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INTRODUCTION AUX VARIÉTÉS ABÉLIENNES COMPLEXES

par Alain Robert

Intentions

Donner une démonstration aussi directe que possible du critère de

projectivité des tores complexes, tel était mon but dans les quelques exposés

présentés à Queen's University (Kingston, Ontario) en septembre 1980. Ces

pages en constituent une rédaction améliorée, rédigée dans un cadre

« élémentaire ». J'ai néanmoins essayé de donner quelques interprétations
« supérieures » des outils utilisés dans deux sections indépendantes (cf.

diagramme de dépendance logique des différentes sections). J'y ai ajouté le

théorème de classification des variétés abéliennes principalement polarisées
(avec sa démonstration).

Table des matières
ET DÉPENDANCE LOGIQUE DES SECTIONS

Enoncé du théorème de base

Classification (variétés abéliennes
principalement polarisées)
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1. Enoncé du théorème de base

Un réseau dans un espace vectoriel réel V de dimension finie est par définition
un sous-groupe engendré par une base de V. Ainsi, si L est un réseau dans V, L est

un sous-groupe discret (fermé) et le quotient V/L est compact (on dit parfois que L
est discret et co-compact dans V). Pour tout réseau L, on a donc L ®z R V

par définition. Parmi les sous-groupes discrets de E les réseaux sont aussi

caractérisés par la propriété d'avoir un rang maximal.
Un tore (réel) est un groupe (topologique, de Lie) dififéomorphe à un quotient

V/L où V est un espace vectoriel réel de dimension finie et L un réseau dans V

Prenant pour base de V un système de générateurs de L, on voit que tout tore
est dififéomorphe à un produit de cercles

Pour introduire une structure analytique complexe sur un tore (de dimension
réelle paire), on peut supposer que V possède une structure complexe: cette

dernière induira canoniquement une structure complexe sur le quotient.
Changeons donc légèrement de notations en supposant que V est un espace
vectoriel complexe de dimension complexe n (donc de dimension réelle double
2n par restriction des scalaires) et L un réseau de V (considéré comme espace
vectoriel réel, donc de rang 2n). Le tore V/L est alors une variété complexe

compacte (lisse) de dimension complexe n. C'est un tore complexe.

Bien que deux tores complexes de même dimension soient automatiquement
dififéomorphes (car dififéomorphes à un même produit de cercles), ils ne sont pas

analytiquement isomorphes en général. Autrement dit, sur un même tore réel (de

dimension paire), il existe plusieurs structures complexes non équivalentes. Ce

phénomène apparaît déjà en dimension n — 1 (courbes elliptiques). Dans C, un
réseau est engendré par deux éléments linéairement indépendants sur les réels ;

après une homothétie (qui ne change pas la structure analytique complexe) on

peut supposer que ces générateurs sont 1 et un nombre complexe x de partie

imaginaire strictement positive. Notons ET C/(Z + xZ) le tore complexe de

dimension 1 correspondant. On peut montrer que Ea et Ez ne sont

analytiquement isomorphes que s'il existe une matrice

R» V (n dimV)
Zn ^ L, V/L Rn/Zn (R/Z)B (S1)".

à coefficients entiers, ad — be 1

c dj
avec

a
aX

— (transformation fractionnaire linéaire).
CT -h d
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On connaît d'autre part les variétés projectives. Ce sont les sous-variétés

analytiques fermées d'un espace projectif complexe. Elles sont compactes et

tout point non singulier possédé un voisinage qui peut être paramétrisé à 1 aide

de fonctions analytiques. Un théoreme de Chow dit même que toute variété

projective est une variété algébrique, donc définie par 1 annulation simultanée

d'un nombre fini de polynômes homogenes.

La question qui fait l'objet principal de ces notes est la suivante: Quand un

tore complexe V L peut-il être plongé dans un espace projectij et donc considéré

comme variété projective.'' Pour être plus précis, on cherche à caractériser les tores

complexes V L pour lesquels il existe une application analytique mjective

fi: VL —> Pm(C)

dont la différentielle est mjective en tout point (donc localement inversible au

voisinage de tout point d'après le théoreme des fonctions implicites analytique).

Il est surprenant de constater que certains tores complexes ne possèdent pas de

tel plongement projectif. On appelle variété abélienne un tore complexe qui

possède un plongement projectif.
La réponse a la question énoncée plus haut est fournie par le théorème de

base suivant.

Soient L un espace vectoriel complexe (de dimension finie L un réseau

dans L et T L L le tore complexe correspondant. Pour que T soit une

variété abélienne il faut et il suffit qu'il existe un produit scalaire hilberrien sur V

dont la partie imaginaire est entière sur les couples d'éléments de L.

Le theorème précédent appelle plusieurs remarques.

1. En dimension (complexe) L la condition du critère est toujours satisfaite.
En effet, dans ce cas. L est engendré par deux nombres complexes non cohnéaires
X et et la condition impose seulement que le produit scalaire de X avec Â2 ait
une partie imaginaire entière. Si un produit scalaire particulier n'a pas cette
propriété, un multiple convenable l'aura. Donc tout tore complexe de dimension

1 est une variété abélienne.

2. On peut exprimer la condition d'intégralité du critère par une condition de

rationalité. Supposons en effet qu'il existe sur V un produit scalaire dont la partie
imaginaire est rationnelle sur les couples d'éléments de L. Prenant une base (À,) de

L et un dénominateur commun à l'ensemble fini de nombres

Im(ki\Xj)gtJ/d e Q (gueZ, Z),
le multiple d(v\w) du produit scalaire (u|w) aura la propriété d'intégralité requise.
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3. La suffisance de la condition énoncée se vérifie par une construction
analytique transcendante: à l'aide d'une série de Fourier convergente, on
construit la fonction thêta de Riemann à partir de laquelle le plongement
projectif résulte facilement. La nécessité de la condition exige une connaissance

rudimentaire de la cohomologie des espaces projectifs. La méthode de Lefschetz

se comprend facilement si on connaît l'interprétation par formes différentielles
de cette cohomologie (de Rham, Hodge). La démonstration donnée ci-dessous

du théorème de base fournira des renseignements plus précis, notamment en ce

qui concerne la dimension m d'un plongement possible. Dans les deux parties de

la démonstration, les séries de Fourier jouent un rôle crucial.

4. Construisons un réseau L de C2 ne satisfaisant pas la condition du
théorème de base (le tore complexe correspondant C2/L n'est donc pas une
variété abélienne : n'admet pas de plongement projectif). Les quatre couples ex

(1, 0), e2 — (0, 1), e3 (ia, ib) et e4 (ic, id) forment une base réelle de C2

dès que a, b, c, à sont réels et ad — bc ^ 0. Dans la C-base (eu e2), une forme
hermitienne H se représente par une matrice (/zl7) hermitienne (hH réels, h2l

h12). Si E Im(H) est entière sur L x L, on aura

E(ei, e2) Im{hl2) ne Z,
puis

E(e3, e4) Im{ia, ib) (/i0)

/m(a, b) (htij>

^b\-n o)l)
Dès que les nombres a, b, c, d seront choisis de façon que

(*) ad — bc

l'entier n devra être nul. Si (*) est satisfait, la matrice (h^) de H devra être réelle

(symétrique). Exprimons encore l'intégralité des parties imaginaires sur les

autres produits scalaires lorsque (*) est satisfait. Prenons d'abord

E{eu e3) » ahll + bhl2 peZ,
E(eu e4) — chu + dh12 q e Z

Eliminons hllL:
(ad — bc)h12 aq — cp
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Similairement
E(ei> e3) ahi2 + bh22 r e Z

E(e2, e4)ch12 + ch22

puis éliminant h12

(ad — bc)h12 — dr — bs

Par comparaison, on trouve donc

(**) qa + sb — pc — rd 0

Les nombres réels a, b, c, d sont donc Q-linéairement dépendants. Commençant

par choisir a, b, c réels Q-linéairement indépendants, on peut certainement

trouver d réel, différent de bc/a et Q-indépendant de a, b, c. Amplifiant tous ces

nombres par un même facteur réel non nul au besoin, on pourra satisfaire (*) tout
en conservant des nombres Q-indépendants. Le réseau correspondant L n'aura

pas la propriété mentionnée dans le théorème de base. Par exemple, on pourrait
prendre

a y/2,by/3,cy/5,

2. Partie analytique de la démonstration

Nous supposerons ici que le tore complexe V/L (notations de la sec. 1)

satisfait la condition donnée dans le théorème de base, donc qu'il existe une
forme hermitienne H définie positive sur V de partie imaginaire entière sur les

couples d'éléments de L, et démontrerons que ce tore admet un plongement
projectif complexe. Le produit scalaire hilbertien est donc dénoté par H(u, v)

(u\v). Nous conviendrons que ce produit scalaire est C-linéaire en la seconde
variable (sic)

v i— H(u, v) C-linéaire (pour tout u s V),

H(u, av) clH(u, v) (pour tous u, v e V et a g C).

Appelons B la partie réelle de H et £ la partie imaginaire de H de sorte que

H(u, v) B(u, v) + iE(u, v)

et

H(v, u) H(u, v) B(u, v) — iE(u, v).
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On voit donc que, par définition de B et E,

B(v, u) B(u, v) et E(v, u) — — E(u, f
La forme R-bilinéaire B est symétrique (et définie positive comme H puisque
ß(u, u) H(u, u) > 0 si m 7^ 0), tandis que la forme R-bilinéaire E est alternée

(i.e. antisymétrique). Chacune des deux formes B ou E détermine

complètement H. Par exemple, on a

H(u, if) B(w, if) -h iE(u, if),
et aussi

iH(w, f) i£(w, f) — E(u, f) ;

par comparaison des parties réelles et imaginaires de ces quantités (égales!), on en

tire
B(u, f) E(u, if) et E(u, v) — B(u, if).

La positivité de H (ou de B) se reconnaît donc sur E de la façon suivante

E(u, iw) > 0 si u / 0

De même, H(iu, if) H(u, f) fournit E(iu, if) E(u, f). Inversement, partant
d'une forme alternée E satisfaisant E(iu, if) E(u v), la définition

H(u, f) £(w, if) -h iE(u, f)

fournit une forme hermitienne (vérification par calcul direct!), définie positive
lorsque E(u, iu) > 0 pour w # 0. Les propriétés de H sont donc traduites en les

propriétés suivantes de E

J E est une forme R-bilinéaire alternée (à valeurs réelles),

| E(iu, if) £(w, f) (w, feF) et E(u, iu) > 0 pour 0 / «eK

La forme alternée entière £ sur L va nous permettre de décomposer ce réseau

comme somme directe de deux sous-réseaux sur chacun desquels elle est

isotrope.

