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REPRESENTATION THEORY 73

5. EQUIVALENCE OF IRREDUCIBLE REPRESENTATIONS OF SU(I, 1)
TO SUBREPRESENTATIONS OF THE PRINCIPAL SERIES

The first two subsections review some generalities about Gelfand pairs and
spherical functions. By using the concepts developed there we can next, in §5.4,
translate the problem of classifying the irreducible representations of SU(1, 1) in
such a way that the problem can be solved by global methods. For this the
generalized Abel transform (§5.3) and the Chebyshev transform pair of Deans
(Theorem 5.10) are the main tools. The problem is finally reduced to finding the
continuous characters on the convolution algebra Z.,.,(R) (Prop. 5.7).

5.1. SPHERICAL FUNCTIONS

We remember some of the standard facts about spherical functions (cf. for
instance GODEMENT [20], HELGASON [25, Ch. X1, FArRauT [12, Ch. 1]). Let G be
a unimodular lesc. group with compact subgroup K. (G, K) is called a Gelfand
pair if C(K\G/K) is a commutative algebra under convolution. If there is a
continuous involutive automorphism o on G such that ¢( KxK) = Kx~'K(xeG)
then (G, K) 1s a Gelfand pair. If (G, K) is a Gelfand pair and the irreducible
representation t of G is unitary or K-finite then the representation 1 of K has
multiplicity O or 1 in .

Let (G, K) be a Gelfand pair. A spherical function is a function ¢ # Oon G
such that

P(x)P(y) = J¢(xky)dk, x,yeG.

K

The nonzero continuous algebra homomorphisms from C/(K\G/K) (or
C7(K\G/K) if G 1s a Lie group) to C are precisely of the form

(5.1) /- Jf(X)d)(X”)dx,
J |

where ¢ is a spherical function. If tis a K-unitary representation of G and if H (1)
contains a K-fixed unit vector v, unique up to a constant factor, then x
— (t(x)v, v) is a spherical function.
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5.2. SPHERICAL FUNCTIONS OF TYPE 0

Let G be a unimodular Icsc. group with compact subgroup K. Let

K*: = {(k,k)e G x K|keK}.

Let € K and let © be a K-unitary representation of G. Then t ® & (§ the
contragredient representation to 9) is a K*-unitary representation of G x K on
H (1) ® H(D).

LEMMA 5.1.  The multiplicity of 6 in t|g isequalto the multiplicity of the
representation L of K* in 1 ® & |g,. 1 isirreducibleiff t ® & isirreducible.
T s unitary iff T® & is unitary.

This can be proved immediately. By using the results summarized in §5.1 we
conclude that (G x K, K*)1s a Gelfand pair if there exists a continuous involutive
homomorphism o on G such that for each (¢, k) e G x K we have og)
= k,g " 'k,, a(k) = k k™ 'k, for certain k,, k, € K. Furthermore, if (G x K, K*)
is a Gelfand pair and if the irreducible representation t of G is unitary or K-finite
then t i1s K-multiplicity free. In particular, this applies to SU(1, 1):

ProrosiTioN 5.2. If G = SU(1,1) then (Gx K, K*) isa Gelfand pair.

Proof. For ge SU(1, 1) define af(g): = (g~ '). Then o is a continuous
involutive automorphism on G and a(a,) = a_, on A, a(uy) = u_4 on K. Since
G = KAK, a has the required properties. OJ

Let (G x K, K*) be a Gelfand pair. Identify G x {e} with G. A spherical
functionon G x K is completely determined by its restriction to G. By using the
results mentioned in §5.1 we obtain the following properties. First, a continuous
function ¢ on G is the restriction to G of a spherical functionon G x Kiff ¢ # 0
and

d(x)d(y) = Jd)(x’(yk_ Ndk, x,yeG.

Next, let
I1(G) (or 12(G))

= {f € CG) (or CX(G)) | f(kgk™") = f(g),
geG, ke K}.
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These are commutative - topological algebras under convolution and their
characters are precisely of the form (5.1), where ¢ is a spherical function on G
x K.If ¢ is a spherical function on G x K then thereis a § € K such that for all
x € G the function k — ¢(xk) on K belongs to 8. Then & is called a spherical
function of type & on G (with respect to K), cf. GODEMENT [ 19]. It is funny that
spherical functions of type & are on the one hand generalizations of ordinary
spherical functions for (G, K), on the other hand restrictions to G of ordinary
spherical functions for (G x K, K*).

For convenience, we take a one-dimensional § € K. Then a spherical function
¢ on G. x K is of type o iff

P(xk) = d(kx) = o(k)d(x), xeG keK.
Let

I 5(G) (or IZ4G))
L= 1/ € CAG) (or C2(G))| f(xk) = f(k)
= (k) f(x), xe G, ke K} .

