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SU(n, 1). For convenience, in order to avoid matrix manipulations, we restrict
ourselves here to the case that the compact subgroup K is abelian.

The results of this paper may be generalized rather easily to the universal
covering group of SL(2, R). The extension to SL(2, C) was done by KOSTERS [28],
see also NAIMARK [34, ch. 3, §9]. Hopefully, an extension to SO(n, 1) and
SU(n, 1) 1s feasible.

The reader of this paper is supposed to already have a modest knowledge
about certain elements of semisimple Lie theory, like principal series and
spherical functions. Suitable references will be given. Some of this preliminary
material can also be found in the earlier version [27]. Modern accounts of the
infinitesimal approach to SL(2, R) can be found, for instance, in SCHMID [36, §2]
or VAN Duk [9]. TAKAHASHI [42] also presented a global approach to SL(2, R),
partly based on an earlier version of the present paper, partly (the global proof of
Theorem 5.4) independently.

Finally, I would like to thank G. van Dijk and M. Flensted-Jensen for useful
comments.

2. THE CANONICAL MATRIX ELEMENTS
OF THE PRINCIPAL SERIES

2.1. PRELIMINARIES

Let G be a locally compact group satisfying the second axiom of countability
(Icsc. group). A Hilbert representation of G is a strongly continuous but not
necessarily unitary representation t of G on some Hilbert space s#(t) (which is
always assumed to be separable). Let K be a compact subgroup of G. A Hilbert
representation t of G is called K-unitary if the restriction 1 | of T to K is a unitary
representation of K. A Hilbert representation t of G is called K-finite respectively
K-multiplicity free if t is K-unitary and each &€ K has finite multiplicity
respectively multiplicity 1 or Oin 1 |. If Tis K-multiplicity free then the K-content
M (7) of 1 is the set of all 8 € K which have multiplicity 1 in T |4.

Let K be a compact abelian subgroup of G and let T be a K-multiplicity free
representation of G. Choose an orthogonal basis {d; | & € #(1)} of H#(1) such
et W00; = 500y, Be M, ke K.

We call {¢;} a K-basis for #(t) and the functions 1,4(y, § € .#(1)), defined by

(21) Ty, B(Q) 2= (T(g)(bﬁa (by) » g€ G 5

the canonical matrix elements of T (with respect 1o K).
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2.2. THE PRINCIPAL SERIES

Let G be a connected noncompact real semisimple Lie group with finite
center. Let G = KAN be an Iwasawa decomposition. For ge G write ¢
= u(g)exp(H(g))n(g), where u(g) € K, H(g) € a(the Lie algebra of 4) and n(g) € N.
Let p € a* be half the sum of the positive roots. Let M be the centralizer of Ain K.
For £ e M, \ € a¥ the principal series representation T, of G 1s obtained by
inducing the (not necessarily unitary) finite-dimensional irreducible
representation man — "¢ 9E(m) of the subgroup MAN. In the so-called
compact picture we have the following realization of m;, (cf. WALLACH [45,

§8.3]):

(2.2) (e, 2(9)f) (k) = e~ @THHE D) f(y(g~1k)),
feLiK, #E), keK,geG.

Here the Hilbert space LZ(K, #(£)) consists of all #(£)-valued L*-functions f on
K such that f(km) = &(m~")f(k), k € K, m € M. The representation 7, , is a K-
unitary Hilbert representation. It is unitary if A € ia*. By Frobenius reciprocity,
T 18 K-finite and =, , 1s K-multiplicity free if each 6 € K is M-multiplicity free.

Let us now specialize the above results to G = SL(2, R). It is convenient to
work with the group G = SU(1, 1), isomorphic to SL(2, R):

(2.3) G:= {gw = <Cf ?); o, BeC,lu? — |B? = 1}.

B o
Let
Iy g
21
(2.4) K::{u‘,:(e 1); 0<9<4n},
O e—jie
chit shit 0 4
;= = = t ;teRy,
(2.5) A {a, (sh%t chlt exp L g €
1+4iz Lz
(2.6) N := {nz = ( ii; l_zliz>;Z€R}.
2 2

Then G = KAN is an Iwasawa decomposition for G = SU(1, 1), p(log a,) = 3t
and M = {uy, u,,}. M consists of the two one-dimensional representations
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(2.7) Uy > €% ugeM,E =0 or 3.

