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INTRODUCTION AUX VARIETES ABELIENNES COMPLEXES

par Alain ROBERT

INTENTIONS

Donner une démonstration aussi directe que possible du critere de
projectivité des tores complexes, tel était mon but dans les quelques exposés
présentés a Queen’s University (Kingston, Ontario) en septembre 1980. Ces
pages en constituent une rédaction améliorée, rédigée dans un cadre
« €lémentaire ». J’ai néanmoins essayé de donner quelques interprétations
« supérieures » des outils utilisés dans deux sections indépendantes (cf.
- diagramme de dépendance logique des différentes sections). J'y ai ajouté le
théoréeme de classification des variétés abéliennes principalement polarisées
(avec sa démonstration).
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1. ENONCE DU THEOREME DE BASE

Un réseau dans un espace vectoriel réel ¥ de dimension finie est par définition
un sous-groupe engendré par une base de V. Ainsi, si L est un réseau dans V, L est
un sous-groupe discret (fermé) et le quotient V/L est compact (on dit parfois que L
est discret et co-compact dans V). Pour tout réseau L,onadonc L®, R = V
par définition. Parmi les sous-groupes discrets de V. les réseaux sont aussi
caractérisés par la propriété d’avoir un rang maximal.

Un tore (réel) est un groupe (topologique, de Lie) difféeomorphe a un quotient
V/L ou V est un espace vectoriel réel de dimension finie et L un réseau dans V.
Prenant pour base de V' un systéme de générateurs de L, on voit que tout tore
est difffomorphe a un produit de cercles

R"3 V (n=dimV)
{ Z'"> L, VIL = RYZ" = (R/Z)" = (SY)".

Pour introduire une structure analytique complexe sur un tore (de dimension
réelle paire), on peut supposer que V posséde une structure complexe: cette
derniere induira canoniquement une structure complexe sur le quotient.
Changeons donc légérement de notations en supposant que V est un espace
vectoriel complexe de dimension complexe n(donc de dimension réelle double
2n par restriction des scalaires) et L un réseau de V' (considéré comme espace
vectoriel réel, donc de rang 2n). Le tore V/L est alors une variété complexe
compacte (lisse) de dimension complexe n. C’est un tore complexe.

Bien que deux tores complexes de méme dimension soient automatiquement
diffétomorphes (car difftomorphes a un méme produit de cercles), ils ne sont pas
analytiquement isomorphes en général. Autrement dit, sur un méme tore réel (de
dimension paire), il existe plusieurs structures complexes non équivalentes. Ce
phénomene apparait déja en dimension n = 1 (courbes elliptiques). Dans C, un
réseau est engendré par deux éléments linéairement indépendants sur les reels;
apres une homothétie (qui ne change pas la structure analytique complexe) on
peut supposer que ces générateurs sont 1 et un nombre complexe t de partie
imaginaire strictement positive. Notons E. = C/(Z +1Z) le tore complexe de
dimension 1 correspondant. On peut montrer que E; et E_ ne sont
analytiquement isomorphes que s’il existe une matrice

a b . : |
( d> a coeflicients entiers, ad — bc = 1,
c

avec
at + b

g = y (transformation fractionnaire linéaire) .
cT + ~
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On connait d’autre part les variétés projectives. Ce sont les sous-variétés
analytiques fermées d’un espace projectif complexe. Elles sont compactes et
tout point non singulier posséde un voisinage qui peut €tre paramétrise a 'aide
de fonctions analytiques. Un théoreme de Chow dit méme que toute variéte
projective est une variété algébrigue, donc définie par 'annulation simultanée
d’un nombre fini de polyndOmes homogenes.

I.a question qui fait VYobjet principal de ces notes est la suivante: Quand un
tore complexe V1. peut-il étre plongé dans un espace projectif et donc considere
comme variété projective” Pour étre plus précis, on cherche a caracteriser les tores
complexes V'L pour lesquels il existe une application analytique injective

G: VL — P"Cj

dont la différentielle est injective en tout point (donc localement inversible au
voisinage de tout point d apres le théoreme des fonctions implicites analytique).
[l est surprenant de constater que certains tores complexes ne posseédent pas de
tel plongement projectif. On appelle varieré abélienne un tore complexe qui
possede un plongement projectif.

La réponse a la question énonceée plus haut est fournie par le théoréme de
base suivant.

Soient V' un espace vectoriel complexe ( de dimension finie). L un réseau
dans 1 et T = VL letore complexe correspondant. Pour que T soit une
variéte abélienne il faut et il suffit qu'il existe un produit scalaire hilbertien sur V
dont lu partie imaginaire est entiere sur les couples d elements de L.

Le theoréme precedent appelle plusieurs remarques.

1. En dimension (complexe) 1. la condition du critére est toujours satisfaite.
En effet. dans ce cas. L est engendre par deux nombres complexes non colinéaires
A, et A, etla condition impose seulement que le produit scalaire de 7., avec 7., ait
une partie imaginaire entiere. St un produit scalaire particulier n'a pas cette
propriete. un multiple convenable I'aura. Donc rout tore complexe de dimension
I est une rvariété abélienne.

2. On peut exprimer la condition d'intégralité du critére par une condition de
rationalite. Supposons en effet qu'il existe sur V un produit scalaire dont la partie
imaginaire est rationnelle sur les couples d'éléments de L. Prenant une base (%,) de
I. ¢t un dénominateur commun 4 I'ensemble fini de nombres

Im(xip"j) = gij/d € Q (giﬁZ, deZ),

le multiple d(v|w) du produit scalaire (v|w) aura la propriété d’intégralité requise.
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3. La suffisance de la condition enoncée se vérifie par une construction
analytique transcendante: a laide d’une série de Fourier convergente, on
construit la fonction théta de Riemann a partir de laquelle le plongement
projectif résulte facilement. La nécessité de la condition exige une connaissance
rudimentaire de la cohomologie des espaces projectifs. La méthode de Lefschetz
se comprend facilement si on connait 'interprétation par formes différentielles
de cette cohomologie (de Rham, Hodge). La démonstration donnée ci-dessous
du théoreme de base fournira des renseignements plus précis, notamment en ce
qui concerne la dimension m d’un plongement possible. Dans les deux parties de
la démonstration, les séries de Fourier jouent un role crucial.

4. Construisons un réseau L de C? ne satisfaisant pas la condition du
théoréme de base (le tore complexe correspondant C?/L n’est donc pas une
variete abélienne : n’admet pas de plongement projectif). Les quatre couples e,
= (1,0), e, = (0, 1), e5 = (ia, ib) et e, = (ic, id) forment une base réelle de C?
des que a, b, ¢, d sont réels et ad — bc # 0. Dans la C-base (e, e,), une forme
hermitienne H se représente par une matrice (h;;) hermitienne (hy; réels, h,,
= hy,). Si E = Im(H) est entiére sur L x L, on aura

E(ey, e;) = Im(h,,) = ne Z,
puis

Eles, e4) = Imia, ib) (h) (i;)

= Im(a, b) (h;) @

= (a, b)(_?l 8) (Z) = (ad—bc)ne Z .

Des que les nombres a, b, ¢, d seront choisis de fagon que

(*) ad — bc ¢ Q
Pentier n devra étre nul. Si (*) est satisfait, la matrice (h;;) de H devra étre réelle
(symétrique). Exprimons encore l'intégralité des parties imaginaires sur les
autres produits scalaires lorsque (*) est satisfait. Prenons d’abord

E(ey, e3) = ahyy + bhy, = peZ,

Eliminons h:
(ad—bc)h,, = aq — cp.
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Similairement
E(ey, e3) = ahy, + bhyy = reZ,

E(e,, e4) = chy, + chyy = seZ,
puis éliminant h,,
(ad—bc)h,, = dr — bs.
Par comparaison, on trouve donc
(**) ga+sb—pc—rd=0.

Les nombres réels a, b, ¢, d sont donc Q-linéairement dépendants. Commengant
par choisir a, b, ¢ réels Q-linéairement indépendants, on peut certainement
trouver d réel, différent de be/a et Q-indépendant de a, b, c. Amplifiant tous ces
nombres par un méme facteur réel non nul au besoin, on pourra satisfaire (*) tout
en conservant des nombres Q-indépendants. Le réseau correspondant L n’aura
pas la propriété mentionnée dans le théoréme de base. Par exemple, on pourrait
prendre

a:ﬁ,bz\/g,c=ﬁ,d=\/7.

2. PARTIE ANALYTIQUE DE LA DEMONSTRATION

Nous supposerons ici que le tore complexe V/L (notations de la sec. 1)
satisfait la condition donnée dans le théoréme de base, donc qu’il existe une
forme hermitienne H définie positive sur V' de partie imaginaire entiére sur les
couples d’¢léments de L, et démontrerons que ce tore admet un plongement
projectif complexe. Le produit scalaire hilbertien est donc dénoté par H(u, v)

= (u|v). Nous conviendrons que ce produit scalaire est C-linéaire en la seconde
variable (sic)

v — H(u, v) C-linéaire (pour tout ue V),
H(u, av) = aH(u, v) (pour tous u,ve Vet a e C).
Appelons B la partie réelle de H et E la partie imaginaire de H de sorte que

H(u,v) = B(u, v) + iE(u, v)

et

H(v,u) = H(u,v) = B(u,v) — iE(u, v).
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On voit donc que, par définition de B et E,
B(v, u) = B(u,v) et E(v,u) = —E(u,v).

La forme R-bilinéaire B est symétrique (et définie positive comme H puisque
B(u, u) = H(u,u) > 0siu # 0), tandis que la forme R-bilinéaire E est alternce
(l.e. antisymétrique). Chacune des deux formes B ou E détermine
complétement H. Par exemple, on a

H(u, iv) = B(u, iv) + iE(u, iv),
et aussi
iH(u, v) = iB(u, v) — E(u, v);

par comparaison des parties réelles et imaginaires de ces quantités (€gales!), on en

tire
B(u, v) = E(u, iv) et E(u,v) = — B(u, iv).

La positivité de H (ou de B) se reconnait donc sur E de la fagon suivante
E(u,iu) > 0 st u # 0.

De méme, H(iu, iv) = H(u, v) fournit E(iu, iv) = E(u, v). Inversement, partant
d’une forme alternée E satisfaisant E(iu, iv) = E(u v), la définition

H(u, v) = E(u, iv) + iE(u, v)

fournit une forme hermitienne (vérification par calcul direct!), définie positive
lorsque E(u, iu) > 0 pour u # 0. Les propriétés de H sont donc traduites en les
propriétés suivantes de E

E est une forme R-bilinéaire alternée (a valeurs reéelles),
E(iu, iv) = E(u, v) (u, veV) et E(u, iu) > 0 pour 0 # ue V.

