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92 A. ROBERT

1. ENONCE DU THEOREME DE BASE

Un réseau dans un espace vectoriel réel ¥ de dimension finie est par définition
un sous-groupe engendré par une base de V. Ainsi, si L est un réseau dans V, L est
un sous-groupe discret (fermé) et le quotient V/L est compact (on dit parfois que L
est discret et co-compact dans V). Pour tout réseau L,onadonc L®, R = V
par définition. Parmi les sous-groupes discrets de V. les réseaux sont aussi
caractérisés par la propriété d’avoir un rang maximal.

Un tore (réel) est un groupe (topologique, de Lie) difféeomorphe a un quotient
V/L ou V est un espace vectoriel réel de dimension finie et L un réseau dans V.
Prenant pour base de V' un systéme de générateurs de L, on voit que tout tore
est difffomorphe a un produit de cercles

R"3 V (n=dimV)
{ Z'"> L, VIL = RYZ" = (R/Z)" = (SY)".

Pour introduire une structure analytique complexe sur un tore (de dimension
réelle paire), on peut supposer que V posséde une structure complexe: cette
derniere induira canoniquement une structure complexe sur le quotient.
Changeons donc légérement de notations en supposant que V est un espace
vectoriel complexe de dimension complexe n(donc de dimension réelle double
2n par restriction des scalaires) et L un réseau de V' (considéré comme espace
vectoriel réel, donc de rang 2n). Le tore V/L est alors une variété complexe
compacte (lisse) de dimension complexe n. C’est un tore complexe.

Bien que deux tores complexes de méme dimension soient automatiquement
diffétomorphes (car difftomorphes a un méme produit de cercles), ils ne sont pas
analytiquement isomorphes en général. Autrement dit, sur un méme tore réel (de
dimension paire), il existe plusieurs structures complexes non équivalentes. Ce
phénomene apparait déja en dimension n = 1 (courbes elliptiques). Dans C, un
réseau est engendré par deux éléments linéairement indépendants sur les reels;
apres une homothétie (qui ne change pas la structure analytique complexe) on
peut supposer que ces générateurs sont 1 et un nombre complexe t de partie
imaginaire strictement positive. Notons E. = C/(Z +1Z) le tore complexe de
dimension 1 correspondant. On peut montrer que E; et E_ ne sont
analytiquement isomorphes que s’il existe une matrice

a b . : |
( d> a coeflicients entiers, ad — bc = 1,
c

avec
at + b

g = y (transformation fractionnaire linéaire) .
cT + ~
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On connait d’autre part les variétés projectives. Ce sont les sous-variétés
analytiques fermées d’un espace projectif complexe. Elles sont compactes et
tout point non singulier posséde un voisinage qui peut €tre paramétrise a 'aide
de fonctions analytiques. Un théoreme de Chow dit méme que toute variéte
projective est une variété algébrigue, donc définie par 'annulation simultanée
d’un nombre fini de polyndOmes homogenes.

I.a question qui fait VYobjet principal de ces notes est la suivante: Quand un
tore complexe V1. peut-il étre plongé dans un espace projectif et donc considere
comme variété projective” Pour étre plus précis, on cherche a caracteriser les tores
complexes V'L pour lesquels il existe une application analytique injective

G: VL — P"Cj

dont la différentielle est injective en tout point (donc localement inversible au
voisinage de tout point d apres le théoreme des fonctions implicites analytique).
[l est surprenant de constater que certains tores complexes ne posseédent pas de
tel plongement projectif. On appelle varieré abélienne un tore complexe qui
possede un plongement projectif.

La réponse a la question énonceée plus haut est fournie par le théoréme de
base suivant.

Soient V' un espace vectoriel complexe ( de dimension finie). L un réseau
dans 1 et T = VL letore complexe correspondant. Pour que T soit une
variéte abélienne il faut et il suffit qu'il existe un produit scalaire hilbertien sur V
dont lu partie imaginaire est entiere sur les couples d elements de L.

Le theoréme precedent appelle plusieurs remarques.

1. En dimension (complexe) 1. la condition du critére est toujours satisfaite.
En effet. dans ce cas. L est engendre par deux nombres complexes non colinéaires
A, et A, etla condition impose seulement que le produit scalaire de 7., avec 7., ait
une partie imaginaire entiere. St un produit scalaire particulier n'a pas cette
propriete. un multiple convenable I'aura. Donc rout tore complexe de dimension
I est une rvariété abélienne.

