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Thus Cçt x> w, „ has block matrix

— X — \ —X+j^n^X 2 n^X + 2

m ^ —X — I * * 0 \
X 2 ^ m ^ X 2

0 * o0

0m > X + \ * * /

where each starred block has all entries nonzero.

(d) c,c$,X,m,n r= V ^ A, i

or m, n > — X + %.

^ 0 <=> V+ 2 ^ m < — ^ ~ ^ or m, n ^ X — f

The finite-dimensional representation occurring in the above classification

are the representations Tij?a(X, + ^eZ+^, >^/0).

3.3. Notes

3.3.1. In the case of the unitary principal series (X imaginary), Theorem 3.4

was first proved by Bargmann [2, sections 6 and 7]. See van Dijk [9, Theorem

4.1] for the statement and (infinitesimal) proof of our Theorem 3.4 in the general

case. A proof of Theorem 3.4 similar to our proof was earlier given by Barut &
Phillips [3, §11 (4)].

3.3.2. Theorem 3.4 in the case of imaginary and nonzero X is contained in a

general theorem by Bruhat [5, Theorem 7 ; 2] : For E, e M, X e ia, the principal
series representation x of G (cf. (2.2)) is irreducible if s X # X for all s/e in
the Weyl group for (G, K).

3.3.3. Gelfand & Naimark [18, §5.4, Theorem 1] proved the irreducibility
of the unitary principal series for SL(2, C) by a global method different from ours,
working in a noncompact realization and calculating the "matrix elements" of
the representation with respect to a (continuous) N-basis.

3.3.4. Analogues of Theorems 3.2 and 3.3 can be formulated in the case of
non-abelian X, cf. [27, Theorem 3.3]. In that case the canonical matrix elements

ty 5 are matrix-valued functions. By using this method, Naimark [34, Ch. 3, §9,

No. 15] examined the irreducibility of the nonunitary principal series for
SL(2, C), see also Kösters [28].
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3.3.5. Further applications of the irreducibility critérium in Theorem 3.2

can be found in Miller [32, Lemmas 3.2 and 4.5] for the Euclidean motion

group of R2 and for the harmonic oscillator group, Takahashi [39, §3,4] for the
discrete series of SL(2, R) and [41, p. 560, Cor. 2] for the spherical principal series

of F4(_ 20) •

3.3.6. The method of this section does not show in an a priori way that a K-
multiplicity free principal series representation has only finitely many irreducible
subquotient representations. Actually, this property holds quite generally, cf.

Wallach [45, Theorem 8.13.3].

4. Equivalences between irreducible subquotient representations
OF THE PRINCIPAL SERIES

4.1. Naimark equivalence

In this subsection we derive a critérium (Theorem 4.5) for Naimark
equivalence of K-multiplicity free representations. Lemmas 4.3 and 4.4 are

preparations for its proof.
Let G be an lese, group.

Definition 4.1. Let a and x be Hilbert representations of G. The

representation a is called Naimark related to x if there is a closed (possibly)

unbounded) injective linear operator A from J^(o) to (x) with domain B(A)
dense in J-f(a) and range 0t{A) dense in (x) such that Ji(T) is a-invariant and

Au(g)v p= x{G)Av for all v e B(A\ g g G. Then we use the notation a ~ x or
A

a ~ T.

Naimark relatedness is not necessarily a transitive relation (cf. Warner [48,

p. 242]). However, we will see that it becomes an equivalence relation (called

Naimark equivalence) when restricted to the class of unitary representations or of

K-multiplicity free representations, K abelian.

Two unitary representations a and x of G are called unitarily equivalent if
there is an isometry A from onto J4?(x) such that Ao(g)v x(g)Av for all
v g ^(cj), g e G. Clearly unitary equivalence is an equivalence relation.
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