La forme alternée entiére E sur L va nous permettre de décomposer ce réseau
comme somme directe de deux sous-réseaux sur chacun desquels elle est
isotrope.

LemMME (Frobenius: Oeuvres complétes, vol. I, p. 493). Il existe une base )
€1y er €y My, s hy, de L telle que

E(e;, ej) = E(A; xj) = 0,
E(ei, )\41) = d,ﬁu (nul Sll Sé j, = di Si l = J)

!y Une telle base sera appelée dorénavant base symplectique.
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avec des entiers d; satisfaisant

d; ., multiple de d; (pour i <n —1).

Preuve. Montrons simplement comment on commence la démonstration
de ce lemme classique d’algébre (c’est une forme du théoréme des diviseurs
élémentaires ou un aspect de la réduction des formes alternées...). Pour chaque
0 # ae L on considére Iidéal I, = {E(a,b):be L} = Z. Posons I, = d,Z avec

un entier positif d, bien déterminé. Définissons alors d; = Inf d,
a%0

= Mind, > 0.Sid, = 0,ilyaunélémenta # 0de Lavecl, = Odonctel que
a¥0
E(a,v) = 0 (pour tout veV par R-linéarité) donc tel que E(a;ia) = 0

contredisant la positivité de E (oude H). Onadoncd; > Oetonprende;, A, € L
avec E(e;, M) = d,. La démonstration continue alors par induction, extrayant
le plan hyperbolique engendré par ces deux vecteurs par considération du
supplémentaire orthogonal.

Nous dénoterons par L, le sous-groupe engendreé par les e; et par L, le sous-
groupe engendré par les A;. On a donc -

L =L, & L,, rang(L;) = n, E triviale sur chaque L;.
De plus, la forme E permet d’identifier un élément b de L, a un homomorphisme
E(,b): L, » Z,a— E(a,b).
On obtient ainsi un homomorphisrﬂe injectif (plongement)
E: L, » Homg(L,,Z) = Z-dual de L, .

Comme la base duale de (e;) dans Homg(L,, Z) est constituée des formes d; ! A,
on voit que le plongement précédent a une image d’indice fini égal au produit des
d; (ce produit est appelé Pfaffien de E). En particulier, lorsque touslesd; = 1, on
dit que E est unimodulaire, dans ce cas L, s’identifie au Z-dual de L, (via E).

Pour plonger V/L dans un espace projectif, il s’agit de construire des fonctions
sur cette varieté, donc de définir des fonctions L-périodiques sur V.
Commengons par considérer plus simplement des fonctions L;-périodiques,
données par des développements de Fourier selon les exponentielles de base
relatives a L,. Ces considérations d’analyse vont fournir « toutes » les fonctions
L,-périodiques sur V; = L; ®z R comme séries en les

v exp(2mi Mv)) (A € Homg(L,, Z)).
Nous considérerons plus particuliérement les exponentielles
v exp(2miE(v, A))  (AeL,).

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 7
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Ces dernieres fournissent une base des fonctions sur V,, invariantes parles d; ! ¢,
donc en particulier aussi des fonctions sur le tore réel V,/L,. (Le.lecteur qui
souhaite simplifier au maximum la démonstration pourra supposer E
unimodulaire dés a présent.) Pour fabriquer des fonctions analytiques sur ¥, nous
complexifierons simplement V; en permettant a v de varier dans V; @z C. Il est
donc important de savoir que V; engendre tout V sur C.

LEMME. Ona V =V, @iV, etdonc V =V, QrC.

Preuve. Comme V, et iV, ont méme dimension réelle n, il suffit de montrer
que V; niV; = {0}. Ceciestclaircarsiue V, niV,,onau = v, = iw, (avec
v, et w; dans V;) qui implique

H(u,u) = E(u, iu) = E(v, —wy{) = 0

par trivialité de E sur L, et donc aussi sur V;. On en conclut u = 0.

Pour étendre holomorphiquement les exponentielles exp(2miE(., 1)) il suffit
de considérer les extensions C-linéaires f,(v) des E(v, A) (permettant ainsi a v
de varier dans V entier, plus seulement dans V;). Une telle extension C-linéaire
est définie par

ﬁ(vl +lU,1) - E(Ul, )\1) + iE(Ull, )L) 5
et 'exponentielle holomorphe L,-périodique sur V' correspondante
V 3z exp(2rifi(z)) (A€ L, ou HomgL,, Z)).

Les séries de Fourier que nous aurons a considérer auront la forme

S ¢ exp(2mifi(2))

reL2

avec des coefficients ¢, € C non tous nuls (décroissant suffisamment rapidement
a 'infini pour assurer une « bonne » convergence). Les fonctions décrites par de
tels développements peuvent étre considérées comme fonctions sur V/L, (mais
pas sur V/L!).

Pour z fixé dans ¥, le module de exp(2mifi(z)) croit en A comme
I'exponentielle d’une fonction linéaire de A. Pour assurer une convergence rapide
de la série de Fourier (convergence simple en z ou convergence uniforme sur tout
compact de V), il suffit de prendre des coefficients ¢, dont le module décroit de
fagon gaussienne (exponentielle d’'une forme quadratique définie négative). Or
nous avons a notre disposition la forme f,(A). Puisque

Im fi(A) = E}, A) = E(My, ihy) = H(Ay, Ay) = 0
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(nousavonsécrituni e L, = V = V; @ iV sousla formeA = A, + iAj,0ul,
et A, € V, et avons utilisé l'isotropie de E sur V)), il s’agit de prendre

¢, = exp(infy(A)) d’ou | ¢, | = exp — nlm fi(A)
= exp — TH(A, M) .

Tlest clairque 0 # A e L, = A, # Oetdonc H(Ay, A}) > Ocarsi}j était nul, A
— ), appartiendrait a V; or V, nV, = {0} (V; et V, = L, ®zR sont
supplémentaires). Ceci assure la décroissance gaussienne des | ¢, |, la forme
quadratique apparaissant en exposant
77 LoV étant le carré de la norme (euclidienne)
1 /7272 associée au produit scalaire H, via

/ projection de L, sur iV,

/
/
LN, T 9, I X2 = HQY, Ay = H(iAY, 1AY)

Y Le dessin illustre la situation, mais on

‘ prendra garde de ne pas croire que V; et

/ iV, sont orthogonaux (v, et iv; sont C-

A ‘f proportionnels donc non H-

' A V orthogonaux, Vi = {0} puisque V; C-
engendre V).

La fonction theta de Riemann est ainsi définie par la série de Fourier

0z) = ¥ exp{infy(A) + 2infi(2)}  (z€V).

L>

Cette série converge uniformément sur tout compact de V' et définit donc une
fonction holomorphe sur V (invariante par les translations de L,). Pour pouvoir
calculer 6(z+ p) avec p € L,, nous avons besoin du lemme suivant.

LEMME. Ona fi(n) = fJ(A) pour tous A, peL,.

Vérifions laffirmation du lemme en comparant les parties réelles et
imaginaires des deux membres. D’une part

Im fi(n) = filky) = E(W), A) = E(uy, ik})
= E(ipy, —Ay) = EQ, i) = EQL p) = fu(A) = Im f,(A)
(avec des notations p = p; + ip; correspondant a la décomposition

V=Va@IiV>L,).
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D’autre part

Re fi() = filh) = E(uy, M) = E(uy, id))
= E(p; +ipl, iky) = E(u, ihy).
Or E est isotrope sur L,, donc E(u, ) = 0 et donc

E(w,ivy) = —E(@ Ay) = EAy, ) = fu(hy) = Re f,(1).

Nous sommes alors en mesure de démontrer les équations fonctionnelles

B(z+p) = exp{—infy(n) — 2inf(2)} 0()  (neLy).
Par définition
0z+p) = ) exp{infiA) + 2infi(z+p)} .

L2

Dans cette somme, effectuons la permutation A+ A — p de lindice de
sommation (puisque p € L,, on translate simplement dans L,). Le terme général
de la série est donc

exp{inf,,(h—p) + 2inf_z+mw)} .
Calculons simplement 'exposant
fimdh—w) + 2fi- 2+ 1)

= M) — AW — LA + AW + 240 — 210

+ 2/(2) — 2f2) = (M) + 24(2) — fuW) — 2/(2)
par la propriété de symétrie démontrée ci-dessus.

Plus généralement, nous écrirons
Bz+A) = ez) 0(2) (AeL)

avec
{ e, =1 si Ael; et

e,(z) = exp{—inf,(\) — 2inf,(z)} si A€ L,.

Il n’est d’ailleurs pas difficile de calculer la fonction e, en général, c’est-a-dire
lorsque A = A; + A, € L, + L, = L. Eneflet, par L,-périodicité de 6, on a ¢,
= ¢,,- Mais
exp —in{fy, +1,(A1+2A;) + zfxlﬂz(z)}
= exp —infy,(A)) - e,(z) = exp —inE(A,, A,) - e,(2)
d’ou

ek(Z) = @ (Z) = eiﬂE(le»z)' e“in{fx(l)-f-Zfl(z)} )
2 W
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On retrouve bien le facteur exponentiel ci-dessus lorsque A; = 0 (i.e. lorsque A
= \, € L,). En général, expression est semblable avec le signe

erERLA) — 41 (= 41 si A €2L,)).

Considérons Iespace vectoriel S, formé des fonctions entiéres sur V' et
satisfaisant les équations fonctionnelles

fz+)N) = @) fz)  (Rel).

Il est clair que pour k > 1,0* € S, de sorte que ces espaces ne sont pas réduits a
{0} (les coefficients de Fourier ¢, de 6 sont non nuls pour A € L, donc § n’est pas
identiquement nulle!). Voici comment on peut fabriquer d’autres €léments de S;.
On observe tout d’abord qu’une translatée de 6 n’appartient pas souvent (!)a S
puisqu’elle satisfait .

0,z+)N) = 8(z—a+A) = e N THNETD §(z—q)
0,(z+M) = 2™ ¢,(z) 0,(2) (AeL,) .

Un produit fini de translatées va donc satisfaire
k
H 0,,(z+1) = 2m5H). n 0,,(2) - ex(2)*

et appartenira S, désque ), a; = 0. Les fonctions (enfin!) permettant de plonger
projectivement V/L seront des quotients f/g ou f et g appartiennent a un méme
Si. Ce sont donc des fonctions méromorphes L-périodiques sur V. Pour éviter de

parler des quotients (donc de poles...), on peut simplement considérer des
applications

2 (fo(2)s ooy fl2)): V - €1

pour une famille finie

(fdo<i<m © S, (disons k assez grand).