Lemme (Frobenius : Oeuvres complètes, vol. I, p. 493). Il existe une base x)

el9..., en, Xl9..., X„ de L telle que

E(eh ej) E(Xh Xj) 0,

E{eb Xj) dfiij (nul si i # 7, dt si i j)

^ One telle base sera appelée dorénavant base symplectique.
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avec des entiers dt satisfaisant

di + 1 multiple de dt (pour i ^ n — 1).

Preuve. Montrons simplement comment on commence la démonstration

de ce lemme classique d'algèbre (c'est une forme du théorème des diviseurs

élémentaires ou un aspect de la réduction des formes alternées...). Pour chaque

0 ^ a e L on considère l'idéal Ia {E(a, b):be L} c Z. Posons Ia daZ avec

un entier positif da bien déterminé. Définissons alors dx Inf da
a^O

Min da ^ 0. Si d1 0, il y a un élément a ^ 0deLavec/a 0 donc tel que
a f 0

L(a, v) 0 (pour tout v e V par R-linéarité) donc tel que E(aia) 0

contredisant la positivité de E (ou de H). On. a donc dx > 0 et on prend e1,X1eL
avec E{eu XJ dv La démonstration continue alors par induction, extrayant
le plan hyperbolique engendré par ces deux vecteurs par considération du

supplémentaire orthogonal.
Nous dénoterons par L1 le sous-groupe engendré par les e{ et par L2 le sous-

groupe engendré par les Xt. On a donc

L Lx © L2, rang(Lf) n, E triviale sur chaque Lt.

De plus, la forme E permet d'identifier un élément b de L2 à un homomorphisme

£(., b) : L1 -» Z, a i— E(a, b).

On obtient ainsi un homomorphisme injectif (plongement)

E : L2 - Homz(Lls Z) Z-dual de

Comme la base duale de (et) dans Homz(Ll5 Z) est constituée des formes df1 Xh

on voit que le plongement précédent a une image d'indice fini égal au produit des

dt (ce produit est appelé Pfaffien de E). En particulier, lorsque tous les dt 1, on
dit que E est unimodulaire, dans ce cas L2 s'identifie au Z-dual de Lx (via E).

Pour plonger V/L dans un espace projectif, il s'agit de construire des fonctions
sur cette variété, donc de définir des fonctions L-périodiques sur V.

Commençons par considérer plus simplement des fonctions Lr-périodiques,
données par des développements de Fourier selon les exponentielles de base
relatives à Lv Ces considérations d'analyse vont fournir « toutes » les fonctions
L-périodiques sur V1 L1 (g)z R comme séries en les

v h-* exp(2ni X(v)) (X e HomZ(L1? Z)).

Nous considérerons plus particulièrement les exponentielles

v i exp(2niE(v, X)) (XeL2)

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 7
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Ces dernières fournissent une base des fonctions sur Vu invariantes par les d[~1 et

donc en particulier aussi des fonctions sur le tore réel VJLv (Le. lecteur qui
souhaite simplifier au maximum la démonstration pourra supposer E

unimodulaire dès à présent.) Pour fabriquer des fonctions analytiques sur V, nous
complexifierons simplement V1 en permettant à v de varier dans V1 (g)R C. Il est

donc important de savoir que V1 engendre tout F sur C.

Lemme. On a V V1 (B iV1 et donc F — V1 ®R C.

Preuve. Comme V1 et iV1 ont même dimension réelle n, il suffit de montrer
que V1 n iV1 {0}. Ceci est clair car si u e V1 n iVu on a u iw1 (avec

v1 et wx dans Fx) qui implique

H(u, u) E(u, iu) E(v1? — wj 0

par trivialité de E sur L1 et donc aussi sur Vx. On en conclut u 0.

Pour étendre holomorphiquement les exponentielles exp(27u£(., À,)) il suffit
de considérer les extensions C-linéaires fx(v) des E(v, X) (permettant ainsi à v

de varier dans F entier, plus seulement dans Fx). Une telle extension C-linéaire
est définie par

MVi + iv'i) E(vi>

et l'exponentielle holomorphe L^périodique sur F correspondante

F a zh exp(27iifx(z)) (X e L2 ou Homz(Ll5 Z)).

Les séries de Fourier que nous aurons à considérer auront la forme

£ cx exp(2ti!A(z))
XeLi

avec des coefficients c^e C non tous nuls (décroissant suffisamment rapidement
à l'infini pour assurer une « bonne » convergence). Les fonctions décrites par de

tels développements peuvent être considérées comme fonctions sur V/L1 (mais

pas sur V/L\).

Pour z fixé dans V, le module de exp(27riA(z)) croît en X comme
l'exponentielle d'une fonction linéaire de X. Pour assurer une convergence rapide
de la série de Fourier (convergence simple en z ou convergence uniforme sur tout
compact de F), il suffit de prendre des coefficients cx dont le module décroît de

façon gaussienne (exponentielle d'une forme quadratique définie négative). Or
nous avons à notre disposition la forme fk(X). Puisque

Im fx(X) E(X\, X) E(X\, iX\) H(X\, X\) ^ 0
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(nous avons écrit un X e L2 c V Vx © i V\ sous la forme X — Xx + ^1? oùÀ^

et X\ e Vx et avons utilisé l'isotropie de E sur Vx), il s'agit de prendre

exp(m fx(X)) d'où | cJ exp - rclm fx(X)

exp — nH(X\, X\)

Il est clair que 0 ^ X e L2 => X\ ^ 0 et donc H{Xf X\) > 0 car si X\ était nul, X

Xx appartiendrait à Vx or V1 n V2 {0} (Vx et V2 L2 ®z R sont

supplémentaires). Ceci assure la décroissance gaussienne des | |, la forme

quadratique apparaissant en exposant
étant le carré de la norme (euclidienne)
associée au produit scalaire if, via

projection de L2 sur iVx

L2cV2

Il II2 K)

Le dessin illustre la situation, mais on
prendra garde de ne pas croire que Vx et

iV1 sont orthogonaux (vx et ivx sont C-

proportionnels donc non if-
orthogonaux, V\ {0} puisque Vx C-

engendre V).

La fonction thêta de Riemann est ainsi définie par la série de Fourier

0(z) £ exp{i7t MX)+ 2(71A(z)} (ze
l2

Cette série converge uniformément sur tout compact de V et définit donc une
fonction holomorphe sur V (invariante par les translations de Lx). Pour pouvoir
calculer 0(z + p) avec p e L2, nous avons besoin du lemme suivant.

Lemme. On a fx(p) fJX) pour tous X, p e L2.

Vérifions l'affirmation du lemme en comparant les parties réelles et

imaginaires des deux membres. D'une part

Im A(p)/M) £(p'i> E(\i\,

E(i\i\,-X\) E(X\,iffp) f^X'f Im

(avec des notations p Pi + [>1 correspondant à la décomposition

V Vx© => L2
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D'autre part

Re A(|i) A(Hi) X) |i1; iX\)

£(Hi + 'Hi, M) M) •

Or E est isotrope sur L2, donc £(p, A.) 0 et donc

£(p, a;) -£(p, X,) £(^, p) p= /^) Re /^)
Nous sommes alors en mesure de démontrer les équations fonctionnelles

9(z + p) exp{-- lin/„(z)} 0 (z) (peL2).

Par définition
9(z + H) Z exp{m/x(X) + 2mA(z + p)}.

Li

Dans cette somme, effectuons la permutation À, i— X- — pi de l'indice de

sommation (puisque p e L2, on translate simplement dans L2). Le terme général
de la série est donc

exp{infx.JX-p)+ 2mA-„(z + p)}

Calculons simplement l'exposant
+ 2A-m(z + P)

AW - A00 - AM + AM + 2A(p) - 2/»
+ 2A(z) - 2/m(z) AM + 2A(z) - AM - 2A(z)

par la propriété de symétrie démontrée ci-dessus.

Plus généralement, nous écrirons

0(z + X) £x(z) 0(z) (XgL)

avec

ex 1 si X e Lx et

ex(z) exp{ — mAM - 2i7tA(z)} si ^L2.
Il n'est d'ailleurs pas difficile de calculer la fonction ex en général, c'est-à-dire

lorsque^ + X2eLl + L2 L. En effet, par Lr-périodicité de 0, on a ex

eXr Mais

exp -!7t{A1+l.#i + ^2) + 2Ai+x2(z)}

exp -raA2(Xi) • e>2(z) exp X2) etJz)

d'où

ex(z) eX2(z) ginEauX2/^)}
_
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On retrouve bien le facteur exponentiel ci-dessus lorsque X1 0 (i.e. lorsque X

X2 e L2). En général, l'expression est semblable avec le signe

einE{\u\2) =-f-i +1 si X1e2Ll\).

Considérons l'espace vectoriel Sk formé des fonctions entières sur V et

satisfaisant les équations fonctionnelles

f(z + X) ex(z)k f(z) (XeL).

Il est clair que pour k ^ I, 0fc e Sk de sorte que ces espaces ne sont pas réduits à

{0} (les coefficients de Fourier cx de 0 sont non nuls pour X e L2 donc 0 n'est pas

identiquement nulle!). Voici comment on peut fabriquer d'autres éléments de Sk.

On observe tout d'abord qu'une translatée de 0 n'appartient pas souvent à St

puisqu'elle satisfait

0fl(z-U) 0(z — a+ X) e-i^)-2infx(z-a) 0(z _ a)

0a(z + X) e2«if^ex(z)da(z) (XeL2).

Un produit fini de translatées va donc satisfaire

n %j(z + X) eWsUY[ Qaj(z)-ex(z)k
j i J

et appartenir à Sk dès que £ cij 0. Les fonctions (enfin!) permettant de plonger
projectivement V/L seront des quotients f/g où f et g appartiennent à un même

Sk. Ce sont donc des fonctions méromorphes L-périodiques sur V. Pour éviter de

parler des quotients (donc de pôles...), on peut simplement considérer des

applications

z l—> (/o(z)> •••> fm(zî):K -> Cm+1

pour une famille finie

Œ $k (disons k assez grand).

