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SU(n, 1). For convenience, in order to avoid matrix manipulations, we restrict
ourselves here to the case that the compact subgroup K is abelian.

The results of this paper may be generalized rather easily to the universal
covering group of SL(2, R). The extension to SL(2, C) was done by KOSTERS [28],
see also NAIMARK [34, ch. 3, §9]. Hopefully, an extension to SO(n, 1) and
SU(n, 1) 1s feasible.

The reader of this paper is supposed to already have a modest knowledge
about certain elements of semisimple Lie theory, like principal series and
spherical functions. Suitable references will be given. Some of this preliminary
material can also be found in the earlier version [27]. Modern accounts of the
infinitesimal approach to SL(2, R) can be found, for instance, in SCHMID [36, §2]
or VAN Duk [9]. TAKAHASHI [42] also presented a global approach to SL(2, R),
partly based on an earlier version of the present paper, partly (the global proof of
Theorem 5.4) independently.

Finally, I would like to thank G. van Dijk and M. Flensted-Jensen for useful
comments.

2. THE CANONICAL MATRIX ELEMENTS
OF THE PRINCIPAL SERIES

2.1. PRELIMINARIES

Let G be a locally compact group satisfying the second axiom of countability
(Icsc. group). A Hilbert representation of G is a strongly continuous but not
necessarily unitary representation t of G on some Hilbert space s#(t) (which is
always assumed to be separable). Let K be a compact subgroup of G. A Hilbert
representation t of G is called K-unitary if the restriction 1 | of T to K is a unitary
representation of K. A Hilbert representation t of G is called K-finite respectively
K-multiplicity free if t is K-unitary and each &€ K has finite multiplicity
respectively multiplicity 1 or Oin 1 |. If Tis K-multiplicity free then the K-content
M (7) of 1 is the set of all 8 € K which have multiplicity 1 in T |4.

Let K be a compact abelian subgroup of G and let T be a K-multiplicity free
representation of G. Choose an orthogonal basis {d; | & € #(1)} of H#(1) such
et W00; = 500y, Be M, ke K.

We call {¢;} a K-basis for #(t) and the functions 1,4(y, § € .#(1)), defined by

(21) Ty, B(Q) 2= (T(g)(bﬁa (by) » g€ G 5

the canonical matrix elements of T (with respect 1o K).
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