Comme les f; satisfont les mémes équations fonctionnelles, donc sont multi-
pliées par un méme facteur lorsqu’on remplace z par z + AMAeL), les points z et
z + A ont les mémes images projectives et on obtiendra ainsi des applications

V/L — P™C) (a condition que les f; n’aient pas de zéro commun...). Voici un
énonceé plus précis.

THEOREME DE LEFSCHETZ. Les espaces S, ont une dimension finie et

pour k > 3, toute base f, .., f,, de S, fournit un plongement projectif
VIL - P™
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Démonstration.  Pour ne pas masquer I'idée générale, nous supposerons que
E est unimodulaire donc que toutes les exponentielles de base (sur V) L,-
périodiques sont données par les 2miE(, A) ou A parcourt L,. Toute f €5,
possede une restriction a V; quiest L,-périodique et peut étre développée en série
de Fourier. Les équations fonctionnelles

fz+w = e2) f(2)  (neL,)
fournissent des identités pour les développements de Fourier

Y a, e2m =t
L2

_ e*ink{fu(p)Jr-qu(z)} Z a, eZnifk(Z)
= e LN g e

= o inkS (W) Z @tk e2mify(2)

Identifiant les coefficients des exponentielles de base, on trouve

a, e2nif;»(u) —inkfp(p)

= Oy t+xp €

d’ou

sy = A kS (W + 2infy () — a, oIS (21 k)

(en vertu de la symétrie de 'expression f,(p), lemme ci-dessus). Connaissant les a,,
dans un parallélipipéde de taille k, les autres coefficients s’en deéduisent
inductivement :

f - (ax)xeparanélipipede de L

S, —» C¥

est injective et donc dim S, < k" est finie (on montrera plus loin que cette
dimension est exactement k"). Montrons maintenant que lorsque k > 2, les
fonctions dans S, n’ont pas de zéro commun. Pour cela, soit z € V un élément
arbitraire. Nous allons construire une f € S, avec f(z) # 0.. Comme nous
I’avons déja observé, les produits de translatées de la fonction theta de Riemann
permettent de définir des ¢léments de S,

0

aj

0,, .0, €8, désque a; +..+q =0.

I1 suffit de choisir les points a; de fagon que 0,(z) # 0, c’est-a-dire de fagon que
les z — a; n’appartiennent pas a la variété des zéros de 0. Ceci est possible car
dénotant par Z cette variété des zéros de 0 (on peut voir qu’elle n’est pas vide,
mais ceci n’est pas requis ici) les conditions z — a; ¢ Z reviennenta a, ¢ z — Z.
Or Z n’a pas de point intérieur (0 est analytique et non identiquement nulle) et il
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enest de méme de Z — zetz — Z:laréunion de ces fermés n’aura pas non plus
de point intérieur et il sera facile de choisir les a,(i >2) dans leur complémentaire
(ouvert dense) de sorte que Y a;¢ Z — z et on posera simplement a, =

i=2

= 4

— Y a; Il résulte de ce point que pour toute base (fo, ..., f,) de Si(k=2) les f;

i22
n’ont pas de zéro commun et application z i (fi(z)) définit une application
V/L — P™(C). Il nous reste a montrer que ces applications sont des plonge-
ments lorsque k > 3. Ceci se fait en deux temps. On commence par voir que
leurs différentielles sont injectives en chaque point (condition d’immersion), puis
que les applications sont injectives. Contentons-nous de traiter le cas k = 3 qui
fournit le premier plongement. Pour pouvoir calculer la différentielle en
question, il est convenable d’introduire des coordonnées dans V. Rappelons que
nous supposons L (ou E) unimodulaire et que nous avons introduit une base

€15 oy €py My, ooy A, de L
avec

fle) = ij(ei) = E(e; X)) = §;;

(ne pas confondre ces f;— extensions C-linéaires des E(., A ;) — avec les éléments
de base de S, ... il sera prudent de revenir sous peu a une notation moins
ambigu€). Nous avons aussi démontré que les éléments e, ..., e, forment une C-
base de V(V = V; @ il}). Cest celle que nous choisirons. Dans cette base, les
fonctions coordonnées z = Xz, > z; s'identifient aux f;: z; = f{(z)

(f): V3 C, 2z (z).

Dénotons maintenant ‘par (6;) une base de S, et considérons lapplication
analytique
0): V- C""1 — {0} - P"(C)
zZ (ei(z)) = [042)] .

La propriete d'immersion revient a dire que les vecteurs tangents aux courbes
coordonnées sont indépendants entre eux et du vecteur rayon (contracté en un
point de I'espace projectif). Nous devons donc démontrer que les vecteurs

r = (0(2), ., 0,,(2))
t = (880/0z, .., 00,,/0z) (z) (1<I<n)
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sont C-linéairement indépendants. Une relation linéaire entre ces vecteurs peut
€tre écrite

=

n
soit, scalairement

aoei(Z) — Zalael/azl(Z) (O < i < m)

(1l est bon de se souvenir que le point z € V est fixé). La méme relation linéaire
devra avoir lieu dans tout I'espace S5 engendré par les 6;:

2,®(z) = Z,00/0z(z) pour toute ® € S5 .
Nous allons exprimer cette relation linéaire pour les fonctions particuliéres
0 = @ab = ea-+-b 0—a e—be S3

produit de translatées de la fonction theta de Riemann. Le point z étant encore
fixé, on aura identiquement en a et b

% O,45(2z) = X0,00,,/0z(z) .

Introduisons la fonction méromorphe

U = Zo,d(log 0)/0z, .

Par définition,

8 log 8(z +a) 0 log ©

V(z+a) = Yo oz, = Zaz——azl—““(z)

et

V(z+a) + Y(z+b) + Y(z—a—b)
Q) b 6®ab
= Z 1a log - Zal / O ,(2)

= oc(,@a,,'(z)/@ab(z) = 0 indépendant de a et b!

Mais pour tout a, on peut choisir b de fagon que ni z + b niz—a —b
n’appartiennent a I'ensemble des pdles de et I’égalité juste prouvée montre que
Y(z+a) # oo. Ceci prouve que V est entiere (a €tait arbitraire). D’autre part, la
dérivation logarithmique des identités fonctionnelles satisfaites par 0

B(z+A) = exp {—infi(A) — 2infi(z)} - 6(z) (reL,)
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donne
0 log 6 df, 0logH

—= —2.
o2, (z+A) in 2, + o2, (2)

d’ou

Y(z4+A) = —2in Zoc,%];l + Y(z) .

l

Les fonctions f, étant linéaires, les 0 f,/0z, sont des constantes et

oV/0z; est L,-périodique (et L,-périodique ausst!) .

Ces fonctions entiéres dY/0z; sont donc bornées (elles s’identifient a des fonctions
sur l'espace compact V/L) et le théoréme de Liouville indique qu’elles sont

constantes
0y/0z; = c; (constante).

Ainsi, Vs est linéaire affine. Puisqu’elle est holomorphe, elle est C-lin€aire affine et
par L,-périodicité (ce sous-groupe est engendré par une C-base de V) elle est
méme constante (les ¢; sont nuls):

V(z+A) = Y(z) (en particulier pour A € L,)
d’ou
Zdl afx/azl = 0 .

Mais lorsque A parcourt une base de L,, disons la base (A;), les f,
correspondantes forment un systéme des coordonnées complexes sur ¥ (ce sont

les fonctions f; introduites précedemment) et la matrice (0f,/0z;) est non .
singuliére (c’est la matrice identité avec le choix indiqué). Donc les o, sont tous
nuls et la relation lin€aire ‘envisagée entre r et les ?, est triviale, prouvant leur
indépendance linéaire. Il ne reste plus qu’a démontrer I'injectivité de

8): VL - P™(C)
zmod L [042)] .

Prenons z' et z” € V avec [0,(z')] = [0,(z")]. Il existe donc un scalaire 0 # o e C
tel que

0,(z) = a0/(z") (0<i<m)
d’ou aussi :
O(z) = a ©(z") pour toute O € S,
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(puisque les 6; engendrent S,). Revenant aux produits de translatées de la
fonction theta de Riemann ®,, utilisés dans la partie précédente de la
démonstration, on aura

0(z'+ a)0(z' + b)B(z' —a—b) _
0(z' +a)(z" +b)0(z' —a—b)

Pour chaque a fixé dans V, on peut trouver b € V de fagon que
Z+b,z"+b,z27 —a—>b,z" —a—>b

n’appartiennent pas a la variété des zéros Z de 0 (il s’agit d’éviter quatre
translatés de +Z qui sont fermés sans point intérieur). L’identité ci-dessus
montre alors que la fonction — a priori méromorphe —

a— 8z’ +a)/0(z" + a)

est entiere et sans zéro. On peut ’écrire comme exponentielle d’'une fonction
entiere:

0z +a)/0(z" +a) = e¥?@ .
La L,-périodicité¢ de 8 montre que

evath — i) (XeLl) ,
et donc
V(a+A) = Y(a) + 2min, (Ael,).

Prenant ensuite A € L,
0z +a+A) = ¢(z+a)(z’+a) (AeL,)

et une relation analogue avec z” au lieu de z'. On en tire
V@t _ pW(@) = inl (N 21, (2 +a) =~ £,0)~ 2;(z" +a))
— V@ p2inf;(z" =2
puis
V(a+A) = Ya) + 2inf,(z"—2) + 2imm, (rel,).

Ainsi, (a+A) — Y(a) est indépendant de a pour tout A € L et la considération
des dérivées partielles d\/0a, comme ci-dessus, fournit

0y/da, entiere, L-périodique (donc bornée)
et donc constante, de sorte que  est C-linéaire affine. On écrira

\I](a) = 21752\’1 a, + V.
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Substituant cette expression dans les relations trouvées pour y(a +A) et prenant
A = A; € L, (correspondant aux éléments de la base duale de (e¢;) = L,), on voit

Ya+X) = Ya) + 2in(z]—25) + 2imm;  (m; = my).
Mais la linéarité de \ donne directement
Y(a+X) — Yla) = 2inZv,fi(A)).
Par comparaison, on trouve donc
flz' =2 +Zme) = z] — 2 + m; = Zv fi}) = Zv,fi(h).
Cette égalité de composantes fournit I’égalité vectorielle

"

zZz — Z/ = ZVI)“I - Zmlel

avec
heLl, mece€lL,

et la démonstration sera terminée dés qu’on aura remarqué que les v, sont des
entiers
(z"—ZeL,+ L, = L=z" = Z€V/L).