Comme les j\ satisfont les mêmes équations fonctionnelles, donc sont multipliées

par un même facteur lorsqu'on remplace z par z + X(XeL), les points z et

z + X ont les mêmes images projectives et on obtiendra ainsi des applications
V/L Pm(C) (à condition que les /• n'aient pas de zéro commun...). Voici un
énoncé plus précis.

Théorème de Lefschetz. Les espaces Sk ont une dimension finie et

pour fc ^ 3, toute base /0,..., fm de Sk fournit un plongement projectif
V/L -> Pm.
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Démonstration. Pour ne pas masquer l'idée générale, nous supposerons que
E est unimodulaire donc que toutes les exponentielles de base (sur Vfi Lx-
périodiques sont données par les 2niE(., X) où X parcourt L2. Toute / e Sk

possède une restriction à Vi qui est Lrpériodique et peut être développée en série

de Fourier. Les équations fonctionnelles

/(z + p) ev(z)k(peL2)

fournissent des identités pour les développements de Fourier

£ ax+L2

e-irtk{fil(v) + 2fii(z)} Y^axe2nifX^

e~inkf^]

V
A(, e

Identifiant les coefficients des exponentielles de base, on trouve

ax e2"''^ al
d'où

a^einkf[i(») + 2infxM + M

(en vertu de la symétrie de l'expression A(p), lemme ci-dessus). Connaissant les ax

dans un parallélipipède de taille /c, les autres coefficients s'en déduisent

inductivement :

f I > (^>,)>.gparallélipipède de L2

Sk - C*n

est injective et donc dim Sk ^ kn est finie (on montrera plus loin que cette

dimension est exactement k"). Montrons maintenant que lorsque k > 2, les

fonctions dans Sk n'ont pas de zéro commun. Pour cela, soit z e V un élément

arbitraire. Nous allons construire une / e Sk avec f(z) 7^ 0.. Comme nous
l'avons déjà observé, les produits de translatées de la fonction thêta de Riemann

permettent de définir des éléments de Sk

eai 0a2 - e Sk dès que 0

Il suffit de choisir les points at de façon que öa.(z) 7^ 0, c'est-à-dire de façon que
les z — ai n'appartiennent pas à la variété des zéros de 0. Ceci est possible car
dénotant par Z cette variété des zéros de 0 (on peut voir qu'elle n'est pas vide,
mais ceci n'est pas requis ici) les conditions z — at$ Z reviennent à at $ z — Z.

Or Z n'a pas de point intérieur (0 est analytique et non identiquement nulle) et il
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en est de même de Z — z et z — Z : la réunion de ces fermés n'aura pas non plus
de point intérieur et il sera facile de choisir les at(i > 2) dans leur complémentaire

(ouvert dense) de sorte que £ at $ Z — z et on posera simplement ax
2

— £ av II résulte de ce point que pour toute base (/0,/J de Sk(k^2) les f
2

n'ont pas de zéro commun et l'application z i— (fi{z)) définit une application
V/L Pm(C). Il nous reste à montrer que ces applications sont des plonge-
ments lorsque k ^ 3. Ceci se fait en deux temps. On commence par voir que
leurs différentielles sont injectives en chaque point (condition d'immersion), puis

que les applications sont injectives. Contentons-nous de traiter le cas k 3 qui
fournit le premier plongement. Pour pouvoir calculer la différentielle en

question, il est convenable d'introduire des. coordonnées dans V. Rappelons que
nous supposons L (ou E) unimodulaire et que nous avons introduit une base

el9..., en, Xl9 Xn de L
avec

m fXj(ed E(eh Xj) 8;,

(ne pas confondre ces fj — extensions C-linéaires des E(Xj) — avec les éléments
de base de Sk... il sera prudent de revenir sous peu à une notation moins
ambiguë). Nous avons aussi démontré que les éléments ei9..., en forment une C-
base de V(V Vx ® iVx). C'est celle que nous choisirons. Dans cette base, les

fonctions coordonnées z Ez^t- zt s'identifient aux : zt fjz)

(fd:V*C\ zh(Z;).

Dénotons maintenant 'par (Öf) une base de Sk et considérons l'application
analytique

(0,-): V -> Cm+1 — {0} Pm(C)

z ^ (9,(2)) ^ [e,(z)].

La propriété d'immersion revient à dire que les vecteurs tangents aux courbes
coordonnées sont indépendants entre eux et du vecteur rayon (contracté en un
point de l'espace projectif). Nous devons donc démontrer que les vecteurs

r (0o(z),0m(z)),
% (390/öz„ dQJdz,) (z) (1 < ^
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sont C-linéairement indépendants. Une relation linéaire entre ces vecteurs peut
être écrite

-> n ->

<*</ X a,r,,
/= 1

soit, scalairement

oco0f(z) Eoczd0z/dzz(z) (O^i^m)

(il est bon de se souvenir que le point z e V est fixé). La même relation linéaire
devra avoir lieu dans tout l'espace S3 engendré par les 0Z :

ao0(z) Eoczd0/dzz(z) pour toute 0g53.

Nous allons exprimer cette relation linéaire pour les fonctions particulières

0 — ®ab ®a + b &-a &-b G

produit de translatées de la fonction thêta de Riemann. Le point z étant encore
fixé, on aura identiquement en a et b

ao©û&(z) Iazd0ûZ,/dzz(z).

Introduisons la fonction méromorphe

\|/ Eazd(log 0)/dzj.

Par définition,

5 log 0(z + a) dlogG
vKz + a Xa' 5 Xai 5 z)

dzl dzt

et

\J/(z + <2) -b \J/(z H- h) + \J/(z — 0 — h)

^ 0ab
^ Y1 ^®ab

\ j \1^1 ^ 00 -fc- (Z) / 0«b(Z)

oeo0aZ,(z)/0flZ,(z) a0 indépendant de a et b\

Mais pour tout a, on peut choisir b de façon que niz + hniz — a — b

n'appartiennent à l'ensemble des pôles de \|/ et l'égalité juste prouvée montre que
v|f(z + a) # 00. Ceci prouve que \|/ est entière (a était arbitraire). D'autre part, la

dérivation logarithmique des identités fonctionnelles satisfaites par 0

0(z + X) exp {-infx{X) - 2infx(z)} • 0(z) (keL2)
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d'où
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dlog 0 dfx ^logO—(z + X) -2m — + — (z)
ôz, dzt

\|/(z + X) -2m£a ^+ \|/(z).

Les fonctions fx étant linéaires, les dfjdzl sont des constantes et

d\|f/dzj est L2-périodique (et Lrpériodique aussi!).

Ces fonctions entières d^/dzj sont donc bornées (elles s'identifient à des fonctions

sur l'espace compact V/L) et le théorème de. Liouville indique qu'elles sont

constantes
d\|f/dzj Cj (constante).

Ainsi, v|/ est linéaire affine. Puisqu'elle est holomorphe, elle est C-linéaire affine et

par Li-périodicité (ce sous-groupe est engendré par une C-base de V) elle est

même constante (les Cj sont nuls) :

v|/(z 4- X) \|/(z) (en particulier pour X e L2)

d'où

La, dfjôzl 0

Mais lorsque X parcourt une base de L2, disons la base (Xj), les fx
correspondantes forment un système des coordonnées complexes sur V (ce sont
les fonctions fj introduites précédemment) et la matrice (ôfjôzi) est non
singulière (c'est la matrice identité avec le choix indiqué). Donc les at sont tous
nuls et la relation linéaire 'envisagée entre r et les est triviale, prouvant leur
indépendance linéaire. Il ne reste plus qu'à démontrer l'injectivité de

(0i) : V/L - Pm(C)

z mod L h- [0f(z)j

Prenons z' et z" g V avec [0,(z')] [0i(z")]. Il existe donc un scalaire 0 ^ a g C

tel que

0;(zO a 0,(z") (0<i<m)
d'où aussi

0(z') a 0(z") pour toute 0 g S3
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(puisque les 0f engendrent S3). Revenant aux produits de translatées de la
fonction thêta de Riemann Gab utilisés dans la partie précédente de la

démonstration, on aura

0(z' + a)Q(z' + b)d(z' — a — b)

0(z" + a)0(z" + b)0(z" — a — b)

Pour chaque a fixé dans V, on peut trouver b e V de façon que

z + h, z" + b, z — a — b, z" — a — b

n'appartiennent pas à la variété des zéros Z de 0 (il s'agit d'éviter quatre
translatés de ±Z qui sont fermés sans point intérieur). L'identité ci-dessus

montre alors que la fonction — a priori méromorphe —

a i— 0(z' + a)/0(z" + a)

est entière et sans zéro. On peut l'écrire comme exponentielle d'une fonction
entière :

0(z' + a)/0(z" + a) é^{a).

La -périodicité de 0 montre que

eMa + X) eMa) (teLi),
et donc

v|f(a + X) \|/(a) + 2ninx (XeLJ

Prenant ensuite Xe L2

0(z' + a -j- X,) — yj(z' + ß)0(z' -(- a) (^gL2)

et une relation analogue avec z" au lieu de z'. On en tire

eWa + \) eMa) e-in{fx(l) + 2fx(z'+a)-fl(X)-2fl(z" + a)}

e2infï.{z"-z,)

puis
\|/{a + X) \)/(a) + 2infx(z" — z') -h 2inmx (XeL2)

Ainsi, v|/(fl + X) — i|/(a) est indépendant de a pour tout X e L et la considération
des dérivées partielles d^f/dat comme ci-dessus, fournit

ö\|f/dat entière, L-périodique (donc bornée)

et donc constante, de sorte que \|/ est C-linéaire affine. On écrira

\|f(a) 2inLvl ax -h v
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Substituant cette expression dans les relations trouvées pour y\f(a + À,) et prenant
X XjE L2 (correspondant aux éléments de la base duale de (ef) c= Lx), on voit

\|f(a + Xj) \|/(û) + 2in(Zj — z)) + 2mmj (m,- mXj).

Mais la linéarité de v|/ donne directement

\|/(a + Xj) - \|f(a) 2iizLvJAXj).

