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82 T. H. KOORNWINDER

By the continuity and homomorphism property of a we have, for / e ^even(R):

o(/i)a(/) at/i*/) -
Hence

<4My)fi)f(y)dy

<*(/)

where

mmdy, f e ®even(R),

ßW: Ka(/i)) ^(VWi) + '/(/.I >)./;))

Then ß is even and it is a continuous function by the continuity of a. It follows
from the homomorphism property of a and from the fact that ß is even, that

ßMßOO U${x+y)+ ß(*-.y))>

so ß(0) 1. This is d'Alembert's functional equation. By continuity, Re ß(x)

> 0 if 0 ^ x ^ x0 for some x0 > 0. Then ß(x0) cosh c for some complex c

a + ib with a > 0, —\k < b < jk. Now, following the proof in Aczel [1,
2.4.1] it can be shown x) that for all integer n, m ^ 0

p(p x.) - »»h q.
So, by continuity and evenness of ß :

ß(x) cosh — x ] for all x g R

5.6. Notes

5.6.1. Some other examples of Gelfand pairs (G x X, K*) are provided by G

- SO0(n, 1), K SO(n) and G SU(n, 1), K S(U(n) x U( 1)), cf. Boerner
[4, Ch. VII, §12; Ch. V, §6], Dixmier [8] or Koornwinder [27, Theorems 5.7,

5.8].

5.6.2. The main Theorem 5.4, which was first proved in the case of unitary
representations by Bargmann [2], is a special case of the subrepresentation

l) I thank H. van Haeringen for this reference.
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theorem for noncompact semisimple Lie groups due to Casselman (cf. Wallach
[47, Cor. 7.5]). Casselman's theorem improves Harish-Chandra's [22,

Theorem 4] subquotient theorem.

5.6.3. The generalized Abel transform / -> F8f can be defined for general K-

type 5. It was introduced by Harish-Chandra [24, p. 595] in the spherical case,

Takahashi [40, §2] in the case G SO0{n, 1) and Warner [49, 6.2.2] in the

general case. The injectivity of this transform holds generally, cf. Warner [49].
The image of /*5(G) under this transform is known in the spherical case (cf.

Gangolli [16]) and if G has real rank Land 8 is one-dimensional (cf. Wallach
[46]), but seems to be unknown in the general case (cf. Warner [49, p. 36]).

5.6.4. In [39] Takahashi also reduces the proof of Theorem 5.4 to

Proposition 5.5. However, he proves Prop. 5.5 by considering eigenfunctions of
the Casimir operator, since he did not know, then, how to invert the transform /
— Fnf. In [42] he independently obtained a proof of Prop. 5.5 similar to ours.

Earlier, in [40, §4.1] he used a similar method in the spherical case of G

SO0(n, 1). Naimark [34, Ch. 3, §9] proved the subquotient theorem for
SL(2, C) by methods somewhat related to ours.

5.6.5. Part of Lemma 5.8 is contained in Whitney [50]. See Schwarz [37]
for a theorem on Cx-functions which are invariant under a more general Weyl

group.

5.6.6. Theorem 5.10 more generally holds with Gegenbauer polynomials of
integer of half integer order as kernels, cf. Deans [6], [7], Koornwinder [27,
§5.9]. Deans' proof uses the inversion formula for the Radon transform. The
author's proof uses Weyl fractional integral transforms and generalized
fractional integral transforms studied by Sprinkhuizen [38]. Matsushita [30,
§2.3] considers the transformation / - F} for general real n in the context of the
universal covering group of SL(2, R) and he derives the inversion formula with a

proof due to T. Shintani, which uses Mellin transforms.

6. Unitarizability of irreducible subrepresentations
OF THE principal series

6.1. A CRITERIUM FOR UNITARIZABILITY

Remember that a representation of an lese, group G on a Hilbert space is

strongly continuous if and only if it is weakly continuous (cf. Warner [48,
Prop. 4.2.2.1]). Thus, if i is a (strongly continuous) Hilbert representation of G
then t defined by
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