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74 T. H. KOORNWINDER

5.2. SPHERICAL FUNCTIONS OF TYPE 0

Let G be a unimodular Icsc. group with compact subgroup K. Let

K*: = {(k,k)e G x K|keK}.

Let € K and let © be a K-unitary representation of G. Then t ® & (§ the
contragredient representation to 9) is a K*-unitary representation of G x K on
H (1) ® H(D).

LEMMA 5.1.  The multiplicity of 6 in t|g isequalto the multiplicity of the
representation L of K* in 1 ® & |g,. 1 isirreducibleiff t ® & isirreducible.
T s unitary iff T® & is unitary.

This can be proved immediately. By using the results summarized in §5.1 we
conclude that (G x K, K*)1s a Gelfand pair if there exists a continuous involutive
homomorphism o on G such that for each (¢, k) e G x K we have og)
= k,g " 'k,, a(k) = k k™ 'k, for certain k,, k, € K. Furthermore, if (G x K, K*)
is a Gelfand pair and if the irreducible representation t of G is unitary or K-finite
then t i1s K-multiplicity free. In particular, this applies to SU(1, 1):

ProrosiTioN 5.2. If G = SU(1,1) then (Gx K, K*) isa Gelfand pair.

Proof. For ge SU(1, 1) define af(g): = (g~ '). Then o is a continuous
involutive automorphism on G and a(a,) = a_, on A, a(uy) = u_4 on K. Since
G = KAK, a has the required properties. OJ

Let (G x K, K*) be a Gelfand pair. Identify G x {e} with G. A spherical
functionon G x K is completely determined by its restriction to G. By using the
results mentioned in §5.1 we obtain the following properties. First, a continuous
function ¢ on G is the restriction to G of a spherical functionon G x Kiff ¢ # 0
and

d(x)d(y) = Jd)(x’(yk_ Ndk, x,yeG.

Next, let
I1(G) (or 12(G))

= {f € CG) (or CX(G)) | f(kgk™") = f(g),
geG, ke K}.
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These are commutative - topological algebras under convolution and their
characters are precisely of the form (5.1), where ¢ is a spherical function on G
x K.If ¢ is a spherical function on G x K then thereis a § € K such that for all
x € G the function k — ¢(xk) on K belongs to 8. Then & is called a spherical
function of type & on G (with respect to K), cf. GODEMENT [ 19]. It is funny that
spherical functions of type & are on the one hand generalizations of ordinary
spherical functions for (G, K), on the other hand restrictions to G of ordinary
spherical functions for (G x K, K*).

For convenience, we take a one-dimensional § € K. Then a spherical function
¢ on G. x K is of type o iff

P(xk) = d(kx) = o(k)d(x), xeG keK.
Let

I 5(G) (or IZ4G))
L= 1/ € CAG) (or C2(G))| f(xk) = f(k)
= (k) f(x), xe G, ke K} .

These are closed subalgebras of I(G) (or I2°(G)) and their characters are precisely
of the form (5.1), where ¢ is a spherical function of type 8. Finally, if T is a K-
unitary representation of G and if #(t) contains a unit vector v satisfying t(k)v .
= &(k)v, unique up to a constant factor, then x — (t(x)v, v)is a spherical function
of type d. ‘

5.3.  THE GENERALIZED ABEL TRANSFORM
Let G be a connected noncompact real semisimple Lie group with finite

center. Use the notation of §2.2. For given Haar measures dk, da, dn on K, A, N,
respectively, normalize the Haar measure on G such that

(5.2) ff J f(kan)e** 189 dk da dn, f € C(G)

KXxAxXN

(cf. HELGASON [25, Ch. X, Prop. 1.11]). Note the property

(5.3) ff(n)dn = g?rlloga) Jf(ana“ “dn, f e C(N),aec A

(cf. [25, Ch. X, proof of Prop. 1.117).
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