Par comparaison, on trouve donc

//z"-z' + Lmzpz) z"j - z'j + mj £vz/z(^-)

Cette égalité de composantes fournit l'égalité vectorielle

z" — z' 3=5 Zvz^z — Emzez

avec «
'

rAz g L2, mz et g

et la démonstration sera terminée dès qu'on aura remarqué que les vz sont des

entiers
(z" — z'eL1 + L2 — L^>z" z'eV/L)

Or on a vu en cours de route

\|f(a + X) \|/(ûi) + 2innx(nx g Z lorsque Xe L)

et en substituant l'expression linéaire affine de \|/

\|/(a) 2mZvzaz + v

on trouve sans peine vz nt g Z. q.e.d.

3. Commentaires concernant la partie analytique
DE LA DÉMONSTRATION

Pour, démontrer le théorème de plongement, nous avons considéré les

espaces vectoriels Sk formés des fonctions entières / sur V satisfaisant les
équations fonctionnelles

f(z + X)ex(zff(z)
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Rappelons aussi que les facteurs exponentiels ex(z) sont déterminés par

ex 1 XeLl9
ex(z) exp — infx(X + 2z) le L2

En particulier, l'espace S0 est formé de fonctions entières L-périodiques, donc
constantes d'après le théorème de Liouville : S0 C. On peut aussi observer que
le produit d'une fonction de Sk par une fonction de St est une fonction de Sk+l,

ce qui suggère de considérer l'anneau gradué

S © sh C © s, © s2 ©
fc^O

des fonctions thêta. Par exemple, la multiplication par la fonction thêta de

Riemann 0 g Sx induit des applications injectives Sk - Sk + 1. Comme on a déjà

vu que ces espaces Sk ont des dimensions finies, les dim(Sk) forment une suite

croissante. Plus précisément

Proposition. On a dim(Sfc) Pf(E)n kn (E étant laforme alternée sur le

réseau L de rang 2n dans l'espace vectoriel V de dimension complexe n).

En particulier
Pf(E) dim^i) et

dim(Sk) — kn si E est unimodulaire.

Démonstration. Nous supposerons à nouveau E unimodulaire sur L (le cas

général s'en déduisant facilement). Nous avons vu que les coefficients de Fourier
ax(keL2) d'une / e Sk satisfont aux relations de récurrence

a,+k, a.e^2^ (peL2).

Si X0 est un élément fixé de L2, la relation de récurrence précédente impose

ax aXo einfv(2Xo+kv) si X — X0 + kv e X0 + kh2

Prenons aXo 1 et montrons que la suite de coefficients de Fourier

ax einfvi2Xo+kv) pour X X0 + kv e X0 + kh2

ax 0 pour X $ X0 + kL2

définit bien une fonction / BXoe Sk pour X0 e L2. Lorsque X0 parcourt un

système de représentants de L2 mod kh2, on obtient évidemment des éléments

linéairement indépendants de Sk (les supports des suites de coefficients de

Fourier X i— ax correspondants forment une partition de L2, donc sont disjoints).
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'2

Ces éléments forment une base de Sk d'où

dim(Sk) [L2 : kL2] [Zn : kZn]

det(/c • idn) k".

Pour justifier l'affirmation, il s'agit de montrer que la suite de coefficients de

Fourier attachée à un choix de X0 e L2 satisfait effectivement la relation de

récurrence caractérisant les équations fonctionnelles valables dans Sk, puis que la

série de Fourier correspondante converge bien vers une fonction entière. Le

premier point se vérifie par calcul : prenons X X0 + kv g X0 + kL2 et p g L

%+tM a*o+*<v + m exp{m/v+M(2 + k(v + \ij)}.

L'exposant vaut (au facteur in près)

/V(2À,0 + kv)+ /v(/c|i) + /„( + fc(v + p))

Tjkv)

fv(2X0 + kv) + /(i(2X.0 + 2kv+ /cp)

U2X0 + kv)+ /m(2 X +kv)

d'où bien
n _ a pinf (2X + fcn)

La décroissance rapide de ces coefficients

0Xo + kv e2inf^) einkf^)

est aussi claire puisque le module du premier terme croît comme l'exponentielle
d'une fonction linéaire de v et le deuxième décroît comme une gaussienne (en

v g L2). La convergence en z, uniforme sur tout compact de V est alors assurée et

la somme de la série de Fourier holomorphe dans V entier. On peut dire plus

simplement que l'on construit une fonction 0O en prenant X0 0 (par une suite

de coefficients de Fourier particulièrement simples ax, X e kL2) et que nous
obtenons les autres éléments de base de Sk par une translation convenablement
tordue de ces coefficients sur les autres classes mod kL2 de L2. Il est alors clair

que le même principe s'applique dans le cas non unimodulaire en prenant les

classes de kL2 dans Homz(Ll5 Z) et on trouve la formule de dimension annoncée.

Les espaces Sk s'interprètent aussi comme espaces de sections holomorphes
de fibrés (holomorphes de rang 1) sur V/L. Le système (ex)XeL est un cocycle de L à

valeurs dans l'espace des fonctions entières ne s'annulant pas sur V On entend

par là qu'on a des relations

<W(z) e*.(z + K)ey(z)(X,X'eL).



110 A. ROBERT

On obtient ces relations en écrivant les équations fonctionnelles satisfaites par

0(z + X + X') 0(z' -h X) ^jl(z/)0(z') (z' z -t- X

Le membre de gauche est par définition ex+r(z)0(z) et celui de droite
ex(z')ey(z)Q(z). Puisque 0 n'est pas identiquement nulle, on peut simplifier par
cette fonction obtenant les relations de cocycle par prolongement analytique à

partir de l'ouvert non vide où 0 # 0. Les systèmes {ex)XeL sont naturellement
aussi des cocycles de L. Montrons comment on définit un fibré holomorphe de

rang 1 à partir d'un cocycle. Prenons par exemple le cocycle (<ex). Sur le fibré

trivial F x C - V, le groupe discret L agit (de façon équivariante) par

X • (z, t) (z + X, ex(z)t) (XeL, ze F, teC)

(l'action sur la base étant simplement donnée par les translations). L'espace des

orbites
[z, £] orbite de (z, t)

est un fibré sur V/L :

F x C -> F x L C 9 [z, t] [z + X, e,(z)t]

I i
K -> V/L 9z( z + X).

Ses sections sont les applications de la forme z [z, 0(z)]. Par définition de la
relation d'équivalence

[z, 0(z)] « [z + X, ex(z)d(zj]

et ce point s'exprime aussi par [z + X, 0(z + X)] d'où les relations fonctionnelles
satisfaites par 0. La continuité (resp. Fholomorphie) d'une telle section s'exprime

par la continuité (resp. l'holomorphie) de 0 sur F. A chaque cocycle de L à

valeurs dans l'espace des fonctions entières ne s'annulant pas sur F, on associe

ainsi un fibré inversible, i.e. un élément de H1(V/L, (9x) (ce groupe abélien est en

général noté additivement, mais lorsqu'on interprète ses éléments comme des

fibrés inversibles, la loi de groupe est donnée par le produit tensoriel des fibrés :

Yinverse d'un fibré s'identifiant au fibré dual). La construction précédente fournit

un homomorphisme

H^LSiV, n*(9x)) H\V/L,(9X).

Ici, (9x représente le faisceau des fonctions holomorphes ne s'annulant pas sur

V/L, 7i : F - F/L est la projection canonique de sorte que l'image inverse n*(9x
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est le faisceau des fonctions holomorphes ne s'annulant pas sur V, ayant pour
sections globales les éléments de

r(V, n*(9x) H°(V, n*(9x) {/: V -+ Cx entière}

Plus généralement, Grothendieck définit des flèches

Hp(G, F(X, TT*#")) -> Hp(G\X, #")

dans le cas d'un groupe discret G agissant (continûment, librement et

proprement) sur un espace topologique (pas trop mauvais)... (cf. Mumford [1]

p. 22 qui se réfère à Grothendieck [1], spécialement p. 195).

Lorsqu'on interprète ainsi Sk comme espace de sections du fibré iffc

correspondant au cocycle (ek)XeL

la finitude de la dimension de Sk résulte d'un théorème de Kodaira. Le vanishing
theorem de Kodaira donne d'ailleurs aussi

(if est un fibré positif et la classe canonique Kv/L est nulle puisque V/L est

p'arallélisable de sorte qu'il existe des formes différentielles invariantes par
translation, de diviseur vide). Il en résulte que la caractéristique d'Euler-Poincaré

holomorphe.

se réduit à la dimension de Sx. Le théorème de Riemann-Roch permet de

retrouver cette dimension à partir de la première classe de Chern de if. Ces

remarques ont pour but de montrer comment les principales étapes de la
démonstration analytique s'insèrent dans un contexte général.

Passons à quelques commentaires concernant le cas n 1, L étant ainsi un
réseau de la droite complexe C. Le théorème de plongement à l'aide des fonctions
0 de S3 se réalise dans un espace projectif de dimension m dim(S3) — 1

3" — 1 (la dimension de Sk est donnée par la proposition ci-dessus), donc de

dimension 2 lorsque n 1. On obtient ainsi les modèles de C/L comme courbes
projectives planes. Il est plus facile dans ce cas de travailler avec les fonctions de

Weierstrass p et p'. Rappelons simplement que p est définie comme somme d'une
série de fonctions méromorphes

sk T(y/u yk) h°(v/l, sek),

H\V/L, if) *= 0 pour i > 0

X(- îy'dim H\V/L, if) dim H°(V/L, &)
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Il est clair par construction que l'ensemble des pôles de p est L-invariant (en

dimension n > 1, les diviseurs ont une dimension > 0 et il n'est guère possible de

sommer les translatées d'une fonction méromorphe sur V pour obtenir une
fonction méromorphe sur V/L). En particulier, p a un pôle double en chaque
point du réseau L. Sa dérivée p' a un pôle triple en ces mêmes points. On peut voir

que p est un quotient de deux fonctions thêta de S2 et que p' est un quotient de

deux fonctions de S3. Une base de S2 a d'ailleurs deux éléments et fournit une

application projective sur P^CJ, donc sur la sphère de Riemann. Cette

application identifie les points z et — z et est un revêtement (les quatre points de

\L/L étant ramifiés).