2. On peut exprimer la condition d'intégralité du critére par une condition de
rationalite. Supposons en effet qu'il existe sur V un produit scalaire dont la partie
imaginaire est rationnelle sur les couples d'éléments de L. Prenant une base (%,) de
I. ¢t un dénominateur commun 4 I'ensemble fini de nombres

Im(xip"j) = gij/d € Q (giﬁZ, deZ),

le multiple d(v|w) du produit scalaire (v|w) aura la propriété d’intégralité requise.
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3. La suffisance de la condition enoncée se vérifie par une construction
analytique transcendante: a laide d’une série de Fourier convergente, on
construit la fonction théta de Riemann a partir de laquelle le plongement
projectif résulte facilement. La nécessité de la condition exige une connaissance
rudimentaire de la cohomologie des espaces projectifs. La méthode de Lefschetz
se comprend facilement si on connait 'interprétation par formes différentielles
de cette cohomologie (de Rham, Hodge). La démonstration donnée ci-dessous
du théoreme de base fournira des renseignements plus précis, notamment en ce
qui concerne la dimension m d’un plongement possible. Dans les deux parties de
la démonstration, les séries de Fourier jouent un role crucial.

4. Construisons un réseau L de C? ne satisfaisant pas la condition du
théoréme de base (le tore complexe correspondant C?/L n’est donc pas une
variete abélienne : n’admet pas de plongement projectif). Les quatre couples e,
= (1,0), e, = (0, 1), e5 = (ia, ib) et e, = (ic, id) forment une base réelle de C?
des que a, b, ¢, d sont réels et ad — bc # 0. Dans la C-base (e, e,), une forme
hermitienne H se représente par une matrice (h;;) hermitienne (hy; réels, h,,
= hy,). Si E = Im(H) est entiére sur L x L, on aura

E(ey, e;) = Im(h,,) = ne Z,
puis

Eles, e4) = Imia, ib) (h) (i;)

= Im(a, b) (h;) @

= (a, b)(_?l 8) (Z) = (ad—bc)ne Z .

Des que les nombres a, b, ¢, d seront choisis de fagon que

(*) ad — bc ¢ Q
Pentier n devra étre nul. Si (*) est satisfait, la matrice (h;;) de H devra étre réelle
(symétrique). Exprimons encore l'intégralité des parties imaginaires sur les
autres produits scalaires lorsque (*) est satisfait. Prenons d’abord

E(ey, e3) = ahyy + bhy, = peZ,

Eliminons h:
(ad—bc)h,, = aq — cp.
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Similairement
E(ey, e3) = ahy, + bhyy = reZ,

E(e,, e4) = chy, + chyy = seZ,
puis éliminant h,,
(ad—bc)h,, = dr — bs.
Par comparaison, on trouve donc
(**) ga+sb—pc—rd=0.

Les nombres réels a, b, ¢, d sont donc Q-linéairement dépendants. Commengant
par choisir a, b, ¢ réels Q-linéairement indépendants, on peut certainement
trouver d réel, différent de be/a et Q-indépendant de a, b, c. Amplifiant tous ces
nombres par un méme facteur réel non nul au besoin, on pourra satisfaire (*) tout
en conservant des nombres Q-indépendants. Le réseau correspondant L n’aura
pas la propriété mentionnée dans le théoréme de base. Par exemple, on pourrait
prendre

a:ﬁ,bz\/g,c=ﬁ,d=\/7.

2. PARTIE ANALYTIQUE DE LA DEMONSTRATION

Nous supposerons ici que le tore complexe V/L (notations de la sec. 1)
satisfait la condition donnée dans le théoréme de base, donc qu’il existe une
forme hermitienne H définie positive sur V' de partie imaginaire entiére sur les
couples d’¢léments de L, et démontrerons que ce tore admet un plongement
projectif complexe. Le produit scalaire hilbertien est donc dénoté par H(u, v)

= (u|v). Nous conviendrons que ce produit scalaire est C-linéaire en la seconde
variable (sic)

v — H(u, v) C-linéaire (pour tout ue V),
H(u, av) = aH(u, v) (pour tous u,ve Vet a e C).
Appelons B la partie réelle de H et E la partie imaginaire de H de sorte que

H(u,v) = B(u, v) + iE(u, v)

et

H(v,u) = H(u,v) = B(u,v) — iE(u, v).




	1. Enoncé du théorème de base

