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60 T. H. KOORNWINDER

Substitution of (2.23) and (2.22) yields {m ^n):

(2-28)

-- -W"~Wt) ~m-(fôr-'"(in

(X + "+l)'"-" (sh±t)m-"(ch±t)m+m+ ">

(m — n)l

Application of (2.16) gives a similar result in the case m < n. Finally we
conclude :

Theorem 2.1. The canonical matrix elements K m n{at) (X e C ; £, 0 or

j; m, n e Z + t e R) o/ 5(7(1, 1) can he expressed in terms of Jacobi

functions by

(2-29) *t. x, ». „(a,) (sHr)|m-"i (cfcitr+yjs""1-m+n) m,
(\m — n\)

where

_ j(l + n+i)m-n if ^ n

(2-30) C£,,X,m,n- if II > »II

In view of (2.24), formulas (2.29) and (2.30) describe the asymptotics of

H- m, n near t 0.

2.4. Notes

2.4.1. The principal series of representations was first written down for

SL{2, R) by Bargmann [2], for SL(2, C) by Gelfand & Naimark [18], and for a

general noncompact semisimple Lie group by Harish-Chandra [21, §12].

2.4.2. Bargmann [2, §10] already obtained explicit expressions in terms of

hypergeometric functions for the canonical matrix elements of the irreducible

unitary representations of SL(2, R). He solved the differential equation satisfied

by these matrix elements, which is obtained from the Casimir operator. Vilenkin
[43, Ch. VI, §3] gives a derivation of these expressions which is similar to our
derivation in §2.4, starting from the integral representation (2.15).

2.4.3. It follows from the present paper that the spherical functions for

SL(2, R) can be expressed as Jacobi functions of order (a, ß) (0, 0). More

generally, the spherical functions on any noncompact real semisimple Lie group
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of rank 1 (i.e., dim(X) 1) can be written as Jacobi functions of certain order (cf.

Harish-Chandra [23, §13]). This motivated Flensted-Jensen [14] to study

harmonic analysis for Jacobi function expansions of quite general order (a, ß),

a > ß » -i This research was continued in several papers by Flensted-Jensen

and the author.

3. The irreducible subquotient representations
OF THE PRINCIPAL SERIES

3.1. SUBQUOTIENT REPRESENTATIONS

We start with the definition and some general properties and next derive an

irreducibility critérium (Theorem 3.2) and a decomposition theorem 3.3.

Let G be a lese, group and let x be a Hilbert representation of G. Let 0 be a

closed subspace of (x) and let P0 be the orthogonal projection from Jf(x) onto
Jtf0. Define

(3.1) z0(g)v : P0x{g)v geG,veJP0.

Then x{g) e f°r each ^eG, x0(e) — id., and g -> z0(g)v: G - is

continuous for each v e 34? 0. If also

(3-2) ^oididi) ^0(01)^0(92)»e

then x0 is a Hilbert representation of G on and it is called a subquotient
representation of x. Formula (3.2) is clearly valid if 0 is an invariant subspace of
Jf(x), i.e., if x(g)veJf0 for all g e G, ve In that case, x0 is called a
subrepresentation of x.

Lemma 3.1. Let be a closed subspace of Jf(x), /et be the closed
G-invariant subspace of J-f(x) which is generated by and let

x
;

Jf2nJf^. x0 is a subquotient representation ifand only if je 1 is G-
invariant.
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