Toujours dans le cas n 1, montrons comment la fonction thêta de

Riemann s'apparente aux fonctions thêta de Jacobi. La série

00
9

1 qn
— 00

converge pour | q \ < 1. Son carré est

I<f2+m2 Z
NZ 0

où cN dénote le nombre de couples (n, m) g Z2 avec n2 + m2 N. De même, la

puissance quatrième de Z q"2 est la fonction génératrice du nombre de

représentations d'un entier positif comme somme de quatre carrés parfaits. Pour
calculer ces fonctions, Jacobi a posé q einT(lm x > 0 => | q \ < 1)

00
9

0(x) X einn T.
— oo

Plus généralement, il étudie les fonctions

e3(Z; x) Z e'""2t e2imz
— 00

dont la précédente est la valeur en z 0 (thêta nullwert). La série de Fourier de

Riemann est donc exactement de ce type : L Z © xZ, L1 Z, L2 xZ.

4. Partie cohomologique de la démonstration

Nous allons démontrer ici que si le tore complexe V/L est une variété

abélienne, il existe un produit scalaire hilbertien sur V de partie imaginaire
entière sur les couples d'éléments de L. L'idée de la démonstration est simple.

Partant d'un plongement projectif
i: V/L -> Pm,
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l'image en cohomologie d'un générateur c1 de H2(Pm) fournit une classe de

cohomologie i*(Ci) de degré 2 du tore. Prenant l'interprétation de de Rham des

groupes de cohomologie, il y a dans la classe i*^) une unique 2-forme
différentielle harmonique (ou de façon équivalente ici invariante par translations)
dont la restriction à l'origine fournit la 2-forme alternée E Im(//)(on a vu dans

la sec. 2 que la partie imaginaire d'une forme hermitienne détermine cette
dernière univoquement). Pour mener à bien ce programme, il est nécessaire de

calculer la cohomologie des espaces projectifs et des tores complexes. On pourra
montrer ensuite que si

A V/L, oo représentant harmonique de cl9 E co0rigine,

alors

co e H{1,1}(A) c H\A, C) => E{iu, iv) E(u, v),

co e H2(A, Z) => E entière sur L x L
co positive => E positive (i.e. E(u, iu) > 0 si u ^ 0).

Proposition. Uhomologie entière d'un espace projectif complexe Pm

PW(C) est donnée comme suit

H2i(P», Z) Z pour i 0, 1,..., m

^2; + i(P"\ Z) 0 pour i entier

Démonstration. L'espace Pm est défini par quotient de Cm + 1 - {0}. La
classe de (z0, z1;zj sera dénotée par [z0, zm] (coordonnées homogènes
dans l'espace projectif). On a un plongement

Cm c, Pm donné par {zu^[1, zlfzm]
Le complémentaire de l'image (l'hyperplan à l'infini d'équation z0 0)
s identifie naturellement à 1 espace projectif Pm 1

par les coordonnées
[zi> znJ-Ainsion obtient la décomposition

pm _ çm u pm -1 (r^unjon disjointe).

Procédant itérativement, on parviendra finalement à

Pra C"1 u C"1 u Cm"2 u u C u {00}.
C'est une décomposition cellulaire de l'espace projectif, chaque espace C' étant
une cellule de dimension 2 i(au sens de la topologie algébrique : R* est une cellule
de dimension k). L'opérateur bord diminuant les dimensions d'une unité doit être
trivial (nul en toute dimension) : il n y a pas de bord non nul et chaque cellule
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fournit un générateur de l'homologie entière. Il est peut-être plus convenable de

se représenter les générateurs de l'homologie comme adhérences des cellules

précédentes

C7 CuC"1 u... uCu {00} (cPm).

Par exemple, un générateur de H2 (Pm, Z) est donné par la droite projective P1

c= Pm (toutes les droites projectives sont homologues dans Pm), et cette droite
projective s'identifie, avec sa structure analytique à la sphère de Riemann
C u {00}.

Comme nous travaillerons finalement avec des formes différentielles,
donnons une 2-forme dont la classe dans H2 (Pm, C) est duale du 2-cycle entier
défini par la cellule C (ou son adhérence P1) de Pm.

Dénotons par k la projection canonique Cm+1 — {0} -> Pm contractant les

droites homogènes (complexes) en des points. Lorsque a est une section

holomorphe de n définie dans un ouvert U a Pm (il y a de telles sections dès que
U est simplement connexe, par exemple si U est un ouvert affine principal Ut
défini par zt # 0)

on peut calculer la 2-forme (à valeurs complexes) sur U

^-ôô log II er II2.
2tc

Ici, la norme utilisée est la norme canonique de Cm + 1

Il Z P Il (Zt) P X |Z;|2
0 < i < m

(elle dérive du produit scalaire hermitien canonique sur Cm + *) et les opérateurs d

et d sont fournis par la structure complexe (de U): en coordonnées, la

différentielle extérieure d de de Rham s'écrit

^(d/dzùdziA -h ^(d/dz^ZiA d + d.
i i

On vérifie sans peine que (% est indépendante du choix de section holomorphe a
sur U : tout autre choix doit être de la forme a' /a où / est une fonction
(scalaire) holomorphe sur U et ne s'annulant pas. Ainsi

ôd log II a' II2 ôd log II a H2 + ôd log |
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Localement, choisissant des branches convenables de logarithmes complexes, on

peut écrire log | / |2 log / + log / et donc

dd log | / |2 « dd(\og f -flog /) (localement).

Mais log / étant holomorphe, ô log / 0 et dd log / 0. De plus,

0 d2 (d + d)2 dd + ~dd {d2 d2 0)

implique de même

dd log f —dd log / — d(0) 0

Choisissant un recouvrement (l/f) de Pm par des ouverts sur lesquels il existe de

telles sections holomorphes a£ de n (par exemple les ouverts affines Ut : zf + 0),

les 2-formes cof correspondantes doivent se recoller

| U.nUj —
| UjnUi

(d'après l'indépendance du choix des sections choisies pour les calculer) et fournir
une 2-forme globale co bien définie sur tout Pm. C'est la 2-forme de Fubini-Study.

Proposition. La 2-forme de Fubini-Study estfermée, invariante par l'action
du groupe unitaire de Cm+1, de classe de cohomologie entière. Plus précisément,
la classe de cohomologie de la forme de Fubini-Study dans H2 (Pm, C) est la
duale du générateur [P1] g H2{Pm, Z).

Démonstration. On a

(d + d) (d-d) d2 - d2 + dd - dd -2dd,
d'où

dd -y(d-d).
Ainsi

<% =• f35logD a II2 - 9)log II er II2,
2.11 4K

©ü dr\=> d&u 0 (pour les ; recouvrant Pm)

d'où co fermée. Pour démontrer l'invariance de co par le groupe unitaire U(m+ 1)
de Cm+1, prenons une transformation geU(m+l). Pour une section
holomorphe ct de ndéfinie sur un ouvert U, on pourra choisir la section go de 7i

sur l'ouvert gU.



116 A. ROBERT

On a par définition

geU(m+l)
d'où

II gv(gz) || || ct(z) ii

Lorsque z et gz appartiennent à U, on a

ainsi

go(gz) ct(z) (zeU),

|| a{gz)|| || cj(z) ||

L'invariance de co en résulte.

L'intégralité de la classe de cohomologie [co] de co résultera de la formule plus

En effet, le groupe H2(Pm, Z) Zc est de rang 1. Pour calculer l'intégrale
proposée, il faut passer en coordonnées (la formule de Stokes montre que cette

intégrale est indépendante du représentant choisi dans la classe c car co est

fermée, et ne changerait d'ailleurs pas non plus par adjonction d'une forme
exacte à co car c est fermée). Sur l'ouvert affine U U0 (défini par z0 # 0, cet

ouvert est dense) nous prendrons naturellement la section (holomorphe!) a de n
donnée par

On peut même choisir l'expression des points de cet ouvert ayant z0 1. On a

donc

precise

j c co 1, c classe d'une droite dans H2(Pm, Z).

z [z0,..., zm] (1, zjzo,.., zjz0).

Il ct(z) II2 1 + Z Z|Z|

5 log II CT II2 Z zA~i/(l + Z -) '

i + L
La restriction à la droite Z! z, zt- 0 (i^2) donne

2tc dz A dz
— œ

(l + M2)2'axe z z
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Mais dz A dz (dx + idy) A (dx — idy) —2i dx A dy de sorte que

i f dz A dz
co

2tc J (1 +1 z |2)2

'

2tt

* dx A dy

(T+m¥
2n

On passe en coordonnées polaires JJ dxdy — J dr r J dcp et on trouve

1

Cû

2tc
dcp

dp

o (1 + P)2

0

2r dr

o (1 + r2)2

1

1 + p
1

Nous aurons encore besoin de savoir que la 2-forme de Fubini-Study est

positive. Puisqu'elle est invariante par le groupe transitif U(m -h 1), il suffit de voir
qu'elle est positive en un point, disons l'origine [1, 0,..., 0] e Pm. Ce point
appartient bien à la carte-affine U0(z0 ^ 0) dans laquelle nous avons donné une

expression explicite de co :

^origine Z ^ ^^ii)origine •

ZK

Rappelons-nous que dzt est le champ constant de formes linéaires (complexes)
coordonnées de sorte que (dzf)originc f et similairement (dz"f)origine F
(complexe conjugée de f : elle est antilinéaire). On a donc

«»origine ~Z(/i<8>7r~

et

®origine(^5 ^) Z(/i(^)./X^)

^ Z(ui(iu)i - ui(iu)i)

1

— > >0 si U 7^ 0
71

(La seule difficulté de ce calcul consiste à ne pas confondre l'indice de sommation
i variant de 1 à m et i yf—ï

L
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Observons encore que la 2-forme de Fubini-Study co est de type (1, 1) au sens

de Hodge. Comme

H\X, C) H(2'0) © H{1>1} © H{0> 2),

H{°' 2) conjugué de H{2, 0) (donc de même dimension!)

on a toujours dimCH2(X, C) dimcH{1'1} + 2 dimcH(2' 0) et dans notre cas,

dimc H2(Pm, C) 1 => Hi2' 0) H{0> 2) 0

Plus simplement, on remarque que l'expression explicite de co dans une carte ne
fait intervenir aucune expression dzt A dzj ni dzt A dzj mais seulement des

dzt A dzj. En tout point a e Pm, on a donc

coa(iu, iv) coa(u, v).

On peut passer à la considération de la restriction de la 2-forme de Fubini-
Study à la variété abélienne plongée projectivement

i: A V/L c* Pm

/*co «(-h co (Fubini-Study).

