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66 T. H. KOORNWINDER

3.3.5. Further applications of the irreducibility criterium in Theorem 3.2
can be found in MILLER [32, Lemmas 3.2 and 4.5] for the Euclidean motion
group of R? and for the harmonic oscillator group, TAKAHASHI [39, §3.4] for the
discrete series of SL(2, R) and [41, p. 560, Cor. 2] for the spherical principal series
of Fu—z0)-

3.3.6. The method of this section does not show in an a priori way thata K-
multiplicity free principal series representation has only finitely many irreducible
subquotient representations. Actually, this property holds quite generally, cf.
WALLACH [45, Theorem 8.13.3].

4. EQUIVALENCES BETWEEN IRREDUCIBLE SUBQUOTIENT REPRESENTATIONS
OF THE PRINCIPAL SERIES

4.1. NAIMARK EQUIVALENCE

In this subsection we derive a criterium (Theorem 4.5) for Naimark
equivalence of K-multiplicity free representations. Lemmas 4.3 and 4.4 are
preparations for its proof. |

Let G be an lcsc. group.

Definition 4.1. Let o and 1 be Hilbert representations of G. The
representation o is called Naimark related to t if there is a closed (possibly)
unbounded) injective linear operator A from #(c) to #(t) with domain Z(A)
dense in (o) and range %(A) dense in (1) such that %(A) is c-invariant and

Ac(g)v = HG)Av for all v e Z(A), g € G. Then we use the notation o ~ 1 or
A

(0} T.

Naimark relatedness is not necessarily a transitive relation (cf. WARNER [48,
p. 2427). However, we will see that it becomes an equivalence relation (called
Naimark equivalence) when restricted to the class of unitary representations or of
K-multiplicity free representations, K abelian.

Two unitary representations o and t of G are called unitarily equivalent if
there is an isometry A from (o) onto (1) such that Ac(g)v = t(g)Av for all
v e H(o), g € G. Clearly unitary equivalence is an equivalence relation.

——
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PROPOSITION 4.2. Two unitary representations of an lcsc. group G are
Naimark related if and only if they are unitarily equivalent.

See WARNER [48, Prop. 4.3.1.4] for the proof.

Let K be a compact abelian subgroup of G. Let 6 and T be K-multiplicity free
representations of G. Let {¢;} and {{;} be K-bases for #(o) and #(1),
respectively.

A

LEMMA 43. If o ~1 then (o) = M(t), dsc P(A) and Vs € A(A)
(3e.#(c)), and there are nonzero complex numbers c5(deM(c)) such that

(41) (AU, \1’6) = CS(U’ 4)6) ’ ve @(A) .
In particular
(4.2) Aby = czls -

Proof. Letd e .4 (o). Letv € Z(A). We have, by the intertwining
property of A,

JS(k “Notkdk = (v, d)ds ,

K

J (k™ YAo(kwdk = J 8(k~ Yo(k) Avdk
K K

(Ao, Y5 if b€ (7)),
10 if ¢ .4(1).

Since A is closed, we conclude that (v, ¢5)ds € Z(A) and

(Av, Yss if de ),
A((U, d)S)(bS) = oo . ( )

0 if 6¢ .4(1).
Since A is injective with dense domain, the left hand side is nonzero for certain
ve Z(A). Hence 06 € (1), b5 € Y(A) and (4.2) and (4.1) hold for certain nonzero
¢5. Finally, since A4 is closed with dense range, .#(c) = .#(x). O

LEMMA 4.4. Let A bea possibly unbounded, not necessarily closed, injective
linear operator from H#(c) to H(t) which satisfies all other properties of
Definition 4.1. Suppose that &g € D(A) forall & e M(o), M(o) = (1) and,
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foreach & e (o), thereisacomplex number cs5 suchthat (Av, ills) = c5(v, dg)
for all ve P(A). Then the closure- A of A is one-valued and injective, A
satisfies all properties of Definition 4.1 and

(4.3) DA) = {veHo)| Y lcsv, dy)|? < 0}.

d¢e ./ (o)

Proof. Let{v,} beasequencein P(A4)suchthatv, — vin #(c)and Av, - w
in #°(1). Then, for each 6 € .# (o),

(W, W) = lim (Ao, W) = ¢5 lim (v, ds) = c5v, ds) -

n — o n — o

Hence v = 0 iff w = 0, so 4 is one-valued and injective.
To prove the domain invariance and intertwining property of 4, let

ve PD(A), sov, - v, Av, - Av

for some sequence {v,} in Z(A). If g € G then

o(g)v, — olg)v and Ac(g)v, = t(g)Av, — tg)Av,

so o(g)v € 2(A) and Ao(gly = 1(g)Av.
Finally, to prove (4.3), first suppose that v € #(c) and

DI () | cs(v, (1)5) | 2 < .
Then
v = Z(v, Pg)bs W: = Zcg(v, Ps)Vs € H(1) and Ads

= ¢35 80, w = Av and v e 9(A).