Qr on a vu en cours de route

V(a+A) = Y(a) + 2inmy(n, € Z lorsque A € L)
et en substituant 'expression linéaire affine de

V(a) = 2inZva, + v

on trouve sans peine v, = n, € Z. g.e.d.

3. COMMENTAIRES CONCERNANT LA PARTIE ANALYTIQUE
DE LA DEMONSTRATION

Pour. démontrer le théoréme de plongement, nous avons considéré les

espaces vectoriels S, formés des fonctions entiéres f sur V satisfaisant les
équations fonctionnelles

fz+}) = ez f(2) (ReL).
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Rappelons aussi que les facteurs exponentiels e,(z) sont déterminés par

ek - 1 )\,ELI,
e;(z) = exp —inf,(A+2z) AelL,.

En particulier, I'espace S, est formé de fonctions entiéres L-périodiques, donc
constantes d’apres le théoréme de Liouville: S, = C. On peut aussi observer que
le produit d’une fonction de S, par une fonction de S, est une fonction de S, ,,,
ce qui suggere de considérer 'anneau gradué

k=20

des fonctions theta. Par exemple, la multiplication par la fonction theta de
Riemann 0 € S, induit des applications injectives S, — S; . ;. Comme on a déja
vu que ces espaces S, ont des dimensions finies, les dim(S,) forment une suite
croissante. Plus précisément

PROPOSITION. Ona dim(S,) = Pf(E)" k" (E étant laforme alternée sur le
réseau L de rang 2n dans lespace vectoriel V de dimension complexe n).

En particulier
Pf(E) = dim(S,) et

dim(S,) = k" si E est unimodulaire.

Démonstration. Nous supposerons a nouveau E unimodulaire sur L (le cas
général s’en déduisant facilement). Nous avons vu que les coefficients de Fourier
a,(AeL,) d’une f € S, satisfont aux relations de récurrence

Bovip = D e BT (uely) .
Si A, est un élément fixé de L,, la relation de récurrence précédente impose
a, = ay, e™VEOTR) gi A = Qo + kvery + kL, .
Prenons a,, = 1 et montrons que la suite de coefficients de Fourier

a, = eV pour A = Ay + kve kg, + kL,
a =0 pour A ¢ A, + kL,

définit bien une fonction f = 6, €S, pour A, € L,. Lorsque A, parcourt un
systéme de représentants de L, mod kL,, on obtient évidemment des éléments
linéairement indépendants de S, (les supports des suites de coefficients de
Fourier A — a, correspondants forment une partition de L,, donc sont disjoints).
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Ces éléments forment une base de S, d’ou

— det(k-id,) = k".

Pour justifier I'affirmation, il s’agit de montrer que la suite de coefficients de
Fourier attachée a un choix de A, € L, satisfait effectivement la relation de
récurrence caractérisant les équations fonctionnelles valables dans S,, puis que la
série de Fourier correspéndante converge bien vers une fonction entiére. Le
premier point se vérifie par calcul: prenons A = Ay + kvedr, + kL,etpe L,

D+kp = Dg+kv+p) — eXP{infv+p(27\'0 + k(V+u))} .
»L’exposant vaut (au facteur in pres)

Fd2ho+kv) + filkp) + fi(2ho + k(V+p)
———

Ju(kv)
= f2ho+kv) + fi(2Kho+ 2kv+ kp)

= f2ho+kv) + f2A+ku)
d’ou bien

— inf (2Mh+kp)
a)\..*_ku — axe H «

La décroissance rapide de ces coefficients

2i11:fk‘0 v) einkfv(v)

o+kv = €

est aussi claire puisque le module du premier terme croit comme I’exponentielle
d’une fonction linéaire de v et le deuxieme décroit comme une gaussienne (en
v € L,). La convergence en z, uniforme sur tout compact de V est alors assurée et
la somme de la série de Fourier holomorphe dans V entier. On peut dire plus
simplement que ’on construit une fonction 8, en prenant A, = 0 (par une suite
de coeflicients de Fourier particulicrement simples a,, A € kL,) et que nous
obtenons les autres éléments de base de S, par une translation convenablement
tordue de ces coefficients sur les autres classes mod kL, de L,. Il est alors clair
que le méme principe s’applique dans le cas non unimodulaire en prenant les
classesde kL, dans Hom,4(L,, Z) et on trouve la formule de dimension annoncée.

Les espaces S, s'interpretent aussi comme espaces de sections holomorphes
de fibres (holomorphes de rang 1) sur V/L. Le systeme (e, ), est un cocycle de L a
valeurs dans ’espace des fonctions entiéres ne s’annulant pas sur V. On entend
par la qu’on a des relations

er+lz) = ez+X) e(z) (A Nel).
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On obtient ces relations en écrivant les équations fonctionnelles satisfaites par
0z+A+)N) = 0Z +A) = (2)0(z) (Z = z+)).

Le membre de gauche est par définition e, ,,(2)0(z) et celui de droite
e,(z")e, (2)0(z). Puisque 0 n’est pas identiquement nulle, on peut simplifier par
cette fonction obtenant les relations de cocycle par prolongement analytique a
partir de 'ouvert non vide ou 8 # 0. Les systémes (e}),., sont naturellement
aussi des cocycles de L. Montrons comment on définit un fibré holomorphe de
rang 1 a partir d’'un cocycle. Prenons par exemple le cocycle (e¢;). Sur le fibré
trivial ¥ x C — V¥, le groupe discret L agit (de fagon équivariante) par

A(z,t) = (z + A e2)t) (heL, zeV, teC)

(Paction sur la base étant simplement donnée par les translations). L’espace des
orbites
[z, t] = orbite de (z, 1)

est un fibré sur V/L:
VxC-oVx,Cs[z,t] =[z+ A e2)t]

| |
V = VL 34=7+M).

Ses sections sont les applications de la forme Z +— [Z, 6(z)]. Par définition de la
relation d’équivalence

[Z,000)] = [Z + A, e(2)0(2)]

et ce point s’exprime aussi par [Z + A, 6(z+A)] d’ou les relations fonctionnelles
satisfaites par 0. La continuité (resp. ’holomorphie) d’une telle section s’exprime
par la continuité (resp. '’holomorphie) de 8 sur V. A chaque.cocycle de L a
valeurs dans I’espace des fonctions entiéres ne s’annulant pas sur V, on associe
ainsi un fibré inversible, i.e. un élément de H*(V/L, 0) (ce groupe abélien est en
général noté additivement, mais lorsqu’on interprete ses éléments comme des
fibrés inversibles, la loi de groupe est donnée par le produit tensoriel des fibres:
I'inverse d’un fibré s’identifiant au fibré dual). La construction précédente fournit
un homomorphisme

HY(L,T(V, n*0*)) -» H'(VIL, 0™).

Ici, 0 représente le faisceau des fonctions holomorphes ne s’annulant pas sur
V/L,m: V — V/L est la projection canonique de sorte que I'image inverse T*0 ™
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est le faisceau des fonctions holomorphes ne s’annulant pas sur ¥, ayant pour
sections globales les éléments de

LV, n*0*) = HYV,n*0*) = {f:V — C* entiére} .
Plus généralement, Grothendieck définit des fleches
H(G, (X, n*%)) -» HYG\X, ¥)

dans le cas d’un groupe discret G agissant (continument, librement et
proprement) sur un espace topologique (pas trop mauvais)... (cf. Mumford [1]
p. 22 qui se référe a Grothendieck [1], spécialement p. 195).

Lorsquon interpréte ainsi S, comme espace de sections du fibré #*
correspondant au cocycle (€}),..

S = D(V/L, £ = HYVIL, £9),

la finitude de la dimension de S, résulte d’'un théoréme de Kodaira. Le vanishing
theorem de Kodaira donne d’ailleurs aussi

HWV/L, %) =0 pouri >0

(& est un fibré positif et la classe canonique Ky, est nulle puisque V/L est
parallélisable de sorte qu’il existe des formes différentielles invariantes par
translation, de diviseur vide). Il en résulte que la caractéristique d’Euler-Poincaré
holomorphe

¥(— 1)ydim H{(V/L, &) = dim HYV/L, &)

se réduit a la dimension de S;. Le théoréme de Riemann-Roch permet de
retrouver cette dimension a partir de la premiére classe de Chern de #. Ces
remarques ont pour but de montrer comment les principales étapes de la
démonstration analytique s’insérent dans un contexte général.

- Passons a quelques commentaires concernant le cas n = 1, L étant ainsi un
réseau de la droite complexe C. Le théoréme de plongement a ’aide des fonctions
0 de S, se réalise dans un espace projectif de dimension m = dim(S;) — 1 =
3" — 1 (la dimension de S, est donnée par la proposition ci-dessus), donc de
dimension 2 lorsque n = 1. On obtient ainsi les modéles de C/L comme courbes
projectives planes. Il est plus facile dans ce cas de travailler avec les fonctions de

Weierstrass p et p’. Rappelons simplement que p est définie comme somme d’une
serie de fonctions méromorphes

1 1 1
p(Z) = 2 + O#Zx:eL {(Z—?&)z - P} .
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Il est clair par construction que I’ensemble des poles de p est L-invariant (en
dimensionn > 1, les diviseurs ont une dimension >0 et il n’est guére possible de
sommer les translatées d’une fonction méromorphe sur V pour obtenir une
fonction méromorphe sur V/L). En particulier, p a un pdle double en chaque
point du réseau L. Sa dérivée p’ a un pole triple en ces mémes points. On peut voir
que p est un quotient de deux fonctions theta de S, et que p’ est un quotient de
deux fonctions de S;. Une base de S, a d’ailleurs deux éléments et fournit une
application projective sur P!(C), donc sur la sphére de Riemann. Cette
application identifie les points z et — z et est un revétement (les quatre points de
1L/L étant ramifiés).

Toujours dans le cas n = 1, montrons comment la fonction theta de
Riemann s’apparente aux fonctions theta de Jacobi. La série

Y. ¢ (¢eC)
converge pour | g | < 1. Son carré est

zqn2+m2 _ Z chN

N20

ou cy dénote le nombre de couples (n, m) € Z* avec n*> + m* = N. De méme, la
puissance quatrieme de X q"2 est la fonction génératrice du nombre de
représentations d’un entier positif comme somme de quatre carrés parfaits. Pour
calculer ces fonctions, Jacobi a posé g = ¢™(Imt > 0= |q| < 1)

v ¢]

o) = 3 e
—
Plus généralement, il étudie les fonctions

©
93(2 ’C) — einnzt eZinnz
D=2

dont la précédente est la valeur en z = 0 (theta nullwert). La série de Fourier de
Riemann est donc exactement de ce type: L = Z @ 1Z, L, = Z,L, = 1Z.

