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38 K. K. NORTON

Empty sums mean 0, empty products 1, and we define 0° 1. The notation

••• xJyi y*

is sometimes used instead of

(*1 ••• XJCVl •••

Throughout this paper, E denotes a nonempty set of primes, to be regarded
as quite arbitrary unless further assumptions are stated. E (x) is always defined

by (1.2). p1 always means the smallest member of E, and if

E - {Pi}{p'-peEand

is not empty, then p2 denotes the smallest member of E — {p1}. When x and v are

positive, the function A A (x, v; E) is always defined by (1.22).

§3. Proofs of Theorems 1.6 and 1.11,

AND RELATED RESULTS

Before proving (1.8), we observe that a similar but weaker inequality has a

very simple proof. For if y > 1, then

log n>L loê P > Z lo8 p > (lo8 y) Z 1 '
p\n p\n,p^y p\n,p^y

and hence

©(«)- Z 1+ Z 1 ^ y + (log n) (log y)"1
p\n,p<y p\n,p^y

The right-hand side is approximately minimized by taking

y (log n) (log2

and we obtain

®(n) < jl +
1 for n^l6(>ee). (3.1)

log2 n I \log2 nJAnother simple proof of (3.1) can be based on Newman's observation [11, p. 652]
that if co (n) r, then n ^ r!.

To get the sharper inequality (1.8), it sepms to be necessary to use an

assumption such as (1.7) about the distribution of E. First we need a lemma

relating n (x; E) (defined by (1.4)) and

e(*;£)= Z log p. (3.2)
p^x, peE
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Lemma 3.3. Suppose that there exists a real number y (E) > 0 such that

(1.7) holds. Then for x > c„ (F),

0 (x; F) n (x; E)
J

log n(x;E) + log2 7r (x; F) - 1 - log y (F)

log2K(x;E) 1 \\+
log7ü(x;£) £Vlog^^;£)/J

Proof: For notational simplicity, we write lr logr x, Lr logr 7t (x; E)

whenever these are defined. First note that for x > c12 (E), (1.7) implies

Ll h -l2 + logy (E) + 0,(1/1,). (3.5)

In particular, Li ~ l,SindL2 ~ /2asx + oo,soforx > c13 (F), (3.5) implies

Li Ml + 0E (LJL,)}

and multiplication by (LJ,)'1 yields

Zj-1 - Lf1 {1 + Oe(L2/L,)} for x > c13 (F) • (3.6)

Taking logarithms in (3.5), then using (3.6), we get

L2 Z2(l - 1//! +

l2(1- 1/L, + 0£ (1/LiL,)) for x > c14

It follows that

l2L2(1+ 1/L1 + 0E(l/L1L2f)forX > cls (E). (3.7)

Substituting (3.7) in (3.5), replacing 0E (1 /by0E (1/LJ, and solving for we
get

Zt L1+ L2 - log y (E) + + 0£ (1/Lj)
for x > c16 (£). (3.8)

We now need to estimate 0 (x ; E)interms of tc (x ; E). We use the Stieltjes
integral, then integrate by parts and combine with (1.7):

0 (x; E) (log t) dn(t; E)ti (x ; E) —
1

dt

log t

+ 0
'

2

ti (x; E)/j — ti (x; E) + 0E(x/lf) (3.9)

(log t)2 ' 71(X; 'i ~ Y +
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for x ^ 2. Now, (1.7) shows that

xfll °E fa (*; E)/ll) 0E (n (x; Ej/Lj for x > c17 (E).

Using this fact as well as (3.9) and (3.8), we get (3.4). Q.E.D.

Proof of Theorem 1.6: Write E {pu p2, p3,where p1 < p2 < p3

< Define nr pxp2 pr for r ^ 1. By (3.4),

n, - 6fe;£) ,r log r) {l + ^ + + 0,( '
I log r log r (log r)z \(log r)

(3.10)
for r > cil (E). Hence for r > Cjg (E),

log2 nr log r+ log2 r + + 0E (r-3—) (3.11)
log \log r)

If r> c19 (£),then (3.10) and (3.11) yield

log nrr {log2 nr -1 - log y (£) + 0E (l/log2 nr)} (3.12)

If r > c20 (F), we can solve (3.12) for r to get

FN
log nr( l+logy(£) 1 Yl

CO {nr;E) r - <M + + -j > (3.13)
log2 nr I log2 nr \(log2 nr) J J

Now let n be any integer ^ 3, and write co (n ; E) r. Define

log n{1+ log Y (£)} log n logf (n, a) + ^ + a -3log2 n (log2 ny (log2 nY

for real a. For fixed positive a, / (n, a) increases with n for n > c21 (a, E). Thus if
r > c22 (E), it follows from (3.13) (since n ^ nr) that

CO (n;E)co (nr;E)< f(n„c23(£)) < / c23 (£)).

Now suppose that 0 ^ r co (n; E) ^ c22 (F). If n ^ c24 (F), then clearly

/ c23 (£)) Ss c22 (£) ^ CO ; £).

