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These are commutative - topological algebras under convolution and their
characters are precisely of the form (5.1), where ¢ is a spherical function on G
x K.If ¢ is a spherical function on G x K then thereis a § € K such that for all
x € G the function k — ¢(xk) on K belongs to 8. Then & is called a spherical
function of type & on G (with respect to K), cf. GODEMENT [ 19]. It is funny that
spherical functions of type & are on the one hand generalizations of ordinary
spherical functions for (G, K), on the other hand restrictions to G of ordinary
spherical functions for (G x K, K*).

For convenience, we take a one-dimensional § € K. Then a spherical function
¢ on G. x K is of type o iff

P(xk) = d(kx) = o(k)d(x), xeG keK.
Let

I 5(G) (or IZ4G))
L= 1/ € CAG) (or C2(G))| f(xk) = f(k)
= (k) f(x), xe G, ke K} .

These are closed subalgebras of I(G) (or I2°(G)) and their characters are precisely
of the form (5.1), where ¢ is a spherical function of type 8. Finally, if T is a K-
unitary representation of G and if #(t) contains a unit vector v satisfying t(k)v .
= &(k)v, unique up to a constant factor, then x — (t(x)v, v)is a spherical function
of type d. ‘

5.3.  THE GENERALIZED ABEL TRANSFORM
Let G be a connected noncompact real semisimple Lie group with finite

center. Use the notation of §2.2. For given Haar measures dk, da, dn on K, A, N,
respectively, normalize the Haar measure on G such that

(5.2) ff J f(kan)e** 189 dk da dn, f € C(G)

KXxAxXN

(cf. HELGASON [25, Ch. X, Prop. 1.11]). Note the property

(5.3) ff(n)dn = g?rlloga) Jf(ana“ “dn, f e C(N),aec A

(cf. [25, Ch. X, proof of Prop. 1.117).
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For A € ag let U* be the representation of G induced by the one-dimensional
representation an — ¢* 29 of the subgroup AN :

(5.4) (Ul(g)f Jk): = e~ @CTPHGTN f(y(g= k), f e L¥(K), g€ G, ke K .

The representation U* is easily seen to split as a direct sum of principal series
representations 7, ,. U* restricted to K is the left regular representation of K.

Let 5e K. For convenience, suppose that & is one-dimensional. The
generalized Abel transform f — F5: 1, §G) — C(A) is defined by

(5.5) Fi(a): = eP(l8® Jf(an)dn, aecA.

If G = SU(1, 1) and & = 1 then this transform can be rewritten as the classical
Abel transform, cf. §5.4.

PROPOSITION 5.3. The mapping [ — F% is a continuous homomorphism
(with respect to convolution on G and A, respectively) from 1Z75G) to
CX(A). Furthermore,

(5.6) JFi’r(a)e_“log “da = Jf(g)(Uk(g_ 16, 8)dg, f € IZ5(G), h € af,
A G
where (.,.) denotes the inner product on L*(K).

Proof. The continuity is immediate. The homomorphism property follows
easily from (5.2) and (5.3) (cf. WARNER [49, pp. 34, 35]). For the proof of (5.6)
substitute (5.4) into the right hand side of (5.6):

m~

Y,

G
m

= | flg)e” ®TMHD §((u(g))~ ')dyg

J flg)(UMg™18, 8)dg = | | sige=trmmsn 8((u(gk)) ™ "k)dk dg
G K

Qt

= J f(kan)e®®~M1oea §(k~Ydk da dn

KxAxN
(‘

= jf(an)e“’”” 8¢ dn da
AN

= | Fi{a)e "¢ da .

,
A
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Now let G = SU(1, 1). Write F(1) and I® (G) instead of F{*(a,) and 175 (G),
respectively. If n e Z + & then (5.5) and (5.6) take the form

(5.7) Fin) = e J flan,)dz

and

.

(5.8) J Fi(t)e ™ dt = jf(g)ﬂg. g g, f€12,(G), AeC,

G

where dg = (2n)” 'e'dOdtdz if g = ugan,.

5.4. THE MAIN THEOREM
It is the purpose of this section to prove:

THEOREM 5.4. Let 1 be an irreducible K-unitary representation of
SU(1, 1) which is K-finite or unitary. Then t is Naimark equivalent to an
irreducible subrepresentation of some principal series representation T ;.

By Proposition 5.2 tis K-multiplicity free. If 8, € .#(t) then write 1, , instead
of 15 5. In view of Theorem 4.5 and Remark 4.8 it is sufficient for the proof of
Theorem 5.4 to show that for some &, € .#(7), for some A € C and for € € {0, 3}
with ne Z + & we have |

(5.9)

Tn,n = ﬂ:é,k,n,n'

Both sides of (5.9) are spherical functions of type d,. Then (5.9) holds if the

corresponding characters on 1°,(G) are equal. Hence Theorem 5.4 will follow
from

ProproSITION 5.5. Let G = SU(1,1),nedZ. Let o be a continuous
character on 12 (G). Then

(5.10) af) = Jf(g)ng,x,n,n(g“l)dg,fefﬁf’n(G),

G

for some L e C and for £e{0,5} suchthat neZ + &
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