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38 K. K. NORTON

Empty sums mean 0, empty products 1, and we define 0° = 1. The notation

xl ...xm/yl ...yn

1s sometimes used instead of

(xl xm) (yl yn)—1 .

Throughout this paper, E denotes a nonempty set of primes, to be regarded
as quite arbitrary unless further assumptions are stated. E (x) is always defined
by (1.2). p, always means the smallest member of E, and if

E—{p} ={p:pecE and p # p,}

is not empty, then p, denotes the smallest member of E — {p,}. When x and v are
positive, the function A = A (x, v; [) is always defined by (1.22).

§3. PROOFS OF THEOREMS 1.6 AND 1.11,
AND RELATED RESULTS

Before proving (1.8), we observe that a similar but weaker inequality has a
very simple proof. For if y > 1, then

logn> ) logp> Y logp>=(ogy Y 1,
p|n

pln, p2y pln,p2y

and hence

om = Y 1+ Y 1<y+(logn)(logy "*.

pln, p<y pin,p=y
The right-hand side is approximately minimized by taking

y = (log n) (log, n)™ 2,
and we obtain

log n logy n
o (n) < 1+ 0 for n>=16(>e. (3.1)
log, n log, n

Another simple proof of (3.1) can be based on Newman’s observation [ 11, p. 652]
that if  (n) = r, thenn > r!. ‘

To get the sharper inequality (1.8), it seems to be necessary to use an
assumption such as (1.7) about the distribution of E. First we need a lemma
relating © (x; E) (defined by (1.4)) and |

0(x;E)= Y logp. (3.2)

p<x, peE
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LEMMA 3.3. Suppose that there exists a real number vy (E) > 0 such that
(1.7) holds. Then for x > ¢ (E),

0(x; E) = n(x; E) {logn(x;E) + log, n(x; E) — 1 — log v (E)
log, m(x; E) 1 34
+ log m(x; E) + Os <log1r(x;E))}' (3.4)

Proof: For notational simplicity, we write [, = log, x, L, = log, ©n (x; E)
whenever these are defined. First note that for x > ¢, (E), (1.7) implies

In particular, L, ~ l;and L, ~ [, asx — + oo,soforx > c¢,5 (E),(3.5) implies
L, =1, {1 + 0g(L,/L})},
and multiplication by (L,l,)” " yields
ITP = L' {1 + Og(L,/Ly)} for x > cy3(E). (3.6)
Taking logarithms in (3.5), then using (3.6), we get
L, =1,(1 = 1/l; + 0g(1/1,11y))

=1, (1 — 1/Ly + Og(1/L,L;))  for x> ¢4 (E).
It follows that

l, = L,(1 + 1/L; + Og(1/L,L,)) for x > ¢y5(E). (3.7)

Substituting (3.7) in (3.5), replacing Og (1/1,) by O (1/L,), and solving for [,, we
get '
ly, = Ly + L, — log y(E) + Ly/L; + Og(1/L,)
for x> ci6(E). (3.8)

We now need to estimate 0 (x; E) in terms of ©t (x; E). We use the Stieltjes
integral, then integrate by parts and combine with (1.7): |

0(x; E) = J (log H)dn (t; E) = n(x; E)l, — F@dt
1 , logt

*oodt
+ Og (LW> = n(x; E)I; — v (E)(x/l}) + Og (x/13)

= n(x; E)l; — m(x; E) + Og (x/I7) (3.9)
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for x = 2. Now, (1.7) shows that
x/li = Og(n(x; E)/ly) = Og(n(x; E)/L;) for x> c;,(E).
Using this fact as well as (3.9) and (3.8), we get (3.4). Q.E.D. |

Proof of Theorem 1.6: Write E = {py, p,, D3, ...}, Where p; < p, < p;
. Define n, = p,p, ... p, for r > 1. By (3.4),

1 1 +1 E 1 1
logn, = 0(p,; E) = (rlogr)<1 + .7 1 og v (E) og2r2 E\ 3
log r log r (log r) (log r)
(3.10)
for r > ¢, (E). Hence for r > ¢4 (E),
log, r 1
log, n, = logr + log, r + + Og : (3.11)
log r log r
If r > c,4 (E), then (3.10) and (3.11) yield
log n, = r{log, n, — 1 — log v (E) + Og(1/log, n,)} . (3.12)
if r > ¢,q (E), we can solve (3.12) for r to get
1 1 +1 E 1
o E) = r — 08m ) Trleev®) . < R )
log, n, log, n, (log, n,)

Now let n be any integer >3, and write ® (n; E) = r. Define

log n 1 + lo E)! log n lo
g +{ g v (E)} log L g logn

S ) = e n (logs 1)? (log, n°

for real o. For fixed positive a, f (n, o) increases with nforn > c¢,, (a, E). Thus if
r > ¢,, (E), it follows from (3.13) (since n > n,) that

o (n; E) = o (n,; E) < f(n, c23(E)) < f(n,cy3(E)).
Now suppose that 0 < r = © (n; E) < ¢,, (E). If n > ¢,, (E), then clearly
f(n,ca3 (E)) 2 ¢, (E) > @ (n; E).
If 3 < n < ¢, (E) and c,5 (E) is sufficiently large, then (since v (E) < 1)

1
f (n, Cas (E)) = (Td% {025 (E) + (108 Y (E)) log, ¢4 (E)}
2

= c,,(E) 2 o(n; E).
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It follows that if

¢26 (E) = max {c,; (E), ¢35 (E)},
then
o (n; E) < f (n, c36 (E))

for all n > 3. This proves (1.8), and (3.13) shows that equality holds in (1.8) for
infinitely many n. Q.E.D.

For a more precise version of (1.8) when E is the set of all primes, see [12,
p. 99].

Even a much weaker hypothesis than (1.7) implies that the maximum order of
o (n; E)isnearly (log n) (log, n)~ L. Specifically, suppose that there exist positive
real numbers 9, x,, such that

n(x; E) > x> forall x> x,. (3.14)

In the notation of the preceding proof, it is then clear that for r > x,,

logn, =0 (p;E)=n(p;E)—1>pl — 1. (3.15)
But trivially 6 (p,; E) < r log p,, so
o (n,; E) = r > (log n,) (log p,) ™",
and hence by (3.15),

L E) 1
lim sup 20 BV logn o (3.16)
n—+ oo logn

Proof of Theorem 1.11: We use the method of Erdos and Nicolas [2],
which we can refine and generalize by appealing to Lemma 3.3. As before, write

E = {pla Pza p3a } s
where

Pi <Py <p3 < ...

Assume that y satisfies (1.12) (where ¢, (E)is sufficiently large), taker = [y] + 1,

andletn, = p;p, ... p,. There are exactly [x/n,] multiples n of n,such thatn < x,
and for each such n we have @ (n; E) > r > y. Hence

S(x,y;E,0) = [x/n,] . (3.17)
By (3.4),

log n, = r{logr + log, r — 1 — log y (E) + O ((log, r)/log r)}
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for r > ¢, (E). Define
g@t) =t{logt+log,t — 1 — logy(E)}
for real t > 3 and note that

0<g(t) = Og(logt) for t>3.

By the mean-value theorem for derivatives,

g(r) =g() + Og(logy),
and hence
logn, = g(y) + Og(y(log, y)logy) if y>cy;(E). (3.18)
In order to derive (1.13) from (3.17) and (3.18), we need to show that
[x/n,] » x/n,, (3.19)
1.e., that n, < x. For the remainder of this proof, write

I, =log, x,B =1+ logy(E) — ¢,
and

z