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92 A. ROBERT

1. Enoncé du théorème de base

Un réseau dans un espace vectoriel réel V de dimension finie est par définition
un sous-groupe engendré par une base de V. Ainsi, si L est un réseau dans V, L est

un sous-groupe discret (fermé) et le quotient V/L est compact (on dit parfois que L
est discret et co-compact dans V). Pour tout réseau L, on a donc L ®z R V

par définition. Parmi les sous-groupes discrets de E les réseaux sont aussi

caractérisés par la propriété d'avoir un rang maximal.
Un tore (réel) est un groupe (topologique, de Lie) dififéomorphe à un quotient

V/L où V est un espace vectoriel réel de dimension finie et L un réseau dans V

Prenant pour base de V un système de générateurs de L, on voit que tout tore
est dififéomorphe à un produit de cercles

Pour introduire une structure analytique complexe sur un tore (de dimension
réelle paire), on peut supposer que V possède une structure complexe: cette

dernière induira canoniquement une structure complexe sur le quotient.
Changeons donc légèrement de notations en supposant que V est un espace
vectoriel complexe de dimension complexe n (donc de dimension réelle double
2n par restriction des scalaires) et L un réseau de V (considéré comme espace
vectoriel réel, donc de rang 2n). Le tore V/L est alors une variété complexe

compacte (lisse) de dimension complexe n. C'est un tore complexe.

Bien que deux tores complexes de même dimension soient automatiquement
dififéomorphes (car dififéomorphes à un même produit de cercles), ils ne sont pas

analytiquement isomorphes en général. Autrement dit, sur un même tore réel (de

dimension paire), il existe plusieurs structures complexes non équivalentes. Ce

phénomène apparaît déjà en dimension n — 1 (courbes elliptiques). Dans C, un
réseau est engendré par deux éléments linéairement indépendants sur les réels ;

après une homothétie (qui ne change pas la structure analytique complexe) on

peut supposer que ces générateurs sont 1 et un nombre complexe x de partie

imaginaire strictement positive. Notons ET C/(Z + xZ) le tore complexe de

dimension 1 correspondant. On peut montrer que Ea et Ez ne sont

analytiquement isomorphes que s'il existe une matrice

R» V (n dimV)
Zn ^ L, V/L Rn/Zn (R/Z)B (S1)".

à coefficients entiers, ad — be 1

c dj
avec

a
aX

— (transformation fractionnaire linéaire).
CT -h d
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On connaît d'autre part les variétés projectives. Ce sont les sous-variétés

analytiques fermées d'un espace projectif complexe. Elles sont compactes et

tout point non singulier possédé un voisinage qui peut être paramétrisé à 1 aide

de fonctions analytiques. Un théoreme de Chow dit même que toute variété

projective est une variété algébrique, donc définie par 1 annulation simultanée

d'un nombre fini de polynômes homogenes.

La question qui fait l'objet principal de ces notes est la suivante: Quand un

tore complexe V L peut-il être plongé dans un espace projectij et donc considéré

comme variété projective.'' Pour être plus précis, on cherche à caractériser les tores

complexes V L pour lesquels il existe une application analytique mjective

fi: VL —> Pm(C)

dont la différentielle est mjective en tout point (donc localement inversible au

voisinage de tout point d'après le théoreme des fonctions implicites analytique).

Il est surprenant de constater que certains tores complexes ne possèdent pas de

tel plongement projectif. On appelle variété abélienne un tore complexe qui

possède un plongement projectif.
La réponse a la question énoncée plus haut est fournie par le théorème de

base suivant.

Soient L un espace vectoriel complexe (de dimension finie L un réseau

dans L et T L L le tore complexe correspondant. Pour que T soit une

variété abélienne il faut et il suffit qu'il existe un produit scalaire hilberrien sur V

dont la partie imaginaire est entière sur les couples d'éléments de L.

Le theorème précédent appelle plusieurs remarques.

1. En dimension (complexe) L la condition du critère est toujours satisfaite.
En effet, dans ce cas. L est engendré par deux nombres complexes non cohnéaires
X et et la condition impose seulement que le produit scalaire de X avec Â2 ait
une partie imaginaire entière. Si un produit scalaire particulier n'a pas cette
propriété, un multiple convenable l'aura. Donc tout tore complexe de dimension

1 est une variété abélienne.