Nous étudierons cette restriction par introduction de coordonnées réelles

(xj)i ^j4Zn sur V obtenues en choisissant une base de L. Nous identifierons cette

2-forme à une 2-forme Z2"-périodique sur R2n

® Z ajk dxj A dxk ((ajk) antisymétrique)
j, k

avec coefficients lisses ajk g ^^(R^/Z2"). Comme co est fermée, on doit avoir

0 d(b Yj dcijk A dxj A dxk
j,k

Z (dcijk/dxp)dxp A dXj A dxk
A k, p

En regroupant les termes semblables, on trouve les relations de cocycle

d'aJk + dJaki + dkaij=0 d/ôxp).

Développons alors en série de Fourier ces coefficients ajk:

aJk(x)I ajAQe2*»1*

(l'indice / parcourt le réseau entier Z2" et Z1x1 + Z2x2 + ...)•
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Lemme. La 2-forme â> est cohomologue à la 2-forme

Y ajk(0)dXj A dxk.

Cette dernière forme (à coefficients constants) n'est rien d'autre que la forme

moyenne de co : elle est invariante par translations. C'est aussi le représentant

harmonique de la classe de cohomologie définie par co sur le tore réel R2"/Z2".

Preuve du lemme. Il suffit de construire une primitive de la 2-forme

r| £ î(o>* - ajk(0))dXj A dxk

Y ajk(l)e2nilx dxj A dxk.
j,k,lf o

On cherche donc une forme

At{I)e2wilx dxt
i iitelle que

dQ Y ajMe2nilx dxj A dxk.
h Kit o

Comme toutes les fonctions considérées sont lisses, les développements de

Fourier considérés sont rapidement convergents (suites de coefficients aßt) -» 0

plus vite que || / \\~p pour tout entier p e N lorsque || / || - oo) il est légitime de

dériver ces séries terme à terme et on trouve les conditions

liAJtl) - IjAll) ai}{l) (/ # 0).

Choisissant un indice i avec lt ^ 0 et le coefficient A^I) arbitraire, on posera pour

i ^ '

Aß (IjAß + a,ß)/l,.

Il résulte immédiatement des conditions de cocycle pour le système des atj que
ces Aß) satisfont bien toutes les conditions imposées, et le lemme est ainsi
démontré.

Dénotons par

Z ajk(0)Adxk
j<k

cette forme moyenne. Elle est de classe entière

[co*] [i*(û] g H2(A, Z)

comme image réciproque de la classe entière de la forme de Fubini-Study. Son



120 A. ROBERT

intégrale sur un 2-cycle entier (surface fermée) de A doit donner un entier.
Prenons en particulier les 2-cycles donnés par la paramétrisation

cx,:[0, 1 ¥-+A= V/L (X, peL)

(s, t) i— sX + tp(mod L)

(lorsque X est non proportionnel à p, l'image du cycle cest un tore usuel —
dimR 2 — immergé dans A : c'est même un tore plongé dans A si {X, p} est

contenu dans une base de L). On doit donc avoir

Jc co* entier (pour X, p e L).

Utilisant la paramétrisation donnée pour calculer ces intégrales, on trouve
(tenant compte du fait que le champ de formes bilinéaires co* est constant)

m* co*rigine(X„ H) jo ds dt ECk, n)

avec
E co*rigine (forme R-bilinéaire alternée).

C'est la propriété d'intégralité souhaitée sur L x L. Pour conclure la

démonstration, il reste à voir que E est positive et invariante par multiplication
simultanée des arguments par i (type (1, 1)). Comme la valeur à l'origine de la 2-

forme co* est obtenue par moyenne (relativement à la mesure de Haar normalisée
du groupe V/L, c'est aussi l'image de la mesure de Lebesgue, identifiant V à R2"

par choix d'une base de L), des formes R-bilinéaires alternées positives

coa (a e A, co: 2-forme de Fubini-Study),

la positivité de E est évidente. Cette opération de moyenne ne change pas non
plus le type (elle ne touche que les coefficients des formes dxj A dxk., pas les

dxj A dxk elles-mêmes)

E(u, v) co*rigine(u, v) \ A^pm (»Ja, v)da

et coz(iu, iv) — coz(w, v) (pour tout z e Pm) implique E(iu, iv) E(u, v).
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5. Commentaires concernant la partie cohomologique
DE LA DÉMONSTRATION

C'est la partie cohomologique de la preuve (section précédente) qui permet de

donner un exemple de tore complexe non projectif (cf. sec. 1, remarque 4). Il est

plus facile de construire une variété analytique (lisse) compacte non projective. A
cet effet, on peut construire les surfaces de Hopfcomme suit. On regarde le corps
des quaternions réels

H => R © Ri © Rj © Rk

(ii2 j2 k2. — 1 et ij k,...) comme espace vectoriel complexe de

dimension 2

H - (R©Ri) © (RffiRQ/ C © Cj

On choisit ensuite un quaternion réel y > 1 de sorte que le sous-groupe

T {yn:neZ} c Hx

du groupe multiplicatif des quaternions non nuls est discret (donc fermé).
L'espace homogène

Ay Hx/r (dimcXy 2)

est une variété analytique (lisse) compacte (c'est même un groupe de Lie
complexe puisque y est réel, donc T contenu dans le centre de Hx). La
décomposition polaire

Hx S3 x RI
q ^ (q/\q\, kl)

où S3 dénote la sphère unité de l'espace H R4, est un difféomorphisme. Elle
induit un difféomorphisme

*r, s3xRï/r x s1.

Comme l'homologie d'une sphère est donnée par la décomposition cellulaire

S" R" u {00} (opérateur bord trivial),
Z) Z si i0 ou n, H 0 sinon
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la formule de Künneth permet de calculer l'homologie de Xy (l'homologie des

sphères est sans torsion ; d'ailleurs, il suffirait de calculer l'homologie sur un

corps, par exemple Q, R ou C). En particulier

H^S1) (g) HtiS3) 0 pour k + / - 2

implique

H2(Xy) H^S'xS3) 0

puis H2(XV C) 0. Mais, pour toute variété projective X, on a

H2(X, C) # 0. En effet, si X est plongée dans un espace projectif Pm(C), la
restriction de la forme de Fubini-Study de Pm(C) à X fournit une 2-forme fermée

positive co sur X dont la classe de cohomologie est non nulle 0 ^ [co] e H2(X, C)

(si la forme co était exacte, toutes les puissances extérieures co A co A A co

seraient aussi exactes et en particulier, considérant la puissance égale à la
dimension complexe de X, co A A co 0 ce qui n'est pas le cas, puisque
cette puissance extérieure est une forme volume sur X : l'intégrale précédente est

positive — on suppose naturellement dimc X > 0!).

Puisque tous les tores sont difféomorphes, on ne peut trouver d'obstruction à

un plongement projectif aussi simple que pour les surfaces de Hopf. Il a été

nécessaire de faire intervenir Yintégralité de la forme de Fubini-Study.
L'homologie d'un tore, i.e. d'un produit de cercles, est aussi donnée par la
formule de Künneth (l'homologie d'un cercle S1 étant sans torsion, l'homologie
du tore est engendrée par H^1). Mais les calculs faits dans la section précédente

permettent d'être même plus explicites. Prenons en effet un tore V/L et un entier k

avec 0 < k ^ dimR(F). Toute forme différentielle de degré k sur V/L peut être

considérée comme /c-forme L-périodique sur V et développée en série de Fourier.
Seuls les termes constants de la série de Fourier nous intéressent (toute forme
fermée est cohomologue à ses termes constants). Par restriction à l'origine, on
obtient donc une /c-forme alternée sur K On en déduit les isomorphismes

Hk(V/L, R) ^ Altfc(K R) Ak V*

puis

dimR Hk(V/L, R) si n dim,,(

Lorsqu'on désire établir des isomorphismes analogues sur Z, on doit utiliser

^ Puisque V est contraetible, V - V/L s'identifie au revêtement universel du tore V/L
et n^V/L) L. En particulier H^V/L, Z) L.
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la formule de Künneth. Par exemple, pour k 2, le théorème de Künneth

montre que les 2-cellules entières

cXyL : (s, t) -+ sX + tp mod L (X, pcL)

[0, l]2 -4 V/L

engendrent H2{V/L, Z) (dans la sec. 4 nous n'avons utilisé que l'intégralité de ces

cellules particulières). L'intégralité d'une 2-forme alternée sur L caractérise les

éléments de H\V/L, Z).
La construction transcendante des surfaces de Hopf présente tout de même

quelque analogie avec celle des tores complexes (de dimension 2). En effet,

lorsque dimc(L) 2, on peut effectuer un quotient par un réseau L en deux

temps. Choisissant d'abord une base complexe de V dans un système de

générateurs de L, on peut identifier V à C2 et un facteur direct L1 de L à Z2. Donc

V/LV/Lx© L2 C2/Z L'2

où L'2 dénote le sous-groupe image de L2 dans le quotient. Avec l'exponentielle
normalisée

e(z) exp(27nz),

on peut identifier C/Z à Cx et

V/L Cx x Cx/L'2

où L2 est un sous-groupe discret (de rang 2) de Cx x Cx. Les surfaces de Hopf
étaient obtenues comme quotient de C x C — (0, 0) par un sous-groupe discret
(de rang 1 de Hx).

La principale différence entre les deux situations envisagées provient du fait
que les tores complexes sont toujours kàhlériens, et en particulier leur H2 est non
nul, tandis que les surfaces de Hopf ne le sont pas.

6. Classification de variétés abéliennes

Commençons par déterminer les applications holomorphes entre tores
complexes.

Proposition. Soient V/L et V'/L' deux tores complexes et /:
V/L -> V'/L une application holomorphe. Alors J{v) f0(v) f(0) où f0
est un homomorphisme provenant d'une application C-linéaire F : V -> V
telle que F(L) cz L'.
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Démonstration. Remplaçant / par / — /(0), on peut supposer /(0) nul
(dans V'/L) puis relever la composée

V -+ V/L L V'/L

au revêtement universel V de V'/L :

K.

^V'/L.
Choisissons même le relèvement F tel que F(0) 0. Comme les points z et z

4- X(XeL) ont même image (dans V/L), la différence F(z + X) — F(z) doit être un
élément de L et l'application (continue!) z \-+ F(z + X) — F(z) envoie l'espace

connexe V dans l'espace discret L : elle est constante et on a

F(z + X) F(z) + cx (cx F(Xj).