These are closed subalgebras of I(G) (or I2°(G)) and their characters are precisely
of the form (5.1), where ¢ is a spherical function of type 8. Finally, if T is a K-
unitary representation of G and if #(t) contains a unit vector v satisfying t(k)v .
= &(k)v, unique up to a constant factor, then x — (t(x)v, v)is a spherical function
of type d. ‘

5.3.  THE GENERALIZED ABEL TRANSFORM
Let G be a connected noncompact real semisimple Lie group with finite

center. Use the notation of §2.2. For given Haar measures dk, da, dn on K, A, N,
respectively, normalize the Haar measure on G such that

(5.2) ff J f(kan)e** 189 dk da dn, f € C(G)

KXxAxXN

(cf. HELGASON [25, Ch. X, Prop. 1.11]). Note the property

(5.3) ff(n)dn = g?rlloga) Jf(ana“ “dn, f e C(N),aec A

(cf. [25, Ch. X, proof of Prop. 1.117).
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For A € ag let U* be the representation of G induced by the one-dimensional
representation an — ¢* 29 of the subgroup AN :

(5.4) (Ul(g)f Jk): = e~ @CTPHGTN f(y(g= k), f e L¥(K), g€ G, ke K .

The representation U* is easily seen to split as a direct sum of principal series
representations 7, ,. U* restricted to K is the left regular representation of K.

Let 5e K. For convenience, suppose that & is one-dimensional. The
generalized Abel transform f — F5: 1, §G) — C(A) is defined by

(5.5) Fi(a): = eP(l8® Jf(an)dn, aecA.

If G = SU(1, 1) and & = 1 then this transform can be rewritten as the classical
Abel transform, cf. §5.4.

PROPOSITION 5.3. The mapping [ — F% is a continuous homomorphism
(with respect to convolution on G and A, respectively) from 1Z75G) to
CX(A). Furthermore,

(5.6) JFi’r(a)e_“log “da = Jf(g)(Uk(g_ 16, 8)dg, f € IZ5(G), h € af,
A G
where (.,.) denotes the inner product on L*(K).

Proof. The continuity is immediate. The homomorphism property follows
easily from (5.2) and (5.3) (cf. WARNER [49, pp. 34, 35]). For the proof of (5.6)
substitute (5.4) into the right hand side of (5.6):

m~

Y,

G
m

= | flg)e” ®TMHD §((u(g))~ ')dyg

J flg)(UMg™18, 8)dg = | | sige=trmmsn 8((u(gk)) ™ "k)dk dg
G K

Qt

= J f(kan)e®®~M1oea §(k~Ydk da dn

KxAxN
(‘

= jf(an)e“’”” 8¢ dn da
AN

= | Fi{a)e "¢ da .

,
A
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Now let G = SU(1, 1). Write F(1) and I® (G) instead of F{*(a,) and 175 (G),
respectively. If n e Z + & then (5.5) and (5.6) take the form

(5.7) Fin) = e J flan,)dz

and

.

(5.8) J Fi(t)e ™ dt = jf(g)ﬂg. g g, f€12,(G), AeC,

G

where dg = (2n)” 'e'dOdtdz if g = ugan,.

5.4. THE MAIN THEOREM
It is the purpose of this section to prove:

THEOREM 5.4. Let 1 be an irreducible K-unitary representation of
SU(1, 1) which is K-finite or unitary. Then t is Naimark equivalent to an
irreducible subrepresentation of some principal series representation T ;.

By Proposition 5.2 tis K-multiplicity free. If 8, € .#(t) then write 1, , instead
of 15 5. In view of Theorem 4.5 and Remark 4.8 it is sufficient for the proof of
Theorem 5.4 to show that for some &, € .#(7), for some A € C and for € € {0, 3}
with ne Z + & we have |

(5.9)

Tn,n = ﬂ:é,k,n,n'

Both sides of (5.9) are spherical functions of type d,. Then (5.9) holds if the

corresponding characters on 1°,(G) are equal. Hence Theorem 5.4 will follow
from

ProproSITION 5.5. Let G = SU(1,1),nedZ. Let o be a continuous
character on 12 (G). Then

(5.10) af) = Jf(g)ng,x,n,n(g“l)dg,fefﬁf’n(G),

G

for some L e C and for £e{0,5} suchthat neZ + &
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Now substitute (5.8) into the right hand side of (5.10). Thus, for the proof of
Prop. 5.5 we have to show that each continuous character o on I (G) takes the

form

(5.11) af) = J Fit)e ™ dt, f € 17 (G).

for some A € C. In §5.5 we will prove:

THEOREM 5.6. Let G = SU(1,1),ne3Z. The mapping f — F} is a
topological algebra isomorphism from 1ZX,(G) onto D....(R), the algebra of
even C*-functions with compact support on R.

