £ exp{i7t MX)+ 2(71A(z)} (ze
l2

Cette série converge uniformément sur tout compact de V et définit donc une
fonction holomorphe sur V (invariante par les translations de Lx). Pour pouvoir
calculer 0(z + p) avec p e L2, nous avons besoin du lemme suivant.

Lemme. On a fx(p) fJX) pour tous X, p e L2.

Vérifions l'affirmation du lemme en comparant les parties réelles et

imaginaires des deux membres. D'une part

Im A(p)/M) £(p'i> E(\i\,

E(i\i\,-X\) E(X\,iffp) f^X'f Im

(avec des notations p Pi + [>1 correspondant à la décomposition

V Vx© => L2
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D'autre part

Re A(|i) A(Hi) X) |i1; iX\)

£(Hi + 'Hi, M) M) •

Or E est isotrope sur L2, donc £(p, A.) 0 et donc

£(p, a;) -£(p, X,) £(^, p) p= /^) Re /^)
Nous sommes alors en mesure de démontrer les équations fonctionnelles

9(z + p) exp{-- lin/„(z)} 0 (z) (peL2).

Par définition
9(z + H) Z exp{m/x(X) + 2mA(z + p)}.

Li

Dans cette somme, effectuons la permutation À, i— X- — pi de l'indice de

sommation (puisque p e L2, on translate simplement dans L2). Le terme général
de la série est donc

exp{infx.JX-p)+ 2mA-„(z + p)}

Calculons simplement l'exposant
+ 2A-m(z + P)

AW - A00 - AM + AM + 2A(p) - 2/»
+ 2A(z) - 2/m(z) AM + 2A(z) - AM - 2A(z)

par la propriété de symétrie démontrée ci-dessus.

Plus généralement, nous écrirons

0(z + X) £x(z) 0(z) (XgL)

avec

ex 1 si X e Lx et

ex(z) exp{ — mAM - 2i7tA(z)} si ^L2.
Il n'est d'ailleurs pas difficile de calculer la fonction ex en général, c'est-à-dire

lorsque^ + X2eLl + L2 L. En effet, par Lr-périodicité de 0, on a ex

eXr Mais

exp -!7t{A1+l.#i + ^2) + 2Ai+x2(z)}

exp -raA2(Xi) • e>2(z) exp X2) etJz)

d'où

ex(z) eX2(z) ginEauX2/^)}
_
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On retrouve bien le facteur exponentiel ci-dessus lorsque X1 0 (i.e. lorsque X

X2 e L2). En général, l'expression est semblable avec le signe

einE{\u\2) =-f-i +1 si X1e2Ll\).

Considérons l'espace vectoriel Sk formé des fonctions entières sur V et

satisfaisant les équations fonctionnelles

f(z + X) ex(z)k f(z) (XeL).

Il est clair que pour k ^ I, 0fc e Sk de sorte que ces espaces ne sont pas réduits à

{0} (les coefficients de Fourier cx de 0 sont non nuls pour X e L2 donc 0 n'est pas

identiquement nulle!). Voici comment on peut fabriquer d'autres éléments de Sk.

On observe tout d'abord qu'une translatée de 0 n'appartient pas souvent à St

puisqu'elle satisfait

0fl(z-U) 0(z — a+ X) e-i^)-2infx(z-a) 0(z _ a)

0a(z + X) e2«if^ex(z)da(z) (XeL2).

Un produit fini de translatées va donc satisfaire

n %j(z + X) eWsUY[ Qaj(z)-ex(z)k
j i J

et appartenir à Sk dès que £ cij 0. Les fonctions (enfin!) permettant de plonger
projectivement V/L seront des quotients f/g où f et g appartiennent à un même

Sk. Ce sont donc des fonctions méromorphes L-périodiques sur V. Pour éviter de

parler des quotients (donc de pôles...), on peut simplement considérer des

applications

z l—> (/o(z)> •••> fm(zî):K -> Cm+1

pour une famille finie

Œ $k (disons k assez grand).

Comme les j\ satisfont les mêmes équations fonctionnelles, donc sont multipliées

par un même facteur lorsqu'on remplace z par z + X(XeL), les points z et

z + X ont les mêmes images projectives et on obtiendra ainsi des applications
V/L Pm(C) (à condition que les /• n'aient pas de zéro commun...). Voici un
énoncé plus précis.