2. On peut exprimer la condition d'intégralité du critère par une condition de

rationalité. Supposons en effet qu'il existe sur V un produit scalaire dont la partie
imaginaire est rationnelle sur les couples d'éléments de L. Prenant une base (À,) de

L et un dénominateur commun à l'ensemble fini de nombres

Im(ki\Xj)gtJ/d e Q (gueZ, Z),
le multiple d(v\w) du produit scalaire (u|w) aura la propriété d'intégralité requise.
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3. La suffisance de la condition énoncée se vérifie par une construction
analytique transcendante: à l'aide d'une série de Fourier convergente, on
construit la fonction thêta de Riemann à partir de laquelle le plongement
projectif résulte facilement. La nécessité de la condition exige une connaissance

rudimentaire de la cohomologie des espaces projectifs. La méthode de Lefschetz

se comprend facilement si on connaît l'interprétation par formes différentielles
de cette cohomologie (de Rham, Hodge). La démonstration donnée ci-dessous

du théorème de base fournira des renseignements plus précis, notamment en ce

qui concerne la dimension m d'un plongement possible. Dans les deux parties de

la démonstration, les séries de Fourier jouent un rôle crucial.

4. Construisons un réseau L de C2 ne satisfaisant pas la condition du
théorème de base (le tore complexe correspondant C2/L n'est donc pas une
variété abélienne : n'admet pas de plongement projectif). Les quatre couples ex

(1, 0), e2 — (0, 1), e3 (ia, ib) et e4 (ic, id) forment une base réelle de C2

dès que a, b, c, à sont réels et ad — bc ^ 0. Dans la C-base (eu e2), une forme
hermitienne H se représente par une matrice (/zl7) hermitienne (hH réels, h2l

h12). Si E Im(H) est entière sur L x L, on aura

E(ei, e2) Im{hl2) ne Z,
puis

E(e3, e4) Im{ia, ib) (/i0)

/m(a, b) (htij>

^b\-n o)l)
Dès que les nombres a, b, c, d seront choisis de façon que

(*) ad — bc

l'entier n devra être nul. Si (*) est satisfait, la matrice (h^) de H devra être réelle

(symétrique). Exprimons encore l'intégralité des parties imaginaires sur les

autres produits scalaires lorsque (*) est satisfait. Prenons d'abord

E{eu e3) » ahll + bhl2 peZ,
E(eu e4) — chu + dh12 q e Z

Eliminons hllL:
(ad — bc)h12 aq — cp
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Similairement
E(ei> e3) ahi2 + bh22 r e Z

E(e2, e4)ch12 + ch22

puis éliminant h12

(ad — bc)h12 — dr — bs

Par comparaison, on trouve donc

(**) qa + sb — pc — rd 0

Les nombres réels a, b, c, d sont donc Q-linéairement dépendants. Commençant

par choisir a, b, c réels Q-linéairement indépendants, on peut certainement

trouver d réel, différent de bc/a et Q-indépendant de a, b, c. Amplifiant tous ces

nombres par un même facteur réel non nul au besoin, on pourra satisfaire (*) tout
en conservant des nombres Q-indépendants. Le réseau correspondant L n'aura

pas la propriété mentionnée dans le théorème de base. Par exemple, on pourrait
prendre

a y/2,by/3,cy/5,

2. Partie analytique de la démonstration

Nous supposerons ici que le tore complexe V/L (notations de la sec. 1)

satisfait la condition donnée dans le théorème de base, donc qu'il existe une
forme hermitienne H définie positive sur V de partie imaginaire entière sur les

couples d'éléments de L, et démontrerons que ce tore admet un plongement
projectif complexe. Le produit scalaire hilbertien est donc dénoté par H(u, v)

(u\v). Nous conviendrons que ce produit scalaire est C-linéaire en la seconde
variable (sic)

v i— H(u, v) C-linéaire (pour tout u s V),

H(u, av) clH(u, v) (pour tous u, v e V et a g C).

Appelons B la partie réelle de H et £ la partie imaginaire de H de sorte que

H(u, v) B(u, v) + iE(u, v)

et

H(v, u) H(u, v) B(u, v) — iE(u, v).
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