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Theorem 3.20. Suppose there exist real numbers Ô > 0, x0 ^ 2 such that

(3.14) holds. If x ^ c29 (Ö) and x0 ^ y ^ 5 (log x) (log2 x)~\ then

S (x, y ; E, co) » x exp {— 5~1 (y log y + log y + 2)}

Proof: In the notation of the preceding proof, (3.17) holds, and trivially
log nr ^ r log pr. If y ^ x0, then pr > r ^ x0 and r n (pr; E) ^ pf, so

log nr ^ 8~1 r log r ^ Ô"1 (y+ 1) (log y + y-1)

^ 5_1 (y log y + logy + 2). (3.21)

But log y ^ log2 x — log3 x, so log nr < log x if x ^ c29 (5). Hence (3.19)

holds, and the result follows from (3.17) and (3.21). Q.E.D.

§4. Proofs of Theorem 1.14 and related results

We begin by quoting the following easy result from [13, pp. 689-690] :

Lemma 4.1. For x ^ 1 and z ^ 1,

x *»<«•*> «xn {i+ (z-i)p-1}.
n^x p^x, peE

To put this in a more convenient form, we prove

Lemma 4.2. If x ^1 and w> -2, then (cf. (1.2);

Il (1+wp"1) < (4.3)
p^x, peE

If 1 < w < x, then
11 (1 + wp ')

p^x, peE

exp {w (E (x) - E (w)) + 0 (w/log (2w))} (4.4)

Proof : (4.3) follows immediately from the inequalities

0^1 + wp~1 < exp *).

To get (4.4), we first write

Il (1 + wp_1)< [] (2wp-1) • Y[ exp (w/T1)
p^x.peE p^w w<p^x,peE

exp {w (E (x) - E (w)) + il (w) log (2w) - 0 (w)},
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where n (w) 1 anc* Ö (w) log P• Since 71 (t) « t/log (2f) for
t ^ 1, we have

> (w) (log t) dn (t) n (w) log w
J i
K (w) log w + 0 (w/log (2w)),

n(t) t 1 dt

and it follows that the right-hand side of (4.4) is an upper bound for the left-hand
side. On the other hand, since log (1 +y) y + 0 {y2) for y > 0, we have

Y[ (i+wp-1) ^ Yl exP {wp
1 + o (w2p~2)}

p^x, peE w< p^x, peE

exp {w (E (x) - E (w)) + £ P 2)} •

But

I P'2
p> w

t 2 dn (t) < 2 t 3 n(t) dt « (w log (2w))
1

and (4.4) follows. Q.E.D.

Corollary 4.5. If x ^ 1 and z ^ 1, then

£ zco(n;E) ^ x e(z-l)E(x)
_

n^x

If 1 ^ z ^ x, then

^ zco (n; E)

n^x

< x exp {(z-1) (£ (x) - E (z)) + c30z/log (2z)}

Note that if 1 < z < 2, then (4.7) follows from (4.6).

(4.6)

(4.7)

Theorem 4.8. Let x>1, v>0,1 < a < x. Define A A(x,v;E)
by (1.22). Then

S (x, au ; E,co)< x exp {(a— 1 — alog a) v — (a) + c31 Aa}.

Proof : Suppose 1 < z < x. Then

£ z'" <"•'£) > £ zC0 E) > z"v s (x> av ; E, co).
<x, a) (n; E)> av

Combining this result with (4.7), we get

S (x, olv; E, co) ^ x exp {(z — 1) (HÀ) — z£ (z) — olv log z

+ c32 z/log (2z)} (4.9)
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In practice, we think of v as being a good approximation to E (x), so that A is

small compared to v. We want to minimize the right-hand side of (4.9)

approximately, and for simplicity, we choose z so as to minimize the expression (z

-1) v — av log z, i.e., we take z a. With this value of z, we get the result from

(4.9). Q.E.D.

Lemma 4.10. Suppose that there exists a real number y (E) > 0 suchthat

(1.7) holds. Then there is a real number 5 (E) such that

E(x) y (E) 1 og2 x + 5 (E) + 0E (1/log x) for x ^ 2 (4.11)

Proof: Write

E(x) t 1 dn(t; E),

integrate by parts, and use (1.7). Q.E.D.
From Theorem 4.8 and Lemma 4.10, we get

Corollary 4.12. Suppose that there exists a real number y (E) > 0 such

that (1.7) holds. Let x ^ 3, 2 ^ a ^ x. Then

S (x, ay (E) log2 x ; E, co)

^ x exp {(a— 1 —alog a) y (£) log2 x — ay (E) log2 a + e33 (E) a}

Using (1.8), it is easy to show that Corollary 4.12 actually holds for all a ^ 2,

but it is also clear from (1.8) that

S (x, ay (£) log2 x ; E, co) 0

whenever a is somewhat greater than (log x) (log2 x)~2.

The upper bound given in Corollary 4.12 compares favorably with the
theorem of Delange (Theorem 1.17 above), and our result is more general and
holds for a much wider range of a. Our proof is also much simpler than
Delange's. Unfortunately, our lower bound (1.13) is much smaller than the upper
bound in Corollary 4.12.

Theorem 1.14 is proved in the same way as Theorem 4.8, but we use (4.6)
instead of (4.7), apply Lemma 4.10, and take z y (y (E) log2 x)"1.

We conclude this section by generalizing the Erdös-Nicolas result (1.10).
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Theorem 4.13. Suppose that there exists a real number y (E) > 0 such that
(1.7) holds. Let 8 > 0, and suppose that x ^ c34 (E, e) and

(log2 x)2 (log x)-1 < a 1 + {1 + log y (£) - e} (log2 x)-1

Then

x1'" exp j-c35 (E)^* j sï (x, a(log x) (log2 x)"1; co)

«,-exp + lasjLl
log2 X log2 xj

This can be obtained from Theorems 1.11 and 1.14 (take

y a (log x) (log2 x)"1

and use the inequalities

log2 y ^ log3 x, y ^ log2 x ^ y (E) log2 x).

Theorem 4.13 should be compared with Theorem 1.6.

§5. Proofs of Theorem 1.21 and related results

In estimating S (x, y ; E, £2) (defined by (1.1)), we do not need any assumption
such as (1.7). Hence we emphasize that throughout the remainder of this paper, E

is merely assumed to be any nonempty set ofprimes. (We shall sometimes assume

explicitly that E has at least two members.) The smallest member of E will always
be denoted by px (and the smallest member of E — (pj, if it exists, by p2). When

x and v are positive real numbers, the function A A (x, v ; E) is always defined

by (1.22).

The subsequent work depends heavily on the following elementary lemma

[13, p. 690]:

Lemma 5.1. If x > 0 and 1 < z < pl5 then

Y znin;E) < pl (Pi-z)"1 xe{z~1)Eix) + 4z.
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