Thus, in view of (5.11) we are left to prove:

PROPOSITION 5.7. The continuous characters on %.,.,(R) have the form

h— J h(t)e ™™ dt

for some A€ C.

5.5. COMPLETION OF THE PROOF OF THE MAIN THEOREM

By the discussion in §5.4 we reduced the proof of Theorem 5.4 to the task of -
proving Theorem 5.6 and Prop. 5.7. Theorem 5.6 was partly proved in Prop. 5.3.
[t is left to prove that f — F}isinjective on I° (G) with image &, .,(R) and that
the inverse mapping is continuous. In order to establish this we identify both
I®(G) and 9.,..(R), considered as topological vector spaces, with Z([ 1, c0)) and
we rewrite f — F'; as a mapping from 9([ 1, ) onto itself. This mapping turns
out to be a known integral transformation, for which an inverse transformation
can be explicitly given. First note:

LEmMMA 5.8. The formula

(5.12) f(x) = g(x?)

defines an isomorphism of topological vector spaces f — g from 9.,..(R) onto
2([0, 0)).
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Proof. Clearly,if g € 2([0, 0)) then f € Z,,..(R)and the mappingg — [ 1
continuous. Conversely, let [ € Z....(R) and let g be defined by (5.12). By
complete induction with respect to n we prove: g"(0) exists and there is a
function f, € Z.,..(R) such that

filx) = g"(x?), xeR,

and f = f,: Zeven(R) & Zyen(R) is coniinuous. Indeed, suppose this is proved
up to n — 1. Then

2x(g" V) (x?) = froa)dy

=%
!
=
I
B ey g

SO

) 2 13
(5.13) f(x)::f<< t x 1)2>>,xe[1, o).
(x2—1)2 X

For f e 17 ,(G) define
(5.14) h(chit): = h(t),teR.

LEMMA 5.9. The mapping [ — [ defined by (5.13) is an isomorphism of
topological vector spaces from 17,(G) onto 9([1, ). The mapping h — h
defined by (5.35) is an isomorphism of topological vector spaces from %, .,(R)

onto  Z([1, o0)).

even(

Proof. The second statement follows from Lemma 5.8. For the proof of the
first statement introduce global real analytic coordinates on G by the mapping

o (O e

1 1
e2(1 +|2])2 z >
e 21 +|2)2

from C x (R/4nZ) onto G. If g € 9([ 1, «0)) and

Lo oL 1
f<<€2 (1:—'|Z| )2 1 z 1>>: _ ein¢g((1+lz‘2)5)

e 291 +|z|2)Z
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then f € I2 (G), 7 = g and the mappingl g — f 1s continuous. Conversely, if
f el (G) then f, as a function of z and ¢, is radial in z, so the function

1
1+42%)2
Z—)f(( Z) g 1),ZER,
L (422

belongs to %.,.,(R). Now make the transformation z = (xz—l)% and apply

Lemma 5.8. It follows that f e 9([1, ©)) and that the mapping f — f is

continuous. ]
Define the Chebyshev polynomial T,(x) by

(5.15) T,(cos B): = cos nf .

It follows from (5.7) that, for f € I°,(G):

o chit+ Lize* *
g0 = e [A((E D) e

o [ chyt+3ize* \*"
= e* | fllchst+3ize) dz

|chit +ize?|

| chit
= e | f(lch3t +3ize*|) Ty, dz,

|chit +3ize®|

0
SO

W) = 2 J T Ty~ Lehit)(y* — ch®5t) " *ydy .

chit

This formula shows that F7} is even on R, so F} € Z.,.,(R). Now, by (5.14):

(5.16) T Ty~ %) (y? —x%) " tydy, x e [1, o0] .

I
&)
X C— 8

For n = 0, (5.16) takes the form

Fix) = ZJ T —x?)"tydy .
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The problem of inverting this just means to solve the Abel integral equation, as
was pointed out by GODEMENT [20]. Indeed, we get

0

d T 1
) = —ﬂ‘lf*F?(X)(xz—yz)‘fdx-
dx

y

For general n, we can use an inversion formula obtained by DEANS [7,(30)], see
also MATsUSHITA [30, §2.3] and KOORNWINDER [27, §5.9]:

THEOREM 5.10. For m = 0,1,2,.., g€ 9([1, o)), x e [1, c0) define

(5.17) (A,g)(x): = 2 J g T(y>—x*)"2ydy ,
r L
(5.18) (Bug)(x): = —m~* J g Tx™y)y* —x?)"2dy .

Then A,, and B, map 9([1, ) into itself and A,B,, = id, B,A, = id.