4. PARTIE COHOMOLOGIQUE DE LA DEMONSTRATION

Nous allons démontrer ici que si le tore complexe V/L est une variété
abélienne, il existe un produit scalaire hilbertien sur V de partie imaginaire
entiére sur les couples d’éléments de L. L’idée de la démonstration est simple.

Partant d’un plongement projectif
i: VL - P™,
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'image en cohomologie d’un générateur ¢, de H*(P™) fournit une classe de
cohomologie i*(c,) de degré 2 du tore. Prenant I'interprétation de de Rham des
groupes de cohomologie, il y a dans la classe i*(c,) une unique 2-forme
différentielle harmonique (ou de fagon équivalente ici invariante par translations)
dont la restriction a I’origine fournit la 2-forme alternée E = Im(H)(on a vu dans
la sec. 2 que la partie imaginaire d’'une forme hermitienne détermine cette
derniere univoquement). Pour mener a bien ce programme, il est nécessaire de
calculer la cohomologie des espaces projectifs et des tores complexes. On pourra
montrer ensuite que si

A = V/L, ® = représentant harmonique de ¢;, E = Oorigine ,
alors
oe H" Y(4) =« H*A, C) = E(iu, iv) = E(u, v),
o e H¥(A, Z) = E entiére sur L x L,

o positive = E positive (i.e. E(u, iu) > 0siu # 0).

PROPOSITION.  L’homologie entiére d’un espace projectif complexe P™
= P™(C) est donnée comme suit

H,(P™" Z) = Z pouri = 0,1, .,m
H, . ((P™" Z) = 0 pour i entier.

Démonstration. L’espace P™ est défini par quotient de C™*! — {0}. La
classe de (zq, zy, .., z,,) sera dénotée par [z, z,, ..., z,,] (coordonnées homogénes
dans I'espace projectif). On a un plongement

C™ o P™ donné par (zy, .., z,) — [1, 2y, .., z,] .

Le complémentaire de Iimage (I'hyperplan a Pinfini d’équation zo = 0)
s'identifie naturellement a l'espace projectif P™! par les coordonnées
[z, . Z,,]. Ainsi on obtient la décomposition

P" = C" U P" ! (réunion disjointe) .
Procédant itérativement, on parviendra finalement a
P =CruC"luC"?u..uCu{w}.

C’est une décomposition cellulaire de I'espace projectif, chaque espace C! étant
une cellule de dimension 2i (au sens de la topologie algébrique : R* est une cellule
~ dedimension k). L’opérateur bord diminuant les dimensions d’une unité doit étre
trivial (nul en toute dimension): il n’y a pas de bord non nul et chaque cellule
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fournit un générateur de ’homologie entiere. Il est peut-étre plus convenable de
se representer les générateurs de 'homologie comme adhérences des cellules
précédentes

C=CuCltu.uCuimn} (cPm.

Par exemple, un générateur de H, (P™, Z) est donné par la droite projective P!

< P™ (toutes les droites projectives sont homologues dans P™), et cette droite
projective s’identifie, avec sa structure analythue a la sphere de Riemann
C u {0}

Comme nous travaillerons finalement avec des formes différentielles,
donnons une 2-forme dont la classe dans H2 (P™, C) est duale du 2-cycle entier
défini par la cellule C (ou son adhérence P!) de P™.

Dénotons par n la projection canonique C"*! — {0} — P™ contractant les
droites homogenes (complexes) en des points. Lorsque o est une section
holomorphe de n définie dans un ouvert U = P™ (il y a de telles sections dés que
U est simplement connexe, par exemple si U est un ouvert affine principal U,
défini par z; # 0)

L]___i——+ CW+1'— }

(\ / Moo = idy,

on peut calculer la 2-forme (a valeurs complexes) sur U

i —
muzﬂaalog | o|I?.

Ici, la norme utilisée est la norme canonique de C™*!

lzI>=1@)I*= 3 Izl

o<ism

(elle dérive du produit scalaire hermitien canonique sur C”* ') et les opérateurs 9

et 0 sont fournis par la structure complexe (de U): en coordonnées, la
différentielle extérieure d de de Rham s’écrit

Y. (0/6z)dz; A + Y, (8/0z)dz N = 0 + 0.

On vérifie sans peine que ®, est indépendante du choix de section holomorphe ¢
sur U: tout autre choix doit étre de la forme o = fo ou f est une fonction
(scalaire) holomorphe sur U et ne s’annulant pas. Ainsi

20log || o' ||> =ddlog | o>+ ddlog| f|*.
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Localement, choisissant des branches convenables de logarithmes complexes, on
peut écrire log | f|> = log f + log f et donc

00 log | f 12 = dd(log f+log f) (localement).

Mais log f étant holomorphe, 0 log f = 0 et 00 log f = 0. De plus,
0=d>=(3+0)* = 80 + 00 (0% = &* = 0)

implique de méme

00 log [ = —ddlog f = —8(0) = 0.

Choisissant un recouvrement (U,) de P™ par des ouverts sur lesquels il existe de
telles sections holomorphes o; de © (par exemple les ouverts affines U;: z; # 0),
les 2-formes w; correspondantes doivent se recoller

O;|v;nu; = O u;ny;

(d’apres I'indépendance du choix des sections choisies pour les calculer) et fournir
une 2-forme globale w bien définie sur tout P™. C’est la 2-forme de Fubini-Study.

PROPOSITION. La 2-forme de Fubini-Study est fermée, invariante par l'action
du groupe unitaire de C™" ', de classe de cohomologie entiére. Plus précisément,
la classe de cohomologie de la forme de Fubini-Study dans H? (P™, C) est la
duale du générateur [P'] e H,(P™ Z).

Démonstration. On a

I = —
Oy =5_00log| o I? = (0—dlog || o |2,

iy
4n
®y = dn =doy = 0 (pourles U = U, recouvrant P™)

d’ou o fermee. Pour démontrer I'invariance de o par le groupe unitaire U(m + 1)
de C""!, prenons une transformation ge U(m+1). Pour une section

holomorphe o de n définie sur un ouvert U, on pourra choisir la section goden
sur 'ouvert gU.
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On a par définition

- \er(Hﬁl) go(gz) = o(z) (zeU),
Jot

ou
go I'go(gz) | = |l o(2) | .
Lorsque z et gz appartiennent a U, on a

U ainsi
oU lolgz) || = 1 o2) || .

L’invariance de o en résulte.

L’intégralité de la.classe de cohomologie [w] de ® résultera de la formule plus
précise

few =1, ¢ = classe d’une droite dans H,(P™, Z).

En effet, le groupe H,(P™ Z) = Zc est de rang 1. Pour calculer 'intégrale
proposée, il faut passer en coordonnées (la formule de Stokes montre que cette
intégrale est indépendante du représentant choisi dans la classe ¢ car o est
fermée, et ne changerait d’ailleurs pas non plus par adjonction d’une forme
exacte a o car c est fermée). Sur ouvert affine U = U, (défini par z, # 0, cet
ouvert est dense) nous prendrons naturellement la section (holomorphe!) cde n
donnée par

Z = [2gy o0 Zml 2 (1, 21/205 oy Zm/Z0) -

On peut méme choisir I’expression des points de cet ouvert ayant z, = 1. On a
donc

lo@) 1> =1+ ) zz,
dlog | o> =Y zdz/1+Y ),

ddlog |l o|? = Za( Z> A dz,

; N\ dz; z;z;dz; N\ dz;

—; 1+Z Z, (1+X)?

La restriction a la droite z; = z,z; = 0(i>2) donne

_ dz N\ dz
ez =2 (L+]z[H?

2r
—
i




1
{

;
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Mais dz A dz = (dx+idy) A (dx—idy) = —2idx A dy de sorte que

o dz N\ dz 2,1’ dx N dy
T ) av P T T T m J s

2rn
On passe en coordonnées polaires ([ dxdy.. = [ drr{ do .. et on trouve
0 0
J f J 2r dr
W =
. 1 +r?)
=J _ "o
o (14+p)* L+ plo

Nous aurons encore besoin de savoir que la 2-forme de Fubini-Study est
positive. Puisqu’elle est invariante par le groupe transitif U(m + 1), il suffit de voir
quelle est positive en un point, disons lorigine [1,0, .., 0] € P™. Ce point
appartient bien a la carte affine Uy(z, # 0) dans laquelle nous avons donné une
expression explicite de o:

Z (dz; A\ dzZ)origine -

(Dorigine - 27_r &
<ism

Rappelons-nous que dz; est le champ eonstant de formes linéaires (complexes)
coordonnées de sorte que (dz)yigine = f; €t similairement (dZ)yigine = f;
(complexe conjugée de f;: elle est antilinéaire). On a donc

©

i
origine — EEZ(ﬁ®ﬁ—ﬁ®ﬁ)

et

Ooriginet ) = 5= Y00 i) — Tiu) f()
= é Z(ul@ - u_i(iu)i)

1 — .
=;Zuiui>0 siu#0.

(La seule difficulté de ce calcul consiste a ne pas confondre I'indice de sommation

ivariantde lameti = ./ —1..)).
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Observons encore que la 2-forme de Fubini-Study o est de type (1, 1) au sens
de Hodge. Comme

HZ(X, C) — H(Z,O) @ H(l, 1) @ H(O, 2) ,

H®? = conjugué de H*> ? (donc de méme dimension!)

on a toujours dimcH?*(X, C) = dimcH"' Y + 2 dimcH® ? et dans notre cas,
dime H(P™ C) = 1 = H® 9 = HO.2 _ ¢

Plus simplement, on remarque que I'expression explicite de ® dans une carte ne
fait intervenir aucune expression dz; A dz; ni dz; A dz; mais seulement des
dz; N\ dz;. En tout point a € P™, on a donc

0 (iu, iv) = o, (u, v) .
On peut passer a la considération de la restriction de la 2-forme de Fubini-
Study & la variété abélienne plongée projectivement
i:A = VL P"
i*o «— o (Fubini-Study).

Nous étudierons cette restriction par introduction de coordonnées réelles
(x;)1 <j<2nSur V obtenues en choisissant une base de L. Nous identifierons cette
2-forme & une 2-forme Z?*"-périodique sur R*"

® = ) aydx; A dx, ((a;) antisymétrique)
ik

avec coefficients lisses a; € € ©(R%"/Z*"). Comme & est fermée, on doit avoir
j k

= Y (0a;/ox,)dx, N dx; N\ dx,.