Let LK) consist of all f e L¥K) such that f(u,.,.) = f(uy) or — f(uy)
according to whether & = 0 or 3, respectively.
Now, by using explicit expressions for the factors in the Iwasawa
decomposition of g, p u,, (cf. TAKAHASHI [39, §17]) we can write (2.2) in the case G
vl 1) as follows:

1

(2.8) (ng, 2(9s, B)f) (u\p) = Iaefi‘l’ — Be—fiw | T 1f(u¢') ;

1 1
V' i= 2 arg(aezV—Be 2V), g,3€G,u, €K, f e LAK),
' E=0o0r3,AeC.

On putting g, 5 := us € K we get

(2.9) (ng, x(“e)f) (uy) = fluy o), fe€ LQZ(K), Uy, Uy € K,
which again shows that n; , is K-unitary. K consists of the representations
(2.10) S(ug) := €™, uye K,

where n runs through the set 17, ie., 2n e Z. An orthogonal basis for LK) is
given by the functions

(2.11) | buuy) :=e ™, u,ekK,

where n runs through the set Z + £ := {m+&|me Z}. Then
(2.12) T, x(ue)d),,' = 0,(ug)d,, uyeK,neZ + & .
Thus =, , is K-multiplicity free,

(2.13) M(m.,) = {8,eK|neZ + &},

the ¢,’s form a K-basis for L(K) and the canonical matrix elements of T, ) are

(214) TCE,, A, m, n(g) = (TEE,, l(g)d)n’ (bm) > g = G’ m,n € Z + {; *

Recause of the Cartan decomposition G = KAK, n_ . . is completely
< A, I Y]

determined by its restriction to A. It follows from (2.8) and (2.11) that

SxTIN

> L
(né, l(at)d)n) (u\l,) = | chit 2V — Sh%t e "2 | “2r+2n-1

s i,
- (chit e2™ —shit e~ 2¥) =27
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Hence
(2.15) T 2, m, n(al) = (Ch%t)_ ol

4n

1 i . .
E_J (l—th%t el‘ll)—l+n—l/2(1_th%te-—ul;)—l*n—l/2el(m—n)d/dqj,
T

0

teR,mneZ + & .

The following symmatry is evident from (2.15):

(216) né’;, A, —m, ~n(at) - Tcé, A, m, n(at) .

2.3. CALCULATION OF THE CANONICAL MATRIX ELEMENTS

Let us calculate the integral (2.15). In view of (2.16) we can suppose m > n.
The binomial expansion

(2.17) (1—z)"¢ }: —Z—Z", |z| < 1l,aeC,
where

| D@k = H@th
(2.18) (@), = ala+1)..(a+ =

can be substituted for the first two factors in the integrand of (2.15). Now
interchange the order of summation and integration and perform the integration
in each term. Then we obtain (m>n)

()\'+n+2)m n
(m—n)!

S F Mm+i A—n+d:m—n+1;(thi)?),

(219) T, 3, m, n(at) — (h [)m n(chl )n m—2i—1

where the ,F, denotes a hypergeometric series, defined by

(2.20) ,Fi{a,b;c;z) = k'Z’ lz| < 1,a,b,ceC,
k= |

cf. [10, Vol. I, Ch. 2].

The expression (2.20) is clearly symmetric in a and b. As a function of z, the
,F | has an analytic continuation to a one-valued function on C\[1, o). Appli-
cation of the transformation formulas
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z
(2.21) ,Fa,b;c;z) = (1—z)b2F1<c—a,b;c;:1—>

z
- (l—z)_“2F1<a, c—b;c; z—l)

(cf. [10, Vol. I, §2.1 (22)]) to (2.19) yields (m=n):

(222) TEF;. hom, n(at)
1
= (kﬂ(—n+2)),',,_,, (sh%t)’"_"(ch%t)""'"zFl(l—'n+%, —h—n+iim—n+1;—(shit)?)
m—n)!

1
_ “J(r”“))';"" (shsty™ = "(chst)y™ " F (A +m+3, —A+m+%;m—n+1; —(sh30)?).
m-—nj.

