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46 K. K. NORTON

THEOREM 4.13. Suppose that there exists a real number y (E) > 0 such that
(1.7) holds. Let €& > 0, and suppose that x > ¢, (E,€) and

(log; x)* (log x)™' < @ < 1 + {1 + log vy (E) — ¢} (log, )"

Then
]
x! "% exp {—035 (E) ki } < S (x, o (log x) (log, x)™'; E, 0)
log, x
L 2a (log x) logs x log x
< x " %exp C36 (E) :
log, x log, x

This can be obtained from Theorems 1.11 and 1.14 (take
y = a(log x) (log, x)™*
and use the inequalities
log, y < log; x,y = log, x > v (E) log, x).
Theorem 4.13 should be compared with Theorem 1.6.

§5. PROOFS OF THEOREM 1.21 AND RELATED RESULTS

In estimating S (x, y; E, Q) (defined by (1.1)), we do not need any assumption
such as (1.7). Hence we emphasize that throughout the remainder of this paper, E
is merely assumed to be any nonempty set of primes. (We shall sometimes assume
explicitly that E has at least two members.) The smallest member of E will always
be denoted by p, (and the smallest member of E — {p,}, if it exists, by p,). When
x and v are positive real numbers, the function A = A (x, v; E) is always defined
by (1.22).

The subsequent work depends heavily on the following elementary lemma
[13, p. 690]:

Lemma 5.1. If x>0 and 1<z < p,, then

Z ZQ(n;E) < pl (pl_z)—l xe(z—l)E(x)+4z_

n<x




PRIME FACTORS OF AN INTEGER 47

For the special case E = P, there is a recent paper of DeKoninck and

%k
Hensley [1] giving various estimates for Y, z®", where z is complex and *

n<x
indicates that the prime factors of n are restricted to lie in a certain range.
DeKoninck and Hensley get sharp results, but their work is rather complicated
and does not seem applicable to the problems discussed here.
If y is real and z > 1, then
Z R0E) > Z (5 E)

<x n<x,Q(m E)=y

X

>z’ card {n < x: Q(n; E) > y}.

Hence Lemma 5.1 immediately yields

LemMAa 52. If x>0,y isreal,and 1 <z < p,, then

card {n < x: Q(n; E) > y}
< p,(p,—2)" ' x exp {(z—-l)E(x) — ylogz + 42} .

LEMMA 5.3. Let x> 0,0 <v <y <pv. Then
card {n < x: Q(n; E) > y}
< ¢37(p) (py—y/v)" ' x exp {y — v — y log (y/v) + p:A}.
Proof: 1In Lemma 5.2, use the inequality E (x) < v + A and take z = y/v
to get an approximate minimum. Q.E.D.
We observe in passing that Lemma 5.2 can also be used when y > p,v. In

order to get a reasonably good result in this case by the same method, one needs
to minimize the function

gz =(z—1)v-—ylogz — log(p;—2)

on the interval 1 < z < p,. Assuming that y is rather large, one can see with
some computation that g (z) is approximately minimized when

z=p (1 -2y,

and this z satisfies 1 < z < p, whenever y > 1. With this value of z, Lemma 5.2
yields '

card {n < x: Q(n; E) > y} < ¢35 (py) yp1 Y x elpt— Dot piA (5.4)

forx > 0,y > 1. When E is the set of all primes and x > 3, we can take
v = log, x, A = O (1). Thus (5.4) is already sharper and more general
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than (1.20) (which is due to Erdos and Sarkozy [3]). However, Theorem
1.18 shows that it may be of interest to take y as large as
(log x) (log p;)~ %, and we shall now prove that when y is relatively large,

the factor y on the right-hand side of (5.4) can be replaced by a much
smaller quantity.

LEMMA 55. Write F = E — {p,} (if F is empty, we define
Qn;F) =0 for all n). Let. x>0,y>0, and let k =[y] + L
For integers a with 0 < a < k, define

C,={m<xp;®p/m and Q(m;F) >k — a}.
Then |
k—1
S(x,y;E, Q) = [xp; ] + > card C,.
a=0

Proof: For 0 < a < k, define
B,={n<x:pi|n and Qnp * F) =k — a}

(recall that p? || n means p? | n and p%*! t n). It is easy to see that
(h<x:Qm;E)>y} ={n<x:pi|nfu (J B,.
0

Since the sets {n < x:p% | n}, By, By, .., By_ are disjoint, we have
k=1
S(x,y;E,Q) = card {n < x:pj|n} + ) card B,.
0

a=

But the mapping n+ np;  establishes a one-to-one correspondence
between B, and C,, so the result follows. Q.E.D.