Jok, p

En regroupant les termes semblables, on trouve les relations de cocycle
day + day; + a;; = 0 (0P = 0/0x,).
Développons alors en série de Fourier ces coefficients aj,
aplx) = Zajk(l)ezn”'x ;

(indice [ parcourt le réseau entier Z*" et |- x = l;x; + I,x, + ..).
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LEMME. La 2-forme & est cohomologue d la 2-forme
Y a;(0)dx; A dx .

Cette derniére forme (& coefficients constants) n’est rien d’autre que la forme
moyenne de ®: elle est invariante par translations. C’est aussi le représentant
harmonique de la classe de cohomologie définie par & sur le tore réel R*"/Z*".

Preuve du lemme. 11 suffit de construire une primitive de la 2-forme

n = z l(ajk - ajk(()))dxj A d.xk

Jsk

= Y ayhe*™¥dx; A dx,.

J, kK, 1¥0

On cherche donc une forme
Q = Z Ai dxi = Z Z Ai(l)eZRilx dxi
i : i 1l

telle que
dQ = Y apDe*™ dx; A dx .

Jyk,1FO0

Comme toutes les fonctions considérées sont lisses, les développements de
Fourier considérés sont rapidement convergents (suites de coefficients a;(l) — 0
plus vite que || [ | ~? pour tout entier p € N lorsque || | | = o0) il est légitime de
dériver ces séries terme a terme et on trouve les conditions

LALD) — LA = a{) (I #0).

Choisissant unindice i avec l; # 0 et le coefficient A(l) arbitraire, on posera pour
J#FI
A = (LAD + a D)L -

Il résulte immediatement des conditions de cocycle pour le systéme des a;; que

ces A{l) satisfont bien toutes les conditions imposées, et le lemme est ainsi
démontré.

Dénotons par

j<k

cette forme moyenne. Elle est de classe entiere
[0*] = [i*0] e HY(A, Z)

comme image réciproque de la classe enti¢re de la forme de Fubini-Study. Son
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intégrale sur un 2-cycle entier (surface fermée) de A doit donner un entier.
Prenons en particulier les 2-cycles donnés par la paramétrisation

¢, [0,1]12 > 4 = VIL (), pel)
(s, t) > sA + tpu(mod L)

(lorsque A est non proportionnel a p, I'image du cycle c,, est un tore usuel —
dimg = 2 — immergé dans A: c’est méme un tore plongé dans A4 si {A, u} est
contenu dans une base de L). On doit donc avoir

j% o* entier (pour A, peL).

Utilisant la paramétrisation donnée pour calculer ces intégrales, on trouve
(tenant compte du fait que le champ de formes bilinéaires w* est constant)

1
jclp (D* = O):rigine(x’ “') f; jO dS dt = EO\'a H)
avec
E = of (forme R-bilinéaire alternée) .

origine

Cest la propriété d’intégralité souhaitée sur L x L. Pour conclure la
démonstration, il reste a voir que E est positive et invariante par multiplication
simultanée des arguments par i (type (1, 1)). Comme la valeur a I’origine de la 2-
forme m* est obtenue par moyenne (relativement a la mesure de Haar normalisée
du groupe V/L, c’est aussi I'image de la mesure de Lebesgue, identifiant V a R2”
‘par choix d’une base de L), des formes R-bilinéaires alternées positives

®, (ae A, o:2-forme de Fubini-Study),

la positivité de E est évidente. Cette opération de moyenne ne change pas non
plus le type (elle ne touche que les coefficients des formes dx; A dx,, pas les
dx; N\ dx, elles-mémes)

E(u, U) = m:rigine(u’ U) = j‘ACPm'ma(u’ U)da

et w,(iu, iv) = w,(u, v) (pour tout z € P™) implique E(iu, iv) = E(u, v).
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5. COMMENTAIRES CONCERNANT LA PARTIE COHOMOLOGIQUE
DE LA DEMONSTRATION

C’est la partie cohomologique de la preuve (section précédente) qui permet de
donner un exemple de tore complexe non projectif (cf. sec. 1, remarque 4). 11 est
plus facile de construire une variété analytique (lisse) compacte non projective. A
cet effet, on peut construire les surfaces de Hopf comme suit. On regarde le corps
des quaternions réels

H=R®Ri ® R ® Rk

(2=j2=k*= —1cet ij=k.) comme espace vectoriel complexe de
dimension 2

H = (R®Ri)) & (RBRi)j = C P Cj.
On choisit ensuite un quaternion réel ¥ > 1 de sorte que le sous-groupe
I'={y":neZ} c H"
du’groupe multiplicatif des quaternions non nuls est discret (donc fermé).
L’espace homogene
X, = H*/T (dimeX, = 2)

est une variéte analytique (lisse) compacte (cC’est méme un groupe de Lie

complexe puisque 7y est réel, donc I' contenu dans le centre de H *). La
décomposition polaire

H* - $3 x R*
q — (q/\ql, \qi)

ou §* dénote la sphére unité de I'espace H = R*, est un difffomorphisme. Elle
induit un difffomorphisme

X, 3 SPxRYT = 83 x 8.

Y\

Comme I'homologie d’une sphére est donnée par la décomposition cellulaire

S" = R" U {0} (opérateur bord trivial)
H{(S",Z) = Zsii = O0oun, H, = 0 sinon ,
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la formule de Kiinneth permet de calculer ’'homologie de X, ('homologie des
spheres est sans torsion; d’ailleurs, il suffirait de calculer ’'homologie sur un
corps, par exemple Q, R ou C). En particulier :

H(SY) @ H(S®) = Opour k + [ = 2
implique
H,(X,)) = Hy(S'xS’) =0

puis H*X,, C) = 0. Mais, pour toute variété projective X, on a
H*(X, C) # 0. En effet, si X est plongée dans un espace projectif P™(C), la
restriction de la forme de Fubini-Study de P™(C) a X fournit une 2-forme fermée
positive o sur X dont la classe de cohomologie est nonnulle 0 # [w] € H3(X, C)
(st la forme o était exacte, toutes les puissances extérieures ® A ® A ... A ®
seraient aussi exactes et en particulier, considérant la puissance égale a la
dimension complexe de X, fx o A ... A o = 0ce quin’est pas le cas, puisque
cette puissance extérieure est une forme volume sur X : I'intégrale précédente est
positive — on suppose naturellement dim¢e X > O!).

Puisque tous les tores sont difftomorphes, on ne peut trouver d’obstruction a
un plongement projectif aussi simple que pour les surfaces de Hopf. Il a été
nécessaire de faire intervenir lintégralit¢é de la forme de Fubini-Study.
L’homologie d’un tore, 1.e. d’'un produit de cercles, est aussi donnée par la
formule de Kiinneth (Thomologie d’un cercle S* étant sans torsion, ’homologie
du tore est engendrée par H,)'). Mais les calculs faits dans la section précédente
permettent d’étre méme plus explicites. Prenons en effet un tore V/Let unentierk |
avec 0 < k < dimg(V). Toute forme differentielle de degré k sur V/L peut étre |
considérée comme k-forme L-périodique sur V et développée en série de Fourier.
Seuls les termes constants de la série de Fourier nous intéressent (toute forme
fermée est cohomologue a ses termes constants). Par restriction a I'origine, on
obtient donc une k-forme alternée sur V. On en déduit les isomorphismes I

HYV/L,R) S Alt(V,R) = A* V* L
puis "

dimg HY(V/L, R) = (Z) si n = dimg(V).

Lorsqu’on désire établir des isomorphismes analogues sur Z, on doit utiliser i

1) Puisque V est contractible, V' — V/L s’identifie au revétement universel du tore V/L
et m,(V/L) = L. En particulier H,(V/L, Z) = L.
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la formule de Kiinneth. Par exemple, pour k = 2, le théoréme de Kiinneth
montre que les 2-cellules entieres

Cui(s,8) = sh+ tpmod L (A, pel)
[0, 11> — V/L

engendrent H,(V/L, Z)(dans la sec. 4 nous n’avons utilisé que 'intégralité de ces
cellules particuliéres). L’intégralité d’une 2-forme alternée sur L caractérise les
éléments de H3(V/L, Z).

La construction transcendante des surfaces de Hopf présente tout de méme
quelque analogie avec celle des tores complexes (de dimension 2). En effet,
lorsque dim(V) = 2, on peut effectuer un quotient par un réseau L en deux
temps. Choisissant d’abord une base complexe de V dans un systéme de
générateurs de L, on peut identifier ¥ a C? et un facteur direct L, de L a Z*. Donc

VIL = VIL, ® L, = C¥Z? / L,

ou L) dénote le sous-groupe image de L, dans le quotient. Avec 'exponentielle
normalisée
e(z) = exp(2miz),

on peut identifier C/Z a C* et
VIL = C* x C*/L,

ou L} est un sous-groupe discret (de rang 2) de C* x C ™. Les surfaces de Hopf
¢taient obtenues comme quotient de C x C — (0, 0) par un sous-groupe discret
(de rang 1 de H™).

La principale différence entre les deux situations envisagées provient du fait
que les tores complexes sont toujours kdhlériens, et en particulier leur H? est non
nul, tandis que les surfaces de Hopf ne le sont pas.

6. CLASSIFICATION DE VARIETES ABELIENNES

Commengons par déterminer les applications holomorphes entre tores
complexes. |

PROPOSITION.  Soient  V/L et V'/L' deux tores complexes et f:
VIL - V'/L' une application holomorphe. Alors  flv) = fo(v) f(0) ou f,
est un homomorphisme provenant d’une application C-linéaire F:V — V'
telle que F(L) = L'
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Démonstration. Remplagant f par f — f(0), on peut supposer f(0) nul
(dans V'/L) puis relever la composée
s
V- V/IL - V'L

au rev€tement universel V' de V'/L:

v
<
\V’/L’.

Choisissons méme le relévement F tel que F(0) = 0. Comme les points z et z
+ MA€L) ont méme image (dans V/L), la différence F(z+)) — F(z) doit étre un
elément de L et 'application (continue!) z — F(z+A) — F(z) envoie I'espace
connexe V dans I'espace discret L: elle est constante et on a

Fz+X) = F(z) + ¢, (¢, = F(A)).

Les dérivées partielles de F (par rapport a une base de V) sont ainsi holomorphes
et L-périodiques donc bornées. Le théoreme de Liouville montre qu’elles doivent
étre constantes et F est (C)-linéaire (linéaire homogene si on a choisi F(0) nul).

