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of rank 1 (i.e., dim(X) 1) can be written as Jacobi functions of certain order (cf.

Harish-Chandra [23, §13]). This motivated Flensted-Jensen [14] to study

harmonic analysis for Jacobi function expansions of quite general order (a, ß),

a > ß » -i This research was continued in several papers by Flensted-Jensen

and the author.

3. The irreducible subquotient representations
OF THE PRINCIPAL SERIES

3.1. SUBQUOTIENT REPRESENTATIONS

We start with the definition and some general properties and next derive an

irreducibility critérium (Theorem 3.2) and a decomposition theorem 3.3.

Let G be a lese, group and let x be a Hilbert representation of G. Let 0 be a

closed subspace of (x) and let P0 be the orthogonal projection from Jf(x) onto
Jtf0. Define

(3.1) z0(g)v : P0x{g)v geG,veJP0.

Then x{g) e f°r each ^eG, x0(e) — id., and g -> z0(g)v: G - is

continuous for each v e 34? 0. If also

(3-2) ^oididi) ^0(01)^0(92)»e

then x0 is a Hilbert representation of G on and it is called a subquotient
representation of x. Formula (3.2) is clearly valid if 0 is an invariant subspace of
Jf(x), i.e., if x(g)veJf0 for all g e G, ve In that case, x0 is called a
subrepresentation of x.

Lemma 3.1. Let be a closed subspace of Jf(x), /et be the closed
G-invariant subspace of J-f(x) which is generated by and let

x
;

Jf2nJf^. x0 is a subquotient representation ifand only if je 1 is G-
invariant.
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Proof. Let P0 and P1 denote the orthogonal projections on JF0 and

respectively. It follows from (3.1) that

^oiQiQi)» ~ ^0(^1)^0(^2)^

po^(Qi)pit(g2)v * Qu g2£ G,V g 3f0

x is the closed linear span of all elements P1t{g2)v, g2e G,ve Jf0. So (3.2)

holds iff P0x(g1)w 0 for all g1 e G, w g Jf
Let X be a compact subgroup of G and suppose that x is X-unitary. Let x0 be

a subquotient representation of x on and let and J-f2 be as in Lemma 3.1.

Then Jf2 and JFl are G-invariant subspaces, so Jf0 2 n J-ff is X-
invariant. It follows that x0 is X-unitary and that x0(/c)z; x(/c)y, k e K,v e JF0. If
X is compact abelian and if x is ^-multiplicity free then x0 is also X-multiplicity
free, ^T(x0) cz Ji(x) and xo>Yt6(0) xJt8{g) for y, 5 g M(x0\ g eG.

Let again X be a compact abelian subgroup of G and x a X-multiplicity free

Hilbert representation of G. Let 0 a X-invariant closed subspace of Jf(x).
Then, by Lemma 3.1, x0 defined by (3.1) is a subquotient representation if and

only if we can partition the X-basis for Jf(x) into three parts, the first part
providing a basis for 0, such that, for each g e G, the corresponding 3x3 block
matrix of (xy6(g)) takes the form

Theorem 3.2. Let X he a compact abelian subgroup of the lese, group G

and let x be a K-multiplicity free Hilbert representation of G. Let x0 be a

subquotient representation of x. Then the following three statements are

equivalent :

(a) x0 is. irreducible.

(b) For some 5 g Ji(x0) we have xyb ^ 0 / t5y for all y g Jl{xf).

(c) For all y, 5 g M(xf) we have xy5 ^ 0.

Proof. First note : if v JF(x0) and (v, <|)Y) ¥= 0 for some y g Jt{x0) then cj)Y

(element of the X-basis) belongs to the x0-invariant subspace of (x0) generated

by v. Indeed,

(3.3)

(v, c()r)ct)r y dv
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and
x(k)v Tç>(k)v

(b) => (a): Let 0 ^ v e 7f(x0). Let x be the x0-invariant subspace of

(x0) generated by v. Then (j>Y e 1 for some y e Now, for some g g G,

(TQ(0)(|>y, <t>8) T0, ô, y(g) Tô, y(g) ^ 0
>

so T0(g)<\)y and c))6 are in ^ For each ß g Ji(x0) we have (x0(gf)<|>5, (J)ß)

s= xß6(g) 0 for some g eG. Thus for all ß g so 1 Jf(x0).

(a) => (c) : Suppose xy6 0 for some y, 8 g Jt{i0). Then, for all g e G,

(x0(g)<\>6, c(>Y) 0. Hence, the i0-invariant subspace of 7f(x0) generated by cj)5 is

orthogonal to (j)Y, so i0 is not irreducible.

(c) => (b) : Clear.

Let t be K-multiplicity free, K being compact abelian. Define a relation -< on

Jl(i) by : y 8 iff iY) g / 0. Then y -< 8 iff cf)Y is in the x-invariant subspace of
(x) generated by cj)5. It follows that

ß -< y and y 8 => ß -< 8

Define a relation ~ on Ji(x) by : y ~ 8 iff xy 5 #0 ^ x6 y. It follows that ~ is an

equivalence relation on Ji(x) and that, if xy 5 # 0, a ~ y, ß ~ 8 then xa ß ^ 0. It
follows that, for a given equivalence set, we can partition M(x) into three parts,
the first part being the equivalence set, such that the corresponding 3x3 block
matrix for (xy5(g)) takes the form (3.3). In view of Theorem 3.2 this proves :

Theorem 3.3. Let G be a lese, group with compact abelian subgroup K
and let x be a K-multiplicity free representation of G. Then there is a unique
orthogonal decomposition of (x) into subspaces (xf), where the x/s are
precisely the irreducible subquotient representations of x.

