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78 T. H. KOORNWINDER

Now substitute (5.8) into the right hand side of (5.10). Thus, for the proof of
Prop. 5.5 we have to show that each continuous character o on I (G) takes the

form

(5.11) af) = J Fit)e ™ dt, f € 17 (G).

for some A € C. In §5.5 we will prove:

THEOREM 5.6. Let G = SU(1,1),ne3Z. The mapping f — F} is a
topological algebra isomorphism from 1ZX,(G) onto D....(R), the algebra of
even C*-functions with compact support on R.

Thus, in view of (5.11) we are left to prove:

PROPOSITION 5.7. The continuous characters on %.,.,(R) have the form

h— J h(t)e ™™ dt

for some A€ C.

5.5. COMPLETION OF THE PROOF OF THE MAIN THEOREM

By the discussion in §5.4 we reduced the proof of Theorem 5.4 to the task of -
proving Theorem 5.6 and Prop. 5.7. Theorem 5.6 was partly proved in Prop. 5.3.
[t is left to prove that f — F}isinjective on I° (G) with image &, .,(R) and that
the inverse mapping is continuous. In order to establish this we identify both
I®(G) and 9.,..(R), considered as topological vector spaces, with Z([ 1, c0)) and
we rewrite f — F'; as a mapping from 9([ 1, ) onto itself. This mapping turns
out to be a known integral transformation, for which an inverse transformation
can be explicitly given. First note:

LEmMMA 5.8. The formula

(5.12) f(x) = g(x?)

defines an isomorphism of topological vector spaces f — g from 9.,..(R) onto
2([0, 0)).
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Proof. Clearly,if g € 2([0, 0)) then f € Z,,..(R)and the mappingg — [ 1
continuous. Conversely, let [ € Z....(R) and let g be defined by (5.12). By
complete induction with respect to n we prove: g"(0) exists and there is a
function f, € Z.,..(R) such that

filx) = g"(x?), xeR,

and f = f,: Zeven(R) & Zyen(R) is coniinuous. Indeed, suppose this is proved
up to n — 1. Then

2x(g" V) (x?) = froa)dy

=%
!
=
I
B ey g

SO

) 2 13
(5.13) f(x)::f<< t x 1)2>>,xe[1, o).
(x2—1)2 X

For f e 17 ,(G) define
(5.14) h(chit): = h(t),teR.

LEMMA 5.9. The mapping [ — [ defined by (5.13) is an isomorphism of
topological vector spaces from 17,(G) onto 9([1, ). The mapping h — h
defined by (5.35) is an isomorphism of topological vector spaces from %, .,(R)

onto  Z([1, o0)).

even(

Proof. The second statement follows from Lemma 5.8. For the proof of the
first statement introduce global real analytic coordinates on G by the mapping

o (O e

1 1
e2(1 +|2])2 z >
e 21 +|2)2

from C x (R/4nZ) onto G. If g € 9([ 1, «0)) and

Lo oL 1
f<<€2 (1:—'|Z| )2 1 z 1>>: _ ein¢g((1+lz‘2)5)

e 291 +|z|2)Z
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then f € I2 (G), 7 = g and the mappingl g — f 1s continuous. Conversely, if
f el (G) then f, as a function of z and ¢, is radial in z, so the function

1
1+42%)2
Z—)f(( Z) g 1),ZER,
L (422

belongs to %.,.,(R). Now make the transformation z = (xz—l)% and apply

Lemma 5.8. It follows that f e 9([1, ©)) and that the mapping f — f is

continuous. ]
Define the Chebyshev polynomial T,(x) by

(5.15) T,(cos B): = cos nf .

It follows from (5.7) that, for f € I°,(G):

o chit+ Lize* *
g0 = e [A((E D) e

o [ chyt+3ize* \*"
= e* | fllchst+3ize) dz

|chit +ize?|

| chit
= e | f(lch3t +3ize*|) Ty, dz,

|chit +3ize®|

0
SO

W) = 2 J T Ty~ Lehit)(y* — ch®5t) " *ydy .

chit

This formula shows that F7} is even on R, so F} € Z.,.,(R). Now, by (5.14):

(5.16) T Ty~ %) (y? —x%) " tydy, x e [1, o0] .

I
&)
X C— 8

For n = 0, (5.16) takes the form

Fix) = ZJ T —x?)"tydy .
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The problem of inverting this just means to solve the Abel integral equation, as
was pointed out by GODEMENT [20]. Indeed, we get

0

d T 1
) = —ﬂ‘lf*F?(X)(xz—yz)‘fdx-
dx

y

For general n, we can use an inversion formula obtained by DEANS [7,(30)], see
also MATsUSHITA [30, §2.3] and KOORNWINDER [27, §5.9]:

THEOREM 5.10. For m = 0,1,2,.., g€ 9([1, o)), x e [1, c0) define

(5.17) (A,g)(x): = 2 J g T(y>—x*)"2ydy ,
r L
(5.18) (Bug)(x): = —m~* J g Tx™y)y* —x?)"2dy .

Then A,, and B, map 9([1, ) into itself and A,B,, = id, B,A, = id.

This theorem shows that f — F7 is a linear bijection from I”,(G) onto
Z....(R). Finally in order to prove the continuity of the inverse mapping, we
show that B,, is continuous. Just expand T,,(x ~'y) as a polynomial and use that

o]

d\* 1
(x‘l d—) j h(y) (y* —x?)"2ydy
y

X

d\" 1
= J (y”la—> h(y)(y*—x*)"2ydy
y

by the properties of the Weyl fractional integral transform (cf. [11, Ch. 13]). This
completes the proof of Theorem 5.6.

Proof of proposition 5.7. Extend o to a continuous linear functional on

Z(R), for instance by puttinga(f) = 01if f is odd. Choose f; € 9.,.,(R) such that
a(f1) # 0. Let |

(k(Y)fl)(x) c = filx—y), x,yeR.

L’Enseignement mathém., t. XXVIII, fasc. 1-2.
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By the continuity and homomorphism property of o we have, for f € Z.,..(R):

A f)lf) = alfixf) = j (M) f1)f )y .

Hence

o f) = J FIBY)y, f € Deyen(R),

)

where

By) : = Hol 1)) HMy) fy) + M=) f1)) -

Then f is even and it is a continuous function by the continuity of a. It follows
from the homomorphism property of o and from the fact that B is even, that

Bx)B(y) = HB(x+y) + Blx—y),

so B(0) = 1. This is d’Alembert’s functional equation. By continuity, Re p(x)
> 0if0 < x < x4 for some x, > 0. Then B(x,) = cosh ¢ for some complex ¢
= a + ib with a > 0, —4n < b < 4n. Now, following the proof in AczeL [1,
2.4.17 it can be shown ') that for all integer n, m > 0

n c n
B(? x0> = cosh (x-o T x0> :

So, by continuity and evenness of :

B(x) = cosh (i x) for all xeR. O

X0
5.6. NOTES

5.6.1. Some other examples of Gelfand pairs (G x K, K*)are provided by G
= SO(n, 1), K = SO(n) and G = SU(n, 1), K = S(U(n) x U(1)), cf. BOERNER
[4, Ch. VII, §12; Ch. V, §6], DixMIER [8] or KOORNWINDER [27, Theorems 5.7,
5.8].

5.6.2. The main Theorem 5.4, which was first proved in the case of unitary
representations by BARGMANN [2], 1s a special case of the subrepresentation

1 I thank H. van Haeringen for this reference.
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