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56 T. H. KOORNWINDER
2.2. THE PRINCIPAL SERIES

Let G be a connected noncompact real semisimple Lie group with finite
center. Let G = KAN be an Iwasawa decomposition. For ge G write ¢
= u(g)exp(H(g))n(g), where u(g) € K, H(g) € a(the Lie algebra of 4) and n(g) € N.
Let p € a* be half the sum of the positive roots. Let M be the centralizer of Ain K.
For £ e M, \ € a¥ the principal series representation T, of G 1s obtained by
inducing the (not necessarily unitary) finite-dimensional irreducible
representation man — "¢ 9E(m) of the subgroup MAN. In the so-called
compact picture we have the following realization of m;, (cf. WALLACH [45,

§8.3]):

(2.2) (e, 2(9)f) (k) = e~ @THHE D) f(y(g~1k)),
feLiK, #E), keK,geG.

Here the Hilbert space LZ(K, #(£)) consists of all #(£)-valued L*-functions f on
K such that f(km) = &(m~")f(k), k € K, m € M. The representation 7, , is a K-
unitary Hilbert representation. It is unitary if A € ia*. By Frobenius reciprocity,
T 18 K-finite and =, , 1s K-multiplicity free if each 6 € K is M-multiplicity free.

Let us now specialize the above results to G = SL(2, R). It is convenient to
work with the group G = SU(1, 1), isomorphic to SL(2, R):

(2.3) G:= {gw = <Cf ?); o, BeC,lu? — |B? = 1}.

B o
Let
Iy g
21
(2.4) K::{u‘,:(e 1); 0<9<4n},
O e—jie
chit shit 0 4
;= = = t ;teRy,
(2.5) A {a, (sh%t chlt exp L g €
1+4iz Lz
(2.6) N := {nz = ( ii; l_zliz>;Z€R}.
2 2

Then G = KAN is an Iwasawa decomposition for G = SU(1, 1), p(log a,) = 3t
and M = {uy, u,,}. M consists of the two one-dimensional representations
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(2.7) Uy > €% ugeM,E =0 or 3.

Let LK) consist of all f e L¥K) such that f(u,.,.) = f(uy) or — f(uy)
according to whether & = 0 or 3, respectively.
Now, by using explicit expressions for the factors in the Iwasawa
decomposition of g, p u,, (cf. TAKAHASHI [39, §17]) we can write (2.2) in the case G
vl 1) as follows:

1

(2.8) (ng, 2(9s, B)f) (u\p) = Iaefi‘l’ — Be—fiw | T 1f(u¢') ;

1 1
V' i= 2 arg(aezV—Be 2V), g,3€G,u, €K, f e LAK),
' E=0o0r3,AeC.

On putting g, 5 := us € K we get

(2.9) (ng, x(“e)f) (uy) = fluy o), fe€ LQZ(K), Uy, Uy € K,
which again shows that n; , is K-unitary. K consists of the representations
(2.10) S(ug) := €™, uye K,

where n runs through the set 17, ie., 2n e Z. An orthogonal basis for LK) is
given by the functions

(2.11) | buuy) :=e ™, u,ekK,

where n runs through the set Z + £ := {m+&|me Z}. Then
(2.12) T, x(ue)d),,' = 0,(ug)d,, uyeK,neZ + & .
Thus =, , is K-multiplicity free,

(2.13) M(m.,) = {8,eK|neZ + &},

the ¢,’s form a K-basis for L(K) and the canonical matrix elements of T, ) are

(214) TCE,, A, m, n(g) = (TEE,, l(g)d)n’ (bm) > g = G’ m,n € Z + {; *

Recause of the Cartan decomposition G = KAK, n_ . . is completely
< A, I Y]

determined by its restriction to A. It follows from (2.8) and (2.11) that

SxTIN

> L
(né, l(at)d)n) (u\l,) = | chit 2V — Sh%t e "2 | “2r+2n-1

s i,
- (chit e2™ —shit e~ 2¥) =27
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Hence
(2.15) T 2, m, n(al) = (Ch%t)_ ol

4n

1 i . .
E_J (l—th%t el‘ll)—l+n—l/2(1_th%te-—ul;)—l*n—l/2el(m—n)d/dqj,
T

0

teR,mneZ + & .

The following symmatry is evident from (2.15):

(216) né’;, A, —m, ~n(at) - Tcé, A, m, n(at) .

2.3. CALCULATION OF THE CANONICAL MATRIX ELEMENTS

Let us calculate the integral (2.15). In view of (2.16) we can suppose m > n.
The binomial expansion

(2.17) (1—z)"¢ }: —Z—Z", |z| < 1l,aeC,
where

| D@k = H@th
(2.18) (@), = ala+1)..(a+ =

can be substituted for the first two factors in the integrand of (2.15). Now
interchange the order of summation and integration and perform the integration
in each term. Then we obtain (m>n)

()\'+n+2)m n
(m—n)!

S F Mm+i A—n+d:m—n+1;(thi)?),

(219) T, 3, m, n(at) — (h [)m n(chl )n m—2i—1

where the ,F, denotes a hypergeometric series, defined by

(2.20) ,Fi{a,b;c;z) = k'Z’ lz| < 1,a,b,ceC,
k= |

cf. [10, Vol. I, Ch. 2].

The expression (2.20) is clearly symmetric in a and b. As a function of z, the
,F | has an analytic continuation to a one-valued function on C\[1, o). Appli-
cation of the transformation formulas
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