If 3 ^ n < c24 (F) and c25 (F) is sufficiently large, then (since y (F) ^ 1)

/ (n, c25 (£)) > (1^ ^3 jc25 (£) + (log y (£)) log2 c24 (£)j

> c22 (£) co (n; £).
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It follows that if

c26 (£) max {c23 (£),c25 (£)},
then

cd (n;£) sg fc26 (£))

for all n ^ 3. This proves (1.8), and (3.13) shows that equality holds in (1.8) for

infinitely many n. Q.E.D.
For a more precise version of (1.8) when E is the set of all primes, see [12,

p. 99].
Even a much weaker hypothesis than (1.7) implies that the maximum order of

co (n ; E) is nearly (log n) (log2 n)~1. Specifically, suppose that there exist positive
real numbers 5, x0 such that

n(x; E) ^ x5 for all x ^ x0 (3.14)

In the notation of the preceding proof, it is then clear that for r ^ x0,

log nr 0 (pr; E) > 7i (pr; E) - 1 > pi - 1 (3.15)

But trivially 0 (pr ; E) ^ r log pn so

CO (nr;E)r > (log (log pr)~\
and hence by (3.15),

co(n;E)log2nlim sup ^ 5 (3.16)
n-* +co log

Proof of Theorem 1.11 : We use the method of Erdös and Nicolas [2],
which we can refine and generalize by appealing to Lemma 3.3. As before, write

E {Pi> Pi, Pi, •••},
where

Pi < Pi < Pi <

Assume that ysatisfies (1.12) (where c2 (E)is sufficiently large), take r [>•] + 1,
and let nr p,p2... pr. There are exactly [x/nr] multiples n of such that n < .x,
and for each such n we have co (n;E)> r >y.Hence

S (x,y; E,cù)>[x/nj (3.17)
By (3.4),

log nrr {log r + log2r-1 - log y (£) + 0E ((log2 r)/log r)}
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for r > cxl (E). Define

g(t) t {log t -f log2 t - 1 - log y (£)}

for real t ^ 3 and note that

0 < g' (t) 0E (log t) for t ^ 3

By the mean-value theorem for derivatives,

g(r) g (y) + oE (log y),

and hence

log nr g (y) + 0E (y (log2 y)/log y) if y > c21 (E). (3.18)

In order to derive (1.13) from (3.17) and (3.18), we need to show that

[x/wr] » x/nr, (3.1.9)

i.e., that nr ^ x. For the remainder of this proof, write

lk logfc x, ß 1 + log y (E) — e,
and

z ih/h) + ß Ci/'i) •

It follows from (1.12) that

y (log2 y)f.log y •

Also, if x > c28 (E, s), then

log z ^ l2 — /3 + (ß/y ^ /2 /3 + (8/2),

log2 z < Z3

It follows from these inequalities and (3.18) that ifx > (F, e) (sufficiently large)
and (1.12) holds, then

log nr 0 (z) + 0E(IJi/lj)
< Ci/Ü (1 + ß/U {'2 - /3 + (e/2) + (ß + s)}

+ 0E(hl3/lj)

=l1(l-e/21J + 0E,t{lxl3/l%<l1,

so nr < x. Thus (3.19) holds, and (1.13) follows from (3.17) and (3.18). Q.E.D.
It is interesting to observe that a result somewhat like (1.13) can be deduced

from a much weaker assumption than (1.7):
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Theorem 3.20. Suppose there exist real numbers Ô > 0, x0 ^ 2 such that

(3.14) holds. If x ^ c29 (Ö) and x0 ^ y ^ 5 (log x) (log2 x)~\ then

S (x, y ; E, co) » x exp {— 5~1 (y log y + log y + 2)}

Proof: In the notation of the preceding proof, (3.17) holds, and trivially
log nr ^ r log pr. If y ^ x0, then pr > r ^ x0 and r n (pr; E) ^ pf, so

log nr ^ 8~1 r log r ^ Ô"1 (y+ 1) (log y + y-1)

^ 5_1 (y log y + logy + 2). (3.21)

But log y ^ log2 x — log3 x, so log nr < log x if x ^ c29 (5). Hence (3.19)

holds, and the result follows from (3.17) and (3.21). Q.E.D.

§4. Proofs of Theorem 1.14 and related results

We begin by quoting the following easy result from [13, pp. 689-690] :

Lemma 4.1. For x ^ 1 and z ^ 1,

x *»<«•*> «xn {i+ (z-i)p-1}.
n^x p^x, peE

To put this in a more convenient form, we prove

Lemma 4.2. If x ^1 and w> -2, then (cf. (1.2);

Il (1+wp"1) < (4.3)
p^x, peE

If 1 < w < x, then
11 (1 + wp ')

p^x, peE

exp {w (E (x) - E (w)) + 0 (w/log (2w))} (4.4)

Proof : (4.3) follows immediately from the inequalities

0^1 + wp~1 < exp *).

To get (4.4), we first write

Il (1 + wp_1)< [] (2wp-1) • Y[ exp (w/T1)
p^x.peE p^w w<p^x,peE

exp {w (E (x) - E (w)) + il (w) log (2w) - 0 (w)},
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