Les dérivées partielles de F (par rapport à une base de V) sont ainsi holomorphes
et L-périodiques donc bornées. Le théorème de Liouville montre qu'elles doivent
être constantes et F est (C)-linéaire (linéaire homogène si on a choisi F(0) nul).

Il résulte immédiatement de la proposition précédente que lorsque

7 : V/L - V'/L

est un homomorphisme holomorphe, le relèvement F : V - V a une restriction
Ff: L - L additive (i.e. Z-linéaire) qui caractérise complètement F et /. Ainsi

Homho/(K/L, V'/L) - Homz(L, L)

f Ff
est bijective. En particulier, si L L,

Endhol(V/L) EndZ(L) End(Z") Mn(Z)
et

AuthoiWL) Aut(L) G/(Z") Gln(Z).

Passons aux variétés abéliennes. Lorsque A V/L est une telle variété, il
existe une forme alternée

E : L x L -» Z (ou A2L^Z)



VARIÉTÉS ABÉLIENNES COMPLEXES 125

dont l'extension R-bilinéaire (encore notée E) V x V - R satisfait

| E(u, iu) > 0 si 0 # u g K

| £(îm, w) £(w, y) (m,- v e V)

(cf. sec. 2), et il est plus intéressant de classer les couples (A, E). On peut observer

que L se déduit intrinsèquement de A par formation de l'homologie (entière)

A i—» Ui(A) HM* Z) H^A),

de sorte que dans la donnée (A, £), on peut considérer que E est un ' ment de

Homz( A 2H1(A), Z).

Un tel élément E, ayant les propriétés indiquées ci-dessus est appelé polarisation
de A et le couple (A, E) est une variété abélienne polarisée. Lorsque E est

unimodulaire, on dit que la polarisation est principale et A est polarisée

principalement par la donnée de E.

Remarque. Choisissant une base (eh Xj)1^îtj^n de L dans laquelle E

s'exprime sous forme réduite de Frobenius

| E{eh ej) E(Xh Xj) 0

[ E(eb Xj) 5ijdi (di + 1 multiple de dt pour 1 ^ i < n),

on voit que E peut être considérée comme forme unimodulaire sur le réseau L
engendré par les et et les Xj/dj, de sorte que A' VIL est polarisée principalement
(par E). Le noyau de la projection canonique A -> A' (correspondant à

l'inclusion L a L) est fini et d'ordre Hd3{= Pf(E)), et A apparaît comme
revêtement fini de la variété abélienne principalement polarisée A'.

Similairement, on peut construire un réseau E c= L et une multiple —E
m

unimodulaire, d'où un revêtement fini A" -» A principalement polarisé. De
façon générale, on peut donc dire que toute variété abélienne A est « comprise
entre » deux variétés abéliennes principalement polarisées

A" -+ A -> A' (revêtements : noyaux finis).

Conservons donc les notations précédentes en supposant que le réseau L de
V est muni d'une polarisation principale E. La base symplectique choisie

(é?i,..., en, X,1;..., À,„)
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sera dénotée plus simplement (ei)l^i^2n °u (e) (de sorte que Xj ej + n). On a

donc par hypothèse

j) E{ßn + p n + j) 0

E(eh en+j) bu (1

II sera utile de travailler dans une autre base (e) {e'j)1^j^2n de l'espace
vectoriel réel VR sous-jacent à V (restriction des scalaires à R) définie comme suit

(e'){ieu ien,eue„) (i y/^1)

Dans cette base (e'), la matrice J de la multiplication par i ^/— 1 dans VR est

donnée par

d'où

ie'; i2e: — e\j n + j

J (_°1 o")^2„(Z).

En accord avec les notations de la sec. 2, notons V1 le sous-espace vectoriel réel

(de dimension n) engendré par les vecteurs eu en. La forme alternée E est

isotrope sur V1 et sur iV1 (invariance par multiplication par i). Donc la matrice
représentative de E dans la base (e') a la forme

En identifiant E à sa matrice représentative, l'invariance par multiplication par i
se traduit plus précisément par la relation 1)

lJEJ - E

Effectuant les produits matriciels par blocs, on trouve l'identité

x) Identifiant u et v à des vecteurs colonnes dans la base (e'\ on écrit E{u, v)

lu- E v (produits matriciels lignes par colonnes!).
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montre que F doit être symétrique et E est donnée par la matrice

E ] antisymétrique (Asymétrique).

qui

\F 0 /
La positivité de E s'exprime aussi facilement :

u 7^ 0 => 0 < E(u, iu) îuEJu

(F 0\
d'où EJ définie positive. Mais la matrice EJ est simplement I I. Donc

F est symétrique définie positive

Les formes C-linéaires coordonnées de V dans la base (eu en) ont été dénotées

par fj : ce sont les extensions C-linéaires des

v i— E(v, Xj) : V1 -+ R

Elles satisfont bien aux relations j]{ek) bjk qui montrent que

Z X Zj.
j= 1

Prenant en particulier z Xk on va écrire

hY,fßk)ej YZjkei lj(xjk + iyjk)ej
puis

h lyjkiej +

qui fournissent les composantes des vecteurs Xk dans la base (e'). Posons

(Zjk) Z X + iY +

fy\Les composantes des Xk sont les colonnes de la matrice II (matrice 2n x n

réelle). Les relations E(eh Xj) (rappelons que nous supposons E

unimodulaire) peuvent être rassemblées sous la forme matricielle

(0 UEQ-(0 lj(° "X)= '.««J«)-

Effectuons ce produit par blocs

FY (F 0)(p 1„.
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Cela prouve que la matrice Y est inversible, d'inverse F: Y1 F.1) En
particulier, Y est symétrique. L'isotropie de E sur l'espace engendré par les

vecteurs Xk s'exprime de façon analogue

Puisque FY YF 1, la relation précédente montre que X est aussi

symétrique. En fait, nous savions déjà que Z X + iY est symétrique (lemme
de sec. 2 utilisé pour démontrer les équations fonctionnelles de 0). La positivité
de E a fourni F » 0 que nous pouvons exprimer de façon équivalente par Y

F~1 » 0. En résumé, le choix d'une base symplectique de L nous a permis de

construire une matrice symétrique Z e M„(C) de partie imaginaire définie

positive.

Définition. On appelle demi-plan généralisé de Siegel Hn l'espace formé des

matrices symétriques de Mn(C) de partie imaginaire définie positive

Hn {Ze Mn{C) : 'Z Z et Im(Z) » 0}

Identifions E à C" par le choix de base el9..., en. Le réseau L apparaît alors

comme engendré par Z" et les colonnes (ou lignes!) de la matrice Z. Inversement,
montrons comment toute matrice Z g Hn fournit un réseau L (engendré par les

vecteurs el9..., en de la base canonique de Cn et les colonnes de Z) pour lequel

C"/L possède une polarisation principale (donc est une variété abélienne). Il s'agit
de trouver une forme hermitienne sur C" dont la partie imaginaire soit
unimodulaire sur L. L'examen du cas trivial n 1 indique comment procéder : il
s'agit de diviser la forme hermitienne canonique tûv par la partie imaginaire de

z( Z). Je prétends que la forme hermitienne sur Cw donnée par la matrice réelle

symétrique Y1 a les propriétés requises. Cette forme hermitienne est donc
donnée (pour des vecteurs colonnes u et v de C") par

H(u, v) « 'ûY'h.

Puisque Y 1 est symétrique réelle et définie positive, H est bien un produit
scalaire hilbertien et E Im(H) est automatiquement R-bilinéaire alternée,

invariante par multiplication par i et positive. Il ne reste qu'à en vérifier

*) En dimension finie, FY 1„ => Y injective => Y inversible.
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l'intégralité et l'unimodularité. Ecrivons encore L © L2 avec Lx — Z"

et L2 engendré par les colonnes de Z. Puisque Y est une matrice réelle, H sera

réelle sur L1 et E nulle sur ce sous-réseau. De même si Xk désigne la ke colonne

de Z, les produits scalaires

H(XpXk) %Y lXk

sont les coefficients matriciels de

tZY1Z ZY lZ (X-iY)Y~\X + iY)

{X-iY){Y~lX + iln) réel + i{X-YY~lX) réel.

Les E(XP Xk) 0 sont des entiers! Finalement, les H(ep Xk) tejY~1Xk sont les

coefficients matriciels de

IY~lZ Y-^X + iY) Y~'X + iln,
d'où

E(ep Xk) )j, k)e coefficient de In bjk

L'intégralité et l'unimodularité de E sur L sont donc prouvées. Plus précisément,
la forme alternée E prend les valeurs normalisées sur les couples de vecteurs de

base ep Xk tout comme la forme initiale ayant conduit à la matrice Z : les deux
constructions sont bien inverses l'une de l'autre.