Conversely, let v € 2(A4). Then Av = Z(Av, Y ); = Zcg(v, G5 (note (Av, V)

= c4(v, O) by (4.1)). Hence Z | ¢5(v, ds) | 2 < o0. 'm
Next we will prove a criterium for Naimark relatedness of K-multiplicity free

representations o and T in terms of the canonical matrix elements.

THEOREM 4.5. Let G be anlcsc. group with compact abelian subgroup K.
Let o and T be K-multiplicity free representations of G. Let {ds} and
(W5} be K-bases of H(c) and H(1t), respectively. For each
de (o) M) let 0 # cszeC. Then the following two statements are
equivalent :
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(a) o~1 and Ads = cs\Vs 0 € M(0).
(b) .#(c) = M(v) and, for all v, d € M(o),

(44) Ty, 5 — Cy, 50% )

with C, 5 = ¢,/
If, moreover, ¢ and t areirreducible then(a)and (b) are also equivalent to .

(c) Forsome v,d¢€ . H(c)n H(t)(4.4) holds for some nonzero complex C, ;.

Proof.

(a) = (b): Apply Lemma 4.3. By using (4.1) we have

CY(G(QMDS, (by) = (Ao-(g)d)& q”y) = (T(g)Ad)& \1]7)
= CS(T(g)\p& ‘*ij) *

(b) = (a): Define 4 on the domain {ve #(c) | Z | cs(v, ds) | > < 00} by
Av:= Zcs(v, ds)\s. Then A is injective with dense domain and range and A4
satisfies (4.1). We will prove that 2(A4)is G-invariant and that 4 is an intertwining
operator. Let v € 2(A), g € G. Then, by (4.4) and the definition of Av:

C'Y(G(g)va d)Y) = C E (U d)S)Gy, S(g)
= ZBCS( d) ) y 6(9) ( (g)AU, \py) o

Hence
Tl efolg, d,) 1?2 = | tg)dv || ? < .

So o(g)v € Y(A) and Ac(g)v = t(g)Av. Now apply Lemma 4.4.

(c) = (b): (o, tirreducible): We will first show that #(c) = .#(t) and, for
each B e .#(o), 1,y = C, 40, pand 15 5 = C; ;04 ; for some nonzero complex
C, p and C; 5. It follows from (4.4) evaluated for g = g,kg, that

z B(k)fy, B(g 1)%, 5(9.2)

Be.x (1)

:CS.Y Z B(k)o 7591535(92) Jd1,9,€ G, ke K.

Be .« (o)

Both sides are absolutely and uniformly convergent Fourier series in k € K.
Because of Theorem 3.2 and the irreducibility of ¢ and 1, for each B e (1)
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respectively B € .# (o) the Fourier coefficient at the left respectively right hand
side does not vanish identically in g,, g,. Hence .#(c) = .#(t) and

Ty, 5(91)%, 5(g2) = Cy, 30y, 9(91)0'3, 5(92) -
This implies

Ty, B - CY, BGY’ B and TB, 5 — CB, SO-B’ 5 Wlth C./’ BCBv 5 — CY’ S -

By repeating this argument we prove thatt, ; = C, 40, gforalle, B e #(o)
and that Cu, BCB’ 5 — Ca’ & 1€. Ca’ B — Ca’ S/CB- 5 D

COROLLARY 4.6. Let G be an lcsc. group with compact abelian subgroup
K.  Then Naimark relatedness is an equivalence relation in the class of K-
multiplicity free representations of G.

42. THE case SU(1, 1)

Consider irreducible subquotient representations of m, ;, as classified in
Theorem 3.4. By comparing K-contents it follows that the only possible
nontrivial Naimark equivalences are:

Mg a =~ T (A& R+ EEZ 45, L #p)
and
0 0 e
TI{:)L ~ TC; — TE(V;,}. s TEE_,, _')», TCEJ,X — Ttﬁ, -2

(A+EeZ+35, L#£0).

Suppose that ¢ and 1 are irreducible subquotient representations of m, ; and
me ., respectively, and that ¢,, € #(c) N A(1) for some me Z + & It follows
from Theorem 4.5 that 6 ~ tiff 7 ; ,, m = T . m - Lhis last identity already
holds if it 1s valid for the restrictions to A. In view of (2.29) and (2.30) we have: o
~ tiff

(4.5) : O™ = ¢82™(t), teR.