Théorème de Lefschetz. Les espaces Sk ont une dimension finie et

pour fc ^ 3, toute base /0,..., fm de Sk fournit un plongement projectif
V/L -> Pm.
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Démonstration. Pour ne pas masquer l'idée générale, nous supposerons que
E est unimodulaire donc que toutes les exponentielles de base (sur Vfi Lx-
périodiques sont données par les 2niE(., X) où X parcourt L2. Toute / e Sk

possède une restriction à Vi qui est Lrpériodique et peut être développée en série

de Fourier. Les équations fonctionnelles

/(z + p) ev(z)k(peL2)

fournissent des identités pour les développements de Fourier

£ ax+L2

e-irtk{fil(v) + 2fii(z)} Y^axe2nifX^

e~inkf^]

V
A(, e

Identifiant les coefficients des exponentielles de base, on trouve

ax e2"''^ al
d'où

a^einkf[i(») + 2infxM + M

(en vertu de la symétrie de l'expression A(p), lemme ci-dessus). Connaissant les ax

dans un parallélipipède de taille /c, les autres coefficients s'en déduisent

inductivement :

f I > (^>,)>.gparallélipipède de L2

Sk - C*n

est injective et donc dim Sk ^ kn est finie (on montrera plus loin que cette

dimension est exactement k"). Montrons maintenant que lorsque k > 2, les

fonctions dans Sk n'ont pas de zéro commun. Pour cela, soit z e V un élément

arbitraire. Nous allons construire une / e Sk avec f(z) 7^ 0.. Comme nous
l'avons déjà observé, les produits de translatées de la fonction thêta de Riemann

permettent de définir des éléments de Sk

eai 0a2 - e Sk dès que 0

Il suffit de choisir les points at de façon que öa.(z) 7^ 0, c'est-à-dire de façon que
les z — ai n'appartiennent pas à la variété des zéros de 0. Ceci est possible car
dénotant par Z cette variété des zéros de 0 (on peut voir qu'elle n'est pas vide,
mais ceci n'est pas requis ici) les conditions z — at$ Z reviennent à at $ z — Z.

Or Z n'a pas de point intérieur (0 est analytique et non identiquement nulle) et il
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en est de même de Z — z et z — Z : la réunion de ces fermés n'aura pas non plus
de point intérieur et il sera facile de choisir les at(i > 2) dans leur complémentaire

(ouvert dense) de sorte que £ at $ Z — z et on posera simplement ax
2

— £ av II résulte de ce point que pour toute base (/0,/J de Sk(k^2) les f
2

n'ont pas de zéro commun et l'application z i— (fi{z)) définit une application
V/L Pm(C). Il nous reste à montrer que ces applications sont des plonge-
ments lorsque k ^ 3. Ceci se fait en deux temps. On commence par voir que
leurs différentielles sont injectives en chaque point (condition d'immersion), puis

que les applications sont injectives. Contentons-nous de traiter le cas k 3 qui
fournit le premier plongement. Pour pouvoir calculer la différentielle en

question, il est convenable d'introduire des. coordonnées dans V. Rappelons que
nous supposons L (ou E) unimodulaire et que nous avons introduit une base

el9..., en, Xl9 Xn de L
avec

m fXj(ed E(eh Xj) 8;,

(ne pas confondre ces fj — extensions C-linéaires des E(Xj) — avec les éléments
de base de Sk... il sera prudent de revenir sous peu à une notation moins
ambiguë). Nous avons aussi démontré que les éléments ei9..., en forment une C-
base de V(V Vx ® iVx). C'est celle que nous choisirons. Dans cette base, les

fonctions coordonnées z Ez^t- zt s'identifient aux : zt fjz)

(fd:V*C\ zh(Z;).

Dénotons maintenant 'par (Öf) une base de Sk et considérons l'application
analytique

(0,-): V -> Cm+1 — {0} Pm(C)

z ^ (9,(2)) ^ [e,(z)].

La propriété d'immersion revient à dire que les vecteurs tangents aux courbes
coordonnées sont indépendants entre eux et du vecteur rayon (contracté en un
point de l'espace projectif). Nous devons donc démontrer que les vecteurs

r (0o(z),0m(z)),
% (390/öz„ dQJdz,) (z) (1 < ^
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sont C-linéairement indépendants. Une relation linéaire entre ces vecteurs peut
être écrite

-> n ->

<*</ X a,r,,
/= 1

soit, scalairement

oco0f(z) Eoczd0z/dzz(z) (O^i^m)

(il est bon de se souvenir que le point z e V est fixé). La même relation linéaire
devra avoir lieu dans tout l'espace S3 engendré par les 0Z :

ao0(z) Eoczd0/dzz(z) pour toute 0g53.

Nous allons exprimer cette relation linéaire pour les fonctions particulières

0 — ®ab ®a + b &-a &-b G

produit de translatées de la fonction thêta de Riemann. Le point z étant encore
fixé, on aura identiquement en a et b

ao©û&(z) Iazd0ûZ,/dzz(z).

Introduisons la fonction méromorphe

\|/ Eazd(log 0)/dzj.

Par définition,

5 log 0(z + a) dlogG
vKz + a Xa' 5 Xai 5 z)

dzl dzt

et

\J/(z + <2) -b \J/(z H- h) + \J/(z — 0 — h)

^ 0ab
^ Y1 ^®ab

\ j \1^1 ^ 00 -fc- (Z) / 0«b(Z)

oeo0aZ,(z)/0flZ,(z) a0 indépendant de a et b\

Mais pour tout a, on peut choisir b de façon que niz + hniz — a — b

n'appartiennent à l'ensemble des pôles de \|/ et l'égalité juste prouvée montre que
v|f(z + a) # 00. Ceci prouve que \|/ est entière (a était arbitraire). D'autre part, la

dérivation logarithmique des identités fonctionnelles satisfaites par 0

0(z + X) exp {-infx{X) - 2infx(z)} • 0(z) (keL2)



donne

d'où
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dlog 0 dfx ^logO—(z + X) -2m — + — (z)
ôz, dzt

\|/(z + X) -2m£a ^+ \|/(z).