Il ne reste qu'à déterminer quand deux matrices Z et Z' e Hn fournissent des

variétés abéliennes principalement polarisées isomorphes. Par là, on entend
naturellement que les couples correspondants (A, E) et (A\ E') sont isomorphes :

il existe un isomorphisme analytique / : A - A qui transporte la forme E sur E'

g gf \ L - L (Xl9 X2eE)

g : V -> V E'(gXl9 gX2) E(Xl9 X2)

f : A -> A'

Pour trouver cette condition sous la forme usuelle, nous identifierons les

éléments de C" à des vecteurs lignes. Le réseau L est engendré par les vecteurs de
la base canonique de C" et par les vecteurs lignes de Z (ibid. pour L). La condition
d'isomorphie (analytique) des tores complexes Cn/L et Cn/L donnée au début de
cette section revient à l'existence d'un isomorphisme C-linéaire de Cn appliquant
L sur L. Par notre convention de regarder maintenant les vecteurs de C" comme
des lignes, l'action de la matrice représentative de g est donnée par une
multiplication matricielle à droite : g(u) uMg. L'isomorphisme en question
s'exprime par

L L -Mg(MseG!„(C)).
L'Enseignement mathém., t. XXVIII, fasc. 1-2. q
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La base (ei)1^i^2n de L(en + k étant la ke ligne de Z) est envoyée sur une base de

L : (eiMg) i ^ £ ^ 2n est une base de L. Il y a donc une matrice y e Gl2n(Z) effectuant le

passage entre les deux bases de L

e'jZ Y;* ekMg (e'je;- pour; 1,«).
Ecrivant ces relations linéaires l'une au-dessous de l'autre, on obtient l'identité
matricielle

fZ'\
_

fZM\
_

(A B\ fZM\
_

/(AZ + B)M\

\I y\IMj ~ \C D

(M Mg et y désignant la matrice (yjk) écrite dans un ordre convenable! 1)). On
en tire

CZ + D inversible et (CZ + Z))-1 M
puis

Z' {AZ + B)M (AZ + B){CZ + D)~1

avec

"'{c
Lorsque y est compatible aux polarisations, les deux bases (e'j) et (e}M) sont

symplectiques et y envoie la seconde dans la première. La matrice de E' étant J
dans ces deux bases, on doit avoir

'yjy J •

Définition. Le groupe symplectique Spn est le sous-groupe de Glln défini par

geSpno ge Glln et *gjg J

On parlera ainsi du groupe symplectique réel Spn(R), du groupe symplectique

entier Spn(Z),... Si g est une matrice symplectique, on a

de%)2 det{'gjg) det(J) - 1

d'où de%) ±1. Plus précisément, utilisant le pfaffien (défini sur les matrices

alternées et caractérisé par les conditions

det(E) Pf(E)2, Pf(J) AlPfCgEg) dtt(g)Pf(E)\

(D C\ (A Bs
1) Plus précisément (yjk) { I et y I
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on voit que le déterminant d'une matrice symplectique est +1 :

Spn <= Sl2n 1).

Pour pouvoir formuler proprement la condition d'isomorphie des variétés

abéliennes principalement polarisées correspondant aux matrices Z et Z' g Hn, il
faut introduire l'action de Spn(R) ou Spn{Z) dans Hn.

Proposition. Soient g ^ ^ e Spn(R) et Z g Hn. Alors CZ + D

est inversible et

g-Z (AZ -f B) (CZ + D)~1 e Hn.

De plus, (g, Z) i— g • Z définit une action continue et propre de Spn(R) dans

H„.
Pour ne pas interrompre le cours normal de nos déductions, renvoyons la

démonstration de cette proposition à la fin de la section.

Le théorème de classification est le suivant.

Théorème. A toute matrice Z g Hn, on associe la variété abélienne

principalement polarisée (A, E) définie comme suit :

A Cn/L où L est le réseau engendré par la base canonique de C" et les

colonnes (ou lignes) de Z,

E partie imaginaire de la forme hermitienne H donnée par la matrice
(réelle) Y~1 dans la base canonique (Y Im(Z)).

Alors, pour toute y g Spn(Z), les variétés abéliennes principalement polarisées
correspondant à Z et y • Z sont isomorphes et Fassociation

Z ^ (A, E)
définit une bijection

o /m, ri ^ f classes d'isomorphismes de variétés
Spn{Z)\Hn — <

l abéliennes principalement polarisées

Autrement dit, le réseau L associé à Z g Hn est somme de Z" et de ZZn (ou
Z"Z selon qu'on travaille avec des vecteurs lignes ou colonnes!), et

E(u,v) ImÇuY~1v) ^7 (ri7Y~îv — tuY~ 1v). 2)

On montre sans peine que Spl Sl2.

2) Il serait plus cohérent de travailler avec des vecteurs lignes u et v et donc d'écrire
E(w, v) Im{uY uv).
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On a déjà démontré que si les variétés abéliennes principalement polarisées
(A, E) et (A', E') correspondant aux matrices Z et Z' g Hn sont isomorphes, il
existe y e Spn{Z) avec Z' y • Z. Un instant de réflexion montre que les

constructions peuvent être renversées

{A, E) (A\ E')o3 ye Spn(Z): Zf y Z

Le théorème est alors complètement démontré.
Revenons à la démonstration de la proposition.

Lorsque g ^ est symplectique, i.e. lgJg

(*) XAC et XBC symétriques, lAD — lCB

Pour Z e M„(C) symétrique, on peut calculer

(CZ + D)%4Z + ß) (ZtC + tD){AZ + B).
On trouve

ZCCv4)Z + Z(lCR) + (lDZ)Z + lDB

et en utilisant les relations (*)

Z(tCA)Z + ZÇCB) + Z + CBQZ + lDB

On trouve de même

{AZ + B)*{CZ + D)

ZÇAQZ + Z + Z('Cß) + ÇBQZ + XBD

Soustrayant terme à terme (et utilisant encore la symétrie donnée par (*))

(CZ + D)%4Z + ß) - {AZ + B)*(CZ + D)

Z - Z 2i Y.

Si Y » 0, prenant un vecteur colonne complexe u,

(CZ + D)u =* 0 => lü(CZ + DY 0

=> 2i tûYu 0 => u 0

J, on doit avoir

/(= u.1)

*) Donc A I => C symétrique; D I => £ symétrique; q ou D nul => B et C
inversibles ; B ou C nul => /I et D inversibles ; J e Sp„(R).
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Donc Y» 0 => CZ + Dinjective=> CZ + inversible. PourZ e H„, on peut

donc définir

g-Z (AZ + B)(CZ +Dy1si ^ e Sp„(R).

Observons encore

\CZ + D){g -Z -'(g-Z)) (CZ + D)

'(CZ + D) (AZ + B)- '(

Z - !Z 0

par un calcul analogue à celui qui vient d'être fait. Donc est symétrique.

Ecrivons g Z X'+ iY'etmontrons que Y' est définie positive

(CZ + D)* Y

~(Z'C + 'D)(g Z- (g-Z)*) (CZ + D) » 0.

Donc g • Z g Hn et il en résulte immédiatement que (g, Z) i— g • Z définit une

action continue de Spn(R) dans Hn. Pour voir que cette action est propre, il suffit
de vérifier qu'elle est transitive et que le stabilisateur d'un point, disons il e Hn est

compact dans Spn(R). Or les relations (*) montrent que les familles de matrices de

Gl2n(R)

fl B\
ou B est symétrique

0 /
A 0

0 'A'1
où A est inversible

sont formées de matrices symplectiques. On a respectivement

/ B\
o

+

A 0

0 «4-V
Z AZM-

Ainsi, si Z X + iY g Hn on peut écrire Z iY + X • iY
\0 I

(puisque X est symétrique, la matrice considérée est bien symplectique) puis

Z-IÜ
0 / î

Y~ 2
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L'orbite de il est ainsi Hn tout entier. Le stabilisateur de cette matrice il e Hn est

défini par

il g-il (iA + B) (iC + D)'1

i{iC + D) iA + B,
C -B et A D

Ce calcul montre que le stabilisateur de il e Hn est formé des matrices

symplectiques ^ ^ Les relations (*) montrent que %AA + fBB / : La

somme des carrés des coefficients (réels) de A et de B vaut ainsi

TrÇAA) + Tr(lBB) Tr{I) n

En particulier, ces coefficients restent bornés dans le sous-groupe K stabilisateur
de il : K est compact. De plus, l'action définie ci-dessus fournit un iso-

morphisme d'espaces homogènes

Spn(R)/K * Hn.

Remarque. Les matrices particulières

g ^ (AeG/„(R^ e M„(R), 'B et J

(Av Gl-1) engendrent le groupe symplectique Spn(R). Appelons en effet G

Spn{R) le sous-groupe engendré par ces matrices et prenons une matrice

symplectique g \ arbitraire. Puisque

P 0 \ (A B\ (Q 0 ^ fPAQ
0 PVJ\C DJ\ 0 Q

*

* *

on peut choisir convenablement F et Q pour que PAQ soit diagonale avec

éléments diagonaux égaux à 0 ou 1. On peut donc supposer que A a déjà cette

forme

A h o

Of! - d/

Décomposons similairement C (blocs de même taille que ceux de A)

C
Cn C12

^21 C22
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Comme g est symplectique

fAC
1 o\/cn c12\ (cxl c
0 Oy \C2i C22/ V o

-12
*

doit être symétrique: C12 0. Le déterminant de g est non nul, donc les

colonnes de g sont linéairement indépendantes. En particulier, les colonnes de

doivent être linéairement indépendantes : det(C22) / 0. On peut ainsi choisir le

nombre réel b de façon que le bloc A' A + b'C de

I bl\ (A B\
_

(A + bC B -h bD

0 I )\C DJ
^ \ C D

soit non singulier : ce bloc est le bloc supérieur de

A + bC

C

+ bCn 0 \bC bC22\

Cn 0

Ci2 C '^22

et
det(A') det(ld + èCn) det(hC22)

b"~d det(C22) det(ld + 6Cn).

On peut donc supposer dès le départ que A est non singulière et la première
réduction permet de supposer que A I 1„ est l'identité. Multiplions alors g
à gauche par i D-'-G
On obtient

/ 0^

~C I
1 B) B'\

)\C DJ \0 D'j (C lAC doit être symétrique).

Les conditions symplectiques (*) montrent alors immédiatement que D' I qt
B' symétrique de sorte que g e Spn(R) appartient au sous-groupe G engendré par
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les matrices particulières. Comme les matrices particulières ont visiblement
toutes déterminant unité, celà démontre que Spjïl) c= Sl2n(R) sans devoir avoir
recours au pfaffien. Observons aussi que les transformations de Hn produites par
les matrices particulières sont respectivement

Zv^ AZlA,Z\-+Z + B et Z h-> -Z1

S'il est évident a priori que les deux premières familles conservent la positivité de

la partie imaginaire Y de Z, ce fait peut être vérifié comme suit pour la dernière

transformation. Posons donc

Z X + iY 4(y4xy4 + î/)4
de sorte que

111 1
— Z~1 - Y-2(Y'2XY~2Jril)-1 Y'2

Y Y
Il s'agit de voir que la partie imaginaire de — Y~2X Y~ 2 + i/)~1 est bien définie

Y y
positive (la matrice S + il Y~2XY~2 + U est toujours inversible puisque S

est symétrique réelle, donc n'a pas la valeur propre — i...). Mais on vérifie sans

peine que

(S — il) (S2 + /)_1 (S2 + /)_1 (S —il) est inverse de S + il

(comme toutes ces matrices commutent entre elles, on peut être tenté de calculer

cet inverse avec les règles usuelles des quotients : c'est légitime). Il ne reste plus
alors à vérifier que (S2 +J)-1 » 0 ce qui est clair!
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