It is more elegant to express the hypergeometric functions in (2.22) in terms of
Jacobi functions 6@ P (p, o, pe C, o ¢ {—1, —2, ...}), which are defined on R by

(2.23) o Po(r)
c= S F (3o B+ 1+ip), (a4 B+ L—ip); o+ 15 —(sht)?)

(cf. KOORNWINDER [36, §2]). Clearly,

(2.24) | o= B(0) = 1,A
(2.25) ¢ (1) = ¢ P(—1),
(2.26) ' O P(t) = ¢ PAr) .

The function ¢ P satisfies the differential equation

_, d du(t)
(2.27) (A, (1) i <Aa, ol1) 7)
= — (P +(a+B+ 1)),
where
A, plt):= (sht)®** Y(cht)?P*1 |

and u:= ¢% P is the unique solution of (2.27) which is regular at t = 0 and
satisfies u(0) = 1. For fixed a > —1, Be R, Jacobi functions ¢ ? form a
continuous orthogonal system with respect to the measure A, (t)dt, t > O.
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Substitution of (2.23) and (2.22) yields (m>n):

(2.28) T %, m, ()

A +n+3)m-n . S
= oy ST ()

A+n+d),._, ) )
= o SRk O (o).

Application of (2.16) gives a similar result in the case m < n. Finally we
conclude:

THEOREM 2.1.  The canonical matrix elements m; ; , Ja)(heC;& = Oor
L.mneZ +€;teR) of SU(,1) can be expressed in terms of Jacobi
functions by

c m, n m-—n m+n m—n|, m+n
(2.29) Te o m nl@) = —(lnii Y (sh3) =" (chity™ "dldp - m ) (e
where

O+, ifm=n,
(2.30) Crmn T \—ntd) . ifnzm.

In view of (2.24), formulas (2.29) and (2.30) describe the asymptotics of
Te a,m n n€Art = 0.

2.4. NOTES

2.4.1. The principal series of representations was first written down for
SL(2, R) by BARGMANN [2], for SL(2, C) by GELFAND & NAIMARK [ 18], and for a
general noncompact semisimple Lie group by HARISH-CHANDRA [21, §12].

2.4.2. BARGMANN [2, §10] already obtained explicit expressions in terms of
hypergeometric functions for the canonical matrix elements of the irreducible
unitary representations of SL(2, R). He solved the differential equation satisfied
by these matrix elements, which is obtained from the Casimir operator. VILENKIN
[43, Ch. VI, §3] gives a derivation of these expressions which is similar to our
derivation in §2.4, starting from the integral representation (2.15).

2.4.3. 1t follows from the present paper that the spherical functions for
SL(2, R) can be expressed as Jacobi functions of order (o, B) = (0, 0). More
generally, the spherical functions on any noncompact real semisimple Lie group
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of rank 1 (i.e., dim(4) = 1)can be written as Jacobi functions of certain order (cf.
HARISH-CHANDRA [23, §13]). This motivated FLENSTED-JENSEN [14] to study
harmonic analysis for Jacobi function expansions of quite general order (o, B),
o > B > —1 This research was continued in several papers by Flensted-Jensen
and the author.

3. THE IRREDUCIBLE SUBQUOTIENT REPRESENTATIONS
OF THE PRINCIPAL SERIES

3.1. SUBQUOTIENT REPRESENTATIONS

We start with the definition and some general properties and next derive an
irreducibility criterium (Theorem 3.2) and a decomposition theorem 3.3.

Let G be a lcsc. group and let t be a Hilbert representation of G. Let 5, be a
closed subspace of #°(t) and let P, be the orthogonal projection from #(t) onto
H . Define

(3.1) Tolglv = Potlglv, geG,ve H,.

Then t(g) € L () for each ge G, to(e) = id.,, and g — 15(g)v: G — H#, is
continuous for each v € #,. If also

(3.2) T0(g9192) = T0(91)70(92), 91,9, € G,

then 1, 1s a Hilbert representation of G on #, and it is called a subquotient
representation of T. Formula (3.2) is clearly valid if # is an invariant subspace of

H (1), 1e, if tHgve #H, for all ge G, ve #, In that case, 1, is called a
subrepresentation of T.

LEMMA 3.1, Let #, beaclosed subspace of #(1), let #, be theclosed
G-invariant subspace of (1) which is generated by Ho and let A, :

=, N H;. Then 1, isasubquotient representation if and onlyif #, isG-
invariant.
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