This theorem shows that f — F7 is a linear bijection from I”,(G) onto
Z....(R). Finally in order to prove the continuity of the inverse mapping, we
show that B,, is continuous. Just expand T,,(x ~'y) as a polynomial and use that

o]

d\* 1
(x‘l d—) j h(y) (y* —x?)"2ydy
y

X

d\" 1
= J (y”la—> h(y)(y*—x*)"2ydy
y

by the properties of the Weyl fractional integral transform (cf. [11, Ch. 13]). This
completes the proof of Theorem 5.6.

Proof of proposition 5.7. Extend o to a continuous linear functional on

Z(R), for instance by puttinga(f) = 01if f is odd. Choose f; € 9.,.,(R) such that
a(f1) # 0. Let |

(k(Y)fl)(x) c = filx—y), x,yeR.

L’Enseignement mathém., t. XXVIII, fasc. 1-2.
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By the continuity and homomorphism property of o we have, for f € Z.,..(R):

A f)lf) = alfixf) = j (M) f1)f )y .

Hence

o f) = J FIBY)y, f € Deyen(R),

)

where

By) : = Hol 1)) HMy) fy) + M=) f1)) -

Then f is even and it is a continuous function by the continuity of a. It follows
from the homomorphism property of o and from the fact that B is even, that

Bx)B(y) = HB(x+y) + Blx—y),

so B(0) = 1. This is d’Alembert’s functional equation. By continuity, Re p(x)
> 0if0 < x < x4 for some x, > 0. Then B(x,) = cosh ¢ for some complex ¢
= a + ib with a > 0, —4n < b < 4n. Now, following the proof in AczeL [1,
2.4.17 it can be shown ') that for all integer n, m > 0

n c n
B(? x0> = cosh (x-o T x0> :

So, by continuity and evenness of :

B(x) = cosh (i x) for all xeR. O

X0
5.6. NOTES

5.6.1. Some other examples of Gelfand pairs (G x K, K*)are provided by G
= SO(n, 1), K = SO(n) and G = SU(n, 1), K = S(U(n) x U(1)), cf. BOERNER
[4, Ch. VII, §12; Ch. V, §6], DixMIER [8] or KOORNWINDER [27, Theorems 5.7,
5.8].

5.6.2. The main Theorem 5.4, which was first proved in the case of unitary
representations by BARGMANN [2], 1s a special case of the subrepresentation

1 I thank H. van Haeringen for this reference.
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theorem for noncompact semisimple Lie groups due to Casselman (cf. WALLACH
[47, Cor. 7.5]). Casselman’s theorem improves HARISH-CHANDRA'S [22,
Theorem 4] subquotient theorem.

5.6.3. The generalized Abel transform f — F§ can be defined for general K-
type 8. It was introduced by HARISH-CHANDRA [24, p. 595] in the spherical case,
TaxkAHASHI [40, §2] in the case G = SOq(n, 1) and WARNER [49, 6.2.2] in the
general case. The injectivity of this transform holds generally, cf. WARNER [49].
The image of I1X4G) under this transform is known in the spherical case (cf.
GANGOLLI [16]) and if G has real rank 1'and ¢ is one-dimensional (cf. WALLACH
[46]), but seems to be unknown in the general case (cf. WARNER [49, p. 36]).

5.6.4. In [39] TakaHAasHI also reduces the proof of Theorem 5.4 to
Proposition 5.5. However, he proves Prop. 5.5 by considering eigenfunctions of
the Casimir operator, since he did not know, then, how to invert the transform f
— F%. In [42] he independently obtained a proof of Prop. 5.5 similar to ours.
Earlier, in [40, §4.1] he used a similar method in the spherical case of G
= SOy(n, 1). NAIMARK [34, Ch. 3, §9] proved the subquotient theorem for
SL(2, C) by methods somewhat related to ours.

5.6.5. Part of Lemma 5.8 is contained in WHITNEY [50]. See SCHWARZ [37]
for a theorem on C*-functions which are invariant under a more general Weyl
group.

5.6.6. Theorem 5.10 more generally holds with Gegenbauer polynomials of
integer of half integer order as kernels, cf. DEANS [6], [7], KOORNWINDER [27,
§5.9]. Deans’ proof uses the inversion formula for the Radon transform. The
author’s proof uses Weyl fractional integral transforms and generalized
fractional integral transforms studied by SPRINKHUIZEN [387]. MATSUSHITA [ 30,
§2.3] considers the transformation f — F’ for general real n in the context of the
universal covering group of SI(2, R) and he derives the inversion formula with a
proof due to T. Shintani, which uses Mellin transforms.

6. UNITARIZABILITY OF IRREDUCIBLE SUBREPRESENTATIONS
OF THE PRINCIPAL SERIES

6.1. A CRITERIUM FOR UNITARIZABILITY

Remember that a representation of an Icsc. group G on a Hilbert space is
strongly continuous if and only if it is weakly continuous (cf. WARNER [48,

Prop. 4.2.2.1]). Thus, if 7 is a (strongly continuous) Hilbert representation of G
then T defined by
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