3.2. The case 5(7(1, 1)

For X g C, Ç 0 or the representation x of G 5(7(1, 1) on L^(K) (cf.
(2.8)) is K-multiplicity free with K-content given by (2.13). By inspecting (2.29) for
small but nonzero t and by using (2.24) it follows that
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(3*4) n^,l,m,n ^ 0 <=> 7C^ „t. nU ^ ^ <=> ^ m „ ^ 0

where x m „ is given by (2.30). Combination of (3.4) with Theorems 3.2 and 3.3

yields :

Theorem 3.4. Depending on £, and X, the representation of
SU( 1, 1) has the following irreducible subquotient representations:

(a) X + + j:
7Tç x is irreducible itself

(b) X 0^ 1:

ti+/2, o on CI Span {<j>1/2, <t>3/2,...}

^i~/2,o on CI Span {..., <t>_3/2, <t>-1/2} •

These are also subrepresentations.

(c) U^eZ + i^>0:
Kt^ on Span {4>x+i/2> (t)x + 3/25 •••} 5

on CI Span <t>_x_3/2, <$>-%,-U2}>

i °n Span {<(> — x +1/2> + 3/2' — > 4**.-1/2} •

Among these n£%
and rtf >. are subrepresentations.

(d) l + ^eZ + il<0:
7t^ on CI Span {<t>_x+1/2, <t>-x+a/2. •••} »

n^x onCI Span {..., <K-3/2, 4>x-1/2} •

7iç, x on Span {<(>x +1/2^ <t)x + 3/2> — > •J'-*.-1/2} •

Among these 71?
x is a subrepresentation.

Proof

(a) C^,X,m,n ^ 0-

(b) c1/2i0,m,„ / 0<=>m,n < -iorm,n ^ i
(c) m„ / 0«>-X + i^n^X.-5

or m, « ^ - X - 5 or m, n > X + i.
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Thus Cçt x> w, „ has block matrix

— X — \ —X+j^n^X 2 n^X + 2

m ^ —X — I * * 0 \
X 2 ^ m ^ X 2

0 * o0

0m > X + \ * * /

where each starred block has all entries nonzero.

(d) c,c$,X,m,n r= V ^ A, i

or m, n > — X + %.

^ 0 <=> V+ 2 ^ m < — ^ ~ ^ or m, n ^ X — f

The finite-dimensional representation occurring in the above classification

are the representations Tij?a(X, + ^eZ+^, >^/0).

3.3. Notes

3.3.1. In the case of the unitary principal series (X imaginary), Theorem 3.4

was first proved by Bargmann [2, sections 6 and 7]. See van Dijk [9, Theorem

4.1] for the statement and (infinitesimal) proof of our Theorem 3.4 in the general

case. A proof of Theorem 3.4 similar to our proof was earlier given by Barut &
Phillips [3, §11 (4)].

3.3.2. Theorem 3.4 in the case of imaginary and nonzero X is contained in a

general theorem by Bruhat [5, Theorem 7 ; 2] : For E, e M, X e ia, the principal
series representation x of G (cf. (2.2)) is irreducible if s X # X for all s/e in
the Weyl group for (G, K).

3.3.3. Gelfand & Naimark [18, §5.4, Theorem 1] proved the irreducibility
of the unitary principal series for SL(2, C) by a global method different from ours,
working in a noncompact realization and calculating the "matrix elements" of
the representation with respect to a (continuous) N-basis.

3.3.4. Analogues of Theorems 3.2 and 3.3 can be formulated in the case of
non-abelian X, cf. [27, Theorem 3.3]. In that case the canonical matrix elements

ty 5 are matrix-valued functions. By using this method, Naimark [34, Ch. 3, §9,

No. 15] examined the irreducibility of the nonunitary principal series for
SL(2, C), see also Kösters [28].

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 5
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3.3.5. Further applications of the irreducibility critérium in Theorem 3.2

can be found in Miller [32, Lemmas 3.2 and 4.5] for the Euclidean motion

group of R2 and for the harmonic oscillator group, Takahashi [39, §3,4] for the
discrete series of SL(2, R) and [41, p. 560, Cor. 2] for the spherical principal series

of F4(_ 20) •

3.3.6. The method of this section does not show in an a priori way that a K-
multiplicity free principal series representation has only finitely many irreducible
subquotient representations. Actually, this property holds quite generally, cf.

Wallach [45, Theorem 8.13.3].

4. Equivalences between irreducible subquotient representations
OF THE PRINCIPAL SERIES

4.1. Naimark equivalence

In this subsection we derive a critérium (Theorem 4.5) for Naimark
equivalence of K-multiplicity free representations. Lemmas 4.3 and 4.4 are

preparations for its proof.
Let G be an lese, group.

Definition 4.1. Let a and x be Hilbert representations of G. The

representation a is called Naimark related to x if there is a closed (possibly)

unbounded) injective linear operator A from J^(o) to (x) with domain B(A)
dense in J-f(a) and range 0t{A) dense in (x) such that Ji(T) is a-invariant and

Au(g)v p= x{G)Av for all v e B(A\ g g G. Then we use the notation a ~ x or
A

a ~ T.

Naimark relatedness is not necessarily a transitive relation (cf. Warner [48,

p. 242]). However, we will see that it becomes an equivalence relation (called

Naimark equivalence) when restricted to the class of unitary representations or of

K-multiplicity free representations, K abelian.

Two unitary representations a and x of G are called unitarily equivalent if
there is an isometry A from onto J4?(x) such that Ao(g)v x(g)Av for all
v g ^(cj), g e G. Clearly unitary equivalence is an equivalence relation.
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