Proof of Theorem 1.21: If E = {p,}, then by Lemma 5.5,
S(x,y; E, Q) < xp;”,
and (1.23) follows. Thus we may assume that F = E — {p,} is not

empty. Let-p, be the smallest member of F, and let k = [y] + 1. By
Lemma 5.5,

k
S(x,y; E, Q) = [xp;*] + ) card C,_,. (5.6)
a=1
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To estimate
card C,_, = card {m < xp} *:p; ¥ m and Q(m;F) > a}

from above, we apply Lemma 5.2 (with E replaced by F and p, by p,).
Since

Fxpi ) S Fx)SE(X)<v+A,
we obtain
card C, _,
< p,(p,—2) P xpi*exp {(z—1) (v+A) — alog z + 4z}
— H(a,2), (57)
say, and this holds for each integer a (1<a<k) and each real z with
1 < z < p,. In applying (5.7), we are free to choose z to depend on a.

Write Q = max {k, p,v}, and for each a (1<a<Q), let z, be any real
number satisfying 1 < z, < p,. Then by (5.6) and (5.7),

+ Z H(a,z,). (5.8)
Forl <a<v, take z, = . With this choice, we have

Z H(a’ Za) < xpl_k z pl < XPD1 A

1<a<v 1<a<v

« xpy?elPt—hv, (5.9)

For v < a < p,v, the quantity (z—1) v — a log z in (5.7) is minimized by
taking z = a/v = z,. With this choice of z,, we have 1 < z, < p, and

P2(P2—2z) ' < p,(pa—py)t <1+ py,
SO

H (a, z)) < ¢30 (py) xpi ™" e 7D 2 (%™ %/a’e ™).

By Stirling’s formula, a%~* > a!a™'/?, so we get

Z H (a, z,) < c40 (py) xpy? v'/2 707 P1A 2 (2:2)

v<a$p1v v<a<p v a!
1

< C40 (py) xpy? v1/2 Pt - DotpiA (5.10)

L’Enseignement mathém., t. XXVIII, fasc. 1-2.
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For p;v < a < Q, we let all the numbers z, have the same value p; (1+0),
where 0 is a real number about which we assume only that0 < 6 < p,p; ! — 1
(the last inequality being needed in order to have z, < p,). With this choice of z,,
(5.7) yields

H (a, z,)

» “q
plv<a$Q

< p2{p; — Py (1+0)} ' xp* exp {(p1—1+p,0) v+A) + 4p, (1+0)}

x Y (1+6)7°. (5.11)

plv<a$Q

The last sum on the right does not exceed

Y (1+60)° < (1+60)07 1 (14+6) 717, (5.12)

a> v
pl

After combining this estimate with (5.11), we would like to minimize the
contribution of the essential terms €% 971 (140) 7. Since

log (1+0) =6 —0%2 for 0>0, (5.13)

we have
pOv — log @ — p,vlog (1+0) < —log 6 + p,v0?/2,

and here the right-hand side would be minimized by taking 6 to be (p,v)™*/2.

However, we must also choose 0 < p,p; ! — 1 (so that z, < p,). If we take
0 = (2pv'/?)7 1, (5.14)
then because of our assumption that v > 1, we have

0<(2p) ' <ppi'—-1.
Combining (5.11), (5.12), (5.13), and (5.14), and observing that

p2{p> — p1 (14+0)} 7! < py (pp—py—1/2)7*
=1+ (p,+1/2) (Pz—Pl,_l/z)_l < €41 (P1) >

we obtain finally
H(a,z) <c ) xpp? vl ept-DvtpA (5.15)
> Za 42

plv<aSQ
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The theorem now follows from (5.8), (5.9), (5.10), and (5.15). Q.E.D.
Since

Ex)< Y pt=log;x+0(1) for x>2,

p<x

one would always want to choose v < log, x. Thus (1.23) is superior to (5.4)
whenever y > (log, x)'/2. Furthermore, consideration of derivatives shows that

y — v — ylog(yv) <(p;—1)v — ylog p, for 0 <v<y<p,

and hence Lemma 5.3 is superior to Theorem 1.21 whenever

l1<v<y<ppo— o2,
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