Formula (4.5) holds if A = 4 p(cf. (2.26)). Conversely, assume (4.5) and expand
both sides of (4.5) as a power series in —(sh t)*> by using (2.23) and (2.20). The
coefficients of —(sh t)? yield the equality

m+1+r)(m+1—2) = m+1+p (m+1—p)

Hence A = +p. We have proved:
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TueoreM 4.7. Let o and to#1) be irreducible subquotient
representations of the principal series. Then o is Naimark equivalent to T in
precisely the following situations (cf. the notation of Theorem 3.4):

(a) T, = T, A+ EEZ + 3, A #0)

(b) n&fx = TtEj: -0 ngl = Ttg, - ni_,l — ni—,*l ()\‘+EA€Z+%>X¢O) .

Remark 4.8. It follows from Theorém 3.4 and Theorem 4.7 that each
irreducible subquotient representation of some m, , is Naimark equivalent to
some irreducible subrepresentation of some T, ;.

It follows from Theorems 4.7 and 4.5 that for each & € {0, 3} and A € C\{0}
we have identities

(46) TCE” —-A,m,n = Ci, A,m,n TE&, A,m,n

for certain nonzero complex constants C; ; ,, ,, where m,ne Z + € and, if A
+ £ e Z + 1 we have the further restriction that m,ne (—o0, —| A | —1] or
mnel[—|A| +3 A —3] or myne[|A] + 3 o). Indeed, it follows from
(2.29) and (2.26) that (4.6) holds with

Ce, -, m,
(4.7) Cermy = —=—2t®

Ci, A,m,n

A calculation using (4.7) and (2.30) shows that

(4.8) Ca,x, mon — C&_,,x,m/cg,x,n
with
(4.9) Ce.x.m = const. [(—Atm+3) = const. [(—A—m+3)
CA+m+9) FA—m+49)
= const. (—1)" S T(—A+m+3) I(—A—m+1)
= const. (=

TA+m+H TA—m+3)°

IfA + &¢ Z + 5then we can use all alternatives for ¢, ;_,,, butifA + £E€Z + 4
then we can use precisely one alternative. Now, by Theorem 4.5, we obtain :

A
PROPOSITION 4.9. Let © ~ 1 be one of the equivalences of Theorem 4.7

with & being a subquotient represertation of T .. Then
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(4.10) Adp = Coam O
where meZ + & such that §, € #(c) and Ceo.m IS given by (4.9).

4.3. NOTES

43.1. Definition 4.1 of Naimark relatedness goes back to NAIMARK [33].
He introduced this concept in the context of representations of the Lorentz
group on a reflexive Banach space. Next he gave a much more involved
definition in his book [34, Ch. 3, §9, No. 3]. Afterwards, many different versions
of this definition appeared in literature, which all refer to [34]. We mention
ZELOBENKO & NAIMARK [ 51, Def. 2] (“weak equivalence” for representations on
locally convex spaces), FELL [13, §6] (Naimark relatedness for “linear system
representations”) and WARNER [48, p. 232 and p. 242]. Warner starts with the
definition of Naimark relatedness for Banach representations of an associative
algebra over C (this definition is similar to our Definition 4.1) and next he defines
Naimark relatedness for Banach representations of an Icsc. group G in terms of
Naimark relatedness for the corresponding representations of M(G) or
(equivalently) C(G). Warner’s definition seems to be standard now. POULSEN
[35, Def. 33] gives Naimark’s original definition [33] and he calls it weak
equivalence. FELL [ 13] (see also WARNER [48, Theorem 4.5.5.2]) proved that, for
K-finite Banach representations of a connected unimodular Lie group, two
representations are Naimark related iff they are infinitesimally equivalent.

4.3.2.  Our implication (c) = (a) in Theorem 4.5 is related to WALLACH [44,
Cor. 2.1]. Theorem 4.7 can be formulated for general semisimple Lie groups G. If -
T, 1s an irreducible principal series representation and if se W then m, ,
~ T, 59 (Cf. WALLACH [44, Theorem 3.1]). This yields part (a). Regarding part
(b) see LEPOWsKY’s [ 29, Theorem 9.8] result that n, ; and w5 ., have equivalent
composition series.

4.3.3. Theorem 4.7 was first proved in the unitarizable cases by BARGMANN
[2]. He used infinitesimal methods. TAKAHASHI [ 39] proved Theorem 4.7 (again
in the unitarizable cases) by calculating the diagonal matrix elements n, , ,, .(a,)
and by observing that they are even in A. GELFAND, GRAEV & VILENKIN [17,
Ch. VII, §4] obtained Theorem 4.7 by working in the noncompact realization of
the principal series and by explicitly constructing all possible intertwining
operators.

43.4. Analogues of the results in §4.1 hold for nonabelian K and (in
Lemmas 4.3, 4.4 and Corollary 4.6) for K-finite representations, cf. [27, §4].
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