Les fonctions fx étant linéaires, les dfjdzl sont des constantes et

d\|f/dzj est L2-périodique (et Lrpériodique aussi!).

Ces fonctions entières d^/dzj sont donc bornées (elles s'identifient à des fonctions

sur l'espace compact V/L) et le théorème de. Liouville indique qu'elles sont

constantes
d\|f/dzj Cj (constante).

Ainsi, v|/ est linéaire affine. Puisqu'elle est holomorphe, elle est C-linéaire affine et

par Li-périodicité (ce sous-groupe est engendré par une C-base de V) elle est

même constante (les Cj sont nuls) :

v|/(z 4- X) \|/(z) (en particulier pour X e L2)

d'où

La, dfjôzl 0

Mais lorsque X parcourt une base de L2, disons la base (Xj), les fx
correspondantes forment un système des coordonnées complexes sur V (ce sont
les fonctions fj introduites précédemment) et la matrice (ôfjôzi) est non
singulière (c'est la matrice identité avec le choix indiqué). Donc les at sont tous
nuls et la relation linéaire 'envisagée entre r et les est triviale, prouvant leur
indépendance linéaire. Il ne reste plus qu'à démontrer l'injectivité de

(0i) : V/L - Pm(C)

z mod L h- [0f(z)j

Prenons z' et z" g V avec [0,(z')] [0i(z")]. Il existe donc un scalaire 0 ^ a g C

tel que

0;(zO a 0,(z") (0<i<m)
d'où aussi

0(z') a 0(z") pour toute 0 g S3
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(puisque les 0f engendrent S3). Revenant aux produits de translatées de la
fonction thêta de Riemann Gab utilisés dans la partie précédente de la

démonstration, on aura

0(z' + a)Q(z' + b)d(z' — a — b)

0(z" + a)0(z" + b)0(z" — a — b)

Pour chaque a fixé dans V, on peut trouver b e V de façon que

z + h, z" + b, z — a — b, z" — a — b

n'appartiennent pas à la variété des zéros Z de 0 (il s'agit d'éviter quatre
translatés de ±Z qui sont fermés sans point intérieur). L'identité ci-dessus

montre alors que la fonction — a priori méromorphe —

a i— 0(z' + a)/0(z" + a)

est entière et sans zéro. On peut l'écrire comme exponentielle d'une fonction
entière :

0(z' + a)/0(z" + a) é^{a).

La -périodicité de 0 montre que

eMa + X) eMa) (teLi),
et donc

v|f(a + X) \|/(a) + 2ninx (XeLJ

Prenant ensuite Xe L2

0(z' + a -j- X,) — yj(z' + ß)0(z' -(- a) (^gL2)

et une relation analogue avec z" au lieu de z'. On en tire

eWa + \) eMa) e-in{fx(l) + 2fx(z'+a)-fl(X)-2fl(z" + a)}

e2infï.{z"-z,)

puis
\|/{a + X) \)/(a) + 2infx(z" — z') -h 2inmx (XeL2)

Ainsi, v|/(fl + X) — i|/(a) est indépendant de a pour tout X e L et la considération
des dérivées partielles d^f/dat comme ci-dessus, fournit

ö\|f/dat entière, L-périodique (donc bornée)

et donc constante, de sorte que \|/ est C-linéaire affine. On écrira

\|f(a) 2inLvl ax -h v



VARIÉTÉS ABÉLIENNES COMPLEXES 107

Substituant cette expression dans les relations trouvées pour y\f(a + À,) et prenant
X XjE L2 (correspondant aux éléments de la base duale de (ef) c= Lx), on voit

\|f(a + Xj) \|/(û) + 2in(Zj — z)) + 2mmj (m,- mXj).

Mais la linéarité de v|/ donne directement

\|/(a + Xj) - \|f(a) 2iizLvJAXj).

Par comparaison, on trouve donc

//z"-z' + Lmzpz) z"j - z'j + mj £vz/z(^-)

Cette égalité de composantes fournit l'égalité vectorielle

z" — z' 3=5 Zvz^z — Emzez

avec «
'

rAz g L2, mz et g

et la démonstration sera terminée dès qu'on aura remarqué que les vz sont des

entiers
(z" — z'eL1 + L2 — L^>z" z'eV/L)

Or on a vu en cours de route

\|f(a + X) \|/(ûi) + 2innx(nx g Z lorsque Xe L)

et en substituant l'expression linéaire affine de \|/

\|/(a) 2mZvzaz + v

on trouve sans peine vz nt g Z. q.e.d.

3. Commentaires concernant la partie analytique
DE LA DÉMONSTRATION

Pour, démontrer le théorème de plongement, nous avons considéré les

espaces vectoriels Sk formés des fonctions entières / sur V satisfaisant les
équations fonctionnelles

f(z + X)ex(zff(z)
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