Il résulte immédiatement de la proposition précédente que lorsque
f:VIL > V'/L

est un homomorphisme holomorphe, le relévement F: V' — V' a une restriction
F,: L - L additive (i.e. Z-linéaire) qui caractérise completement F et f. Ainsi

Hom,,(V/L, V'/L) > Homg(L, L)
’ f — Ff

est bijective. En particulier, si L = L,

End,,(V/L) = Endy(L) = End(Z") = M,(2)
et
Aut, (VL) = Aut(L) = GIZ") = GI(Z).

Passons aux variétés abéliennes. Lorsque A = V/L est une telle variété, il
existe une forme alternée

E:LxL—-Z (ou A’L— Z)
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dont I'extension R-bilinéaire (encore notée E) V x V — R satisfait

E(u,iuy >0 s10 #uel
E(iu, iv) = E(u,v) (u,veV)

(cf. sec. 2), et il est plus intéressant de classer les couples (4, E). On peut observer
que L se déduit intrinséquement de A par formation de ’homologie (entiere)

A my(A) = H(A, Z) = Hy(4),
de sorte que dans la donnée (A4, E), on peut considérer que E est un ' ment de
Homy,(A*H(A), Z).

Un tel élément E, ayant les propriétés indiquées ci-dessus est appelé polarisation
de A et le couple (A, E) est une variété abélienne polarisée. Lorsque E est
unimodulaire, on dit que la polarisation est principale et A est polarisée
principalement par la donnée de E.

Remarque. Choisissant une base (e, A));<; j<» de L dans laquelle E
s’exprime sous forme réduite de Frobenius

E(e;, e)) = E(\;, 7\,‘) =0,
E(e;, A;) = 8;d; (d;,, multiple de d; pour 1 < i < n),

on voit que E peut étre consideree comme forme unimodulaire sur le réseau L
engendré parlese;etlesA;/d;, desorteque A = V/L est polarisée principalement
(par E). Le noyau de la projection canonique A — A’ (correspondant a
Pinclusion L < L) est fini et d’ordre Ild{= Pf (E)), et A apparait comme
revétement fini de la variété abélienne principalement polarisée A’

C : , ) 1
Similairement, on peut construire un réseau L' < L et une multiple —E
m

unimodulaire, d’ou un revétement fini A” — A principalement polarisé. De
fagon générale, on peut donc dire que toute variété abélienne A est « comprise
entre » deux variétés abéliennes principalement polarisées

A" - A - A (revétements: noyaux finis) .

Conservons donc les notations précédentes en supposant que le réseau L de
V' est muni d’une polarisation principale E. La base symplectique choisie

(€15 ves €py Ay oy Ay)
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sera dénotee plus simplement (e;); <;<,, ou (e) (de sorte que A; = ¢;,,). On a
donc par hypothese |
E(en j) = E( €n+is n+j) =0,

E(e;, .+ ;) = & (I<i,j<n).

Il sera utile de travailler dans une autre base (¢') = (€)); < <2, de 'espace
vectoriel réel Vg sous-jacent a V (restriction des scalaires a R) définie comme suit

(€) = (iey, ..., ie,, €4, e,) (I =/ —1).

Dans cette base (¢'), la matrice J de la multiplication pari = ./ —1 dans V est
donnée par

e, = i%e; = —e,.;,
ie,; = le; = ¢ (1<j<n),
d’ou
J:(O 1">GM2(Z).
-1, 0 "

En accord avec les notations de la sec. 2, notons V] le sous-espace vectoriel réel
(de dimension n) engendré par les vecteurs e, ..., ¢,. La forme alternée E est
isotrope sur V, et sur i¥; (invariance par multiplication par i). Donc la matrice
représentative de E dans la base (¢) a la forme

[0 —'F
E: .
F 0
Enidentifiant E a sa matrice représentative, 'invariance par multlphcatlon par i
se traduit plus précisément par la relation 1)

‘JEJ = E.

Effectuant les produits matriciels par blocs, on trouve I'identité

ﬁﬁﬁﬁﬁﬁ o) )

1) Identifiant u et v a des vecteurs colonnes dans la base (¢'), on écrit E(u, v)
= 'u- E - v (produits matriciels lignes par colonnes!).
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qui montre que F doit étre symétrique et E est donnée par la matrice

0 —F : . Y
E = F oo antisymétrique (F symétrique) .

La positivité de E s’exprime aussi facilement:

u#0=0< E(y,iu) = uEJu

F 0
d’ou EJ définie positive. Mais la matrice EJ est simplement (O F>' Donc

F est symétrique définie positive .

Les formes C-linéaires coordonnées de V dans la base (¢4, ..., €,) ont été dénotées
par f;: ce sont les extensions C-linéaires des

Elles satisfont bien aux relations fie,) = 0 qui montrent que

n
z =) fl2)e;: fz) = z;.
j=1
Prenant en particulier z = A, on va écrire

Ay = ij(xk)ej = szkej = Z(Xjk+iyjk)ej

puis
Mo = Y ypde; + ) xpe;
qui fournissent les composantes des vecteurs A, dans la base (¢’). Posons

(zp) = Z = X + 1Y = (xp) + i(yp) -

, Y
Les composantes des A, sont les colonnes de la matrice <X> (matrice 2n x n

reelle). Les relations E(e, A) = o,; (rappelons que nous supposons E
unimodulaire) peuvent étre rassemblées sous la forme matricielle

Y 0 —F\ /Y
(0 1n)E<X> = (0 LJ(F 0 ><X>-= 1, € M,(R).
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Cela prouve que la matrice Y est inversible, d’inverse F: Y ! = F.!) En
particulier, Y est symétrique. L’isotropie de E sur I'espace engendré par les
vecteurs A, s’exprime de fagon analogue

-or el )
X F 0 X

Y
= (XF —YF) (X>=>‘XFY — YFX.

Puisque FY = YF = 1, la relation précédente montre que X est aussi
symétrique. En fait, nous savions déja que Z = X + iY est symétrique (lemme
de sec. 2 utilisé pour démontrer les équations fonctionnelles de 0). La positivité
de E a fourni F » 0 que nous pouvons exprimer de fagon équivalente par Y

= F~! > 0. En résumé, le choix d’une base symplectique de L nous a permis de

construire une matrice symétrique Z e M, (C) de partie imaginaire définie
positive.

Définition. On appelle demi-plan généralisé de Siegel H,I’espace formé des
matrices symétriques de M ,(C) de partie imaginaire définie positive

H,={ZeM(C):'Z = Z et Im(Z) » 0} .

Identifions V' a C" par le choix de base ey, ..., e,. Le réseau L apparait alors
comme engendré par Z." et les colonnes (ou lignes!) de la matrice Z. Inversement,
montrons comment toute matrice Z € H, fournit un réseau L (engendré par les
vecteurs e, ..., ¢, de la base canonique de C” et les colonnes de Z) pour lequel
C"/L posséde une polarisation principale (donc est une variété abélienne). 11 s’agit
de trouver une forme hermitienne sur C" dont la partie imaginaire soit
unimodulaire sur L. L’examen du cas trivial n = 1 indique comment procéder : il
s’agit de diviser la forme hermitienne canonique ‘uv par la partie imaginaire de
z(= Z). Je prétends que la forme hermitienne sur C" donnée par la matrice réelle
symétrique Y ! a les propriétés requises. Cette forme hermitienne est donc
donnée (pour des vecteurs colonnes u et v de C") par

H(u,v) = 'uY 'v.

Puisque Y ! est symétrique réelle et définie positive, H est bien un produit
scalaire hilbertien et E = Im(H) est automatiquement R-bilinéaire alternée,
invariante par multiplication par i et positive. 11 ne reste qu’a en vérifier

1Y En dimension finie, FY = 1, =Y injective = Y inversible.
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Pintégralité et I'unimodularité. Ecrivons encore L = L, @ L, avec L, = Z7
et L, engendré par les colonnes de Z. Puisque Y est une matrice réelle, H sera
réelle sur L, et E nulle sur ce sous-réseau. De méme si A, désigne la k° colonne

de Z, les produits scalaires
H(}\’_}’ )\.k) = thY41}\‘k

sont les coefficients matriciels de
‘7Y 'Z = ZY 'Z = (X—-iY)Y HX +iY)
= (X—=iY) (Y 'X+il,) = réel + i(X—YY 'X) = réel.

Les E(A;, &) = 0sont des entiers! Finalement, les H(ej, A,) = ‘e;Y ™ 2, sont les
coefficients matriciels de

1Y 'Z = Y {X+iY) = Y IX +il,,
d’ou
E(e;, ) = )j, k)° coefficient de I, = 9, .

L’intégralité et 'unimodularité de E sur L sont donc prouvées. Plus précisément,
la forme alternée E prend les valeurs normalisées sur les couples de vecteurs de
base e;, A, tout comme la forme initiale ayant conduit a la matrice Z: les deux
constructions sont bien inverses I'une de 'autre.

Il ne reste qu’a déterminer quand deux matrices Z et Z' € H, fournissent des
varietés abéliennes principalement polarisées isomorphes. Par 1a, on entend
naturellement que les couples correspondants (A4, E) et (4’, E') sont isomorphes:
il existe un isomorphisme analytique f: 4 — A’ qui transporte la forme E sur E’

g=g9g;L-oL (A, Ayel)
g: V-V E'(ghy, ghy) = E(Xy, &y)
f:A-> A

Pour trouver cette condition sous la forme usuelle, nous identifierons les
elements de C” a des vecteurs lignes. Le réseau L est engendré par les vecteurs de
la base canonique de C" et par les vecteurs lignes de Z (ibid. pour ). La condition
d’isomorphie (analytique) des tores complexes C"/L et C"/L, donnée au début de
cette section revient a I'existence d’un isomorphisme C-linéaire de C" appliquant
L sur L. Par notre convention de regarder maintenant les vecteurs de C" comme
des lignes, I'action de la matrice représentative de g est donnée par une
multiplication matricielle a droite: g(u) = uM,. L’isomorphisme en question
s’exprime par

L=L-M, (M,eGL(C)).

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 9
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La base (¢;); <;<2. de L (e, 4, étant la k° ligne de Z) est envoyée sur une base de
L:(e;M,) <i<anestune basede L. Il y a donc une matrice y € Gl 2,,(Z) effectuant le
passage entre les deux bases de I

e; =Y vieM, (€5 =-e¢ pourj=1,.,n).

Ecrivant ces relations linéaires I’'une au-dessous de 'autre, on obtient I'identité
matricielle

z\ ZM\ (A B\ [(ZM (AZ + B\M
(1) = +(h) - (€ ) () - (& om)
(M = M,etydésignant la matrice (y;,) écrite dans un ordre convenable! ')). On
en tire
CZ + D inversible et (CZ+D)"! = M,
puis

Z' = (AZ+BM = (AZ+B)(CZ+D)"!
avece

A B
v={, ,)eGlZ).

Lorsque y est compatible aux polarisations, les deux bases (¢)) et (e;M) sont
symplectiques et y envoie la seconde dans la premiere. La matrice de E’ étant J
dans ces deux bases, on doit avoir

Yy = J.
Définition. Le groupe symplectique Sp, est le sous-groupe de Gl,, défini par
geSp, <> geGl,,et'glg = J.

On parlera ainsi du groupe symplectique réel Sp,(R), du groupe symplectique
entier Sp,(Z), ... Si g est une matrice symplectique, on a

det(g)® = det('gJg) = det(J) =

d’ou det(g) = =+ 1. Plus précisément, utilisant le pfaffien (défini sur les matrices
alternées et caractérisé par les conditions

det(E) = Pf(E)%, Pf(J) = +1, Pf(‘gEg) = det(g)Pf(E)),

) D C A B
') Plus précisément (y;) = B 4 ety = .
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on voit que le déterminant d’'une matrice symplectique est +1:
Spn = SlZn 1) :

Pour pouvoir formuler proprement la condition d’isomorphie des variétés
abéliennes principalement polarisées correspondant aux matrices Z et Z' € H,, 1l
faut introduire I'action de Sp,(R) ou Sp,(Z) dans H,.

A B
PROPOSITION.  Soient g = <C D)eSp,,(R) et ZeH, Alors CZ + D

.

est inversible et
g-Z = (AZ+B)(CZ+D)"'eH,.

De plus, (g, Z)— g Z définit une action continue et propre de Sp,(R) dans
H

-
Pour ne pas interrompre le cours normal de nos déductions, renvoyons la
démonstration de cette proposition a la fin de la section.

Le théoreme de classification est le suivant.

THEOREME. A toute matrice Z € H,, on associe la variété abélienne
principalement polarisée (A, E) définie comme suit :

A = C"/L ou L estleréseau engendré par la base canoniquede C" et les
colonnes (ou lignes) de Z,

E = partie imaginaire de la forme hermitienne H donnée par la matrice
(réelle) Y™' dans la base canonique (Y = Im(Z)).

Alors, pour toute vy e Sp,(Z), les variétés abéliennes principalement polarisées
correspondant a Z et vy-Z sont isomorphes et 'association

Z — (A, E)
définit une bijection
SpZ)\H, = {

classes d’isomorphismes de variétés
abéliennes principalement polarisées

Autrement dit, le réseau L associé¢ a Z € H, est somme de Z" et de ZZ" (ou
277 selon qu'on travaille avec des vecteurs lignes ou colonnes!), et
! .
E(u,v) = Im('uY 'v) = ?(IiY-IU*IuY_llf) )
i

') On montre sans peine que Sp, = Sl

%) Il serait plus cohérent de travailler avec des vecteurs lignes u et v et donc d’écrire
E(u,v) = ImuY ™ ')
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On a déja démontré que si les variétés abéliennes principalement polarisées
(A, E) et (A', E') correspondant aux matrices Z et Z' € H, sont isomorphes, il
existe y € SpZ) avee Z' = v+ Z. Un instant de réflexion montre que les
constructions peuvent étre renversées

(A, E) = (A, E)<3yeSp(Z):Z =v-Z.

Le théoréme est alors completement démontré.
Revenons a la démonstration de la proposition.

(A : : : .
Lorsque g = (C D> est symplectique, 1.e. ‘gJg = J, on doit avoir
(*) ‘AC et 'BC symétriques, ‘AD — 'CB = 1 (= 1) .1

Pour Z € M,(C) symétrique, on peut calculer

(CZ+D)*(AZ+B) = (Z'C+'D)(AZ+B).
On trouve ‘
Z('CA)Z + Z('CB) + ((DA)Z + 'DB

et en utilisant les relations (*)

Z('CA)Z + Z('CB) + Z + (‘BC)Z + 'DB.

On trouve de méme |
(AZ + B)*(CZ+ D)

— Z(AC)Z + Z + Z('CB) + (‘BC)Z + 'BD.

Soustrayant terme a terme (et utilisant encore la symétrie donnée par (*))
(CZ+D)¥(AZ+ B) — (AZ+ B)*(CZ + D)
=7Z—-7Z=2Y.

Si Y » 0, prenant un vecteur colonne complexe u,
(CZ+Du = 0= "WCZ+D)* =0

=2i'uYu=0=u=0.

Y Donc A = I = C symétrique; D = I = B symétrique; A ou D nul = Bet C
inversibles; B ou C nul = A et D inversibles; J € Sp,(R).
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Donc Y » 0 = CZ + Dinjective = CZ + D inversible. Pour Z € H,, on peut
donc définir

g-Z = (AZ+B)(CZ+D)™! sig=< )eSp,,(R).

C D
Observons encore
(CZ+D) (g -7 — ’(g-Z)) (CZ+D)
= (CZ+D)(AZ+B) — (AZ+B) (CZ+ D)
- Z —'Z =0 '

par un calcul analogue a celui qui vient d’étre fait. Donc g - Z est symétrique.
Ecrivons g- Z = X' + iY’' et montrons que Y’ est définie positive

(CZ+D)* Y/(CZ+ D)
= %(Z“fCJr’D)(g'Z —(@2))(CZ+D) = Y » 0.

Donc g - Z € H, et il en résulte immédiatement que (g, Z) — ¢ - Z définit une
action continue de Sp,(R) dans H,. Pour voir que cette action est propre, il suffit
de vérifier qu’elle est transitive et que le stabilisateur d’un point, disons il € H,, est
compact dans Sp,(R). Or les relations (*) montrent que les familles de matrices de
Gl,,(R)

| <I B) \ »
ou B est symetrique ,

0 I
A O \ . .
0 t4-1) O A est inversible ,

sont formeées de matrices symplectiques. On a respectivement

IBZ Z + B
0 I N ’

A 0 t
o iq-1) Z=AZ'4.

Ainsi, st Z = X +iYeH, on peut écrire Z = iY + X = ((I) f)-iY

(puisque X est symétrique, la matrice considérée est bien symplectique) puis

1
I X\/Y2 0
2= 3)(¢ )i
Y 2
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L’orbite de il est ainsi H, tout entier. Le stabilisateur de cette matrice il € H, est
defini par

il =g¢g-il = (A+B)(iC+D)" ',
i(iIC+D) =iA + B,
C= —-BetAd=0D.
Ce calcul montre que le stabilisateur de il € H, est formé des matrices

A
symplectiques ( ) Les relations (*) montrent que ‘A4 + ‘BB = [: La

—B A
somme des carrés des coefficients (réels) de A et de B vaut ainsi

Tr(AA) + Tr('BB) = Ti(l) = n.

En particulier, ces coefficients restent bornés dans le sous-groupe K stabilisateur
de il: K est compact. De plus, I'action définie ci-dessus fournit un iso-
morphisme d’espaces homogénes

SpR)/K = H,.

Remarque. Les matrices particulieres

A O I B
(O AV)(AG;GI,,(R)),(0 I)(BEM,,(R),‘B = B)etJ

(A = ‘A~ 1!) engendrent le groupe symplectique Sp,(R). Appelons en effet G
< Sp,(R) le sous-groupe engendré par ces matrices et prenons une matrice

, A B L .
symplectique g = c D arbitraire. Puisque

P 0\(fA B\(Q O\ [(PAQ *

o p'J\c bpJ\0o @Qv) \ * *)°
on peut choisir convenablement P et Q pour que PAQ soit diagonale avec
éléments diagonaux égaux a 0 ou 1. On peut donc supposer que 4 a déja cette

forme
A = <1d 0 )
0 On—d

Décomposons similairement C (blocs de méme taille que ceux de A)

£ e <C11 C12>.
C21 C22

NSRS
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Comme g est symplectique

tAC — 1 O Cll C12 _ Cll C:2>
0 0/\C,, Cy, 0

doit étre symétrique: C,, = 0. Le déterminant de g est non nul, donc les
colonnes de g sont linéairement indépendantes. En particulier, les colonnes de

* 0

A [ * 0

c/ A\ * 0
* Cy

doivent étre linéairement indépendantes: det(C,,) # 0. On peut ainsi choisir le
nombre réel b de fagon que le bloc A" = A 4+ bC de

I bI\(4 B\ [(A+bC B+ bD
o 1/)\c D) C D

soit non singulier: ce bloc est le bloc supérieur de

1, + bC,, 0
(A + bc> - bC  bCyy
¢ Ci, 0
Ci,  Cp
et
det(A) = det(1,4+bC,,) det(bC,,)

On peut donc supposer des le départ que A est non singuliére et la premiére
réduction permet de supposerque A = I = 1, est'identité. Multiplions alors g

a gauche par
I 0 I C
= J 1
(Lo 3)=( 0
On obtient

I 0\/I B I B i e
c MNe p)=l o (C = "AC doit étre symétrique) .

Les conditions symplectiques (*) montrent alors immédiatement que D’ = [ et
B’ symeétrique de sorte que g € Sp,(R) appartient au sous-groupe G engendré par
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les matrices particuliéres. Comme les matrices particuliéres ont visiblement
toutes déterminant unité, cela démontre que Sp,(R) = SI,,(R) sans devoir avoir
recours au pfaffien. Observons aussi que les transformations de H, produites par
les matrices particuliéres sont respectivement

Z+— AZ'A,Z—Z + BetZw+— —Z 1.

S’il est évident a priori que les deux premieres familles conservent la positivite de
la partie imaginaire Y de Z, ce fait peut étre vérifié comme suit pour la derniere
transformation. Posons donc

1 1 1 1

Z =X +iY = Y2(Y 2XY z2+il)Yz

de sorte que

1 1 1

1
—Z7 ' = Y (Y TIXY 24il) Y2,

1 1
Il s’agit de voir que la partie imaginairede —(Y "2XY "2 +il) "' est bien définie
1 1
positive (la matrice S + il = Y 2XY 2 + il est toujours inversible puisque S

est symétrique réelle, donc n’a pas la valeur propre —i ...). Mais on vérifie sans
peine que

(S—i)(S*+1)~' = (S*+ 1)~ (S—il) est inverse de S + il
(comme toutes ces matrices commutent entre elles, on peut €tre tenté de calculer

cet inverse avec les regles usuelles des quotients: c’est légitime). Il ne reste plus
alors a vérifier que (S*+ 1)~ ! >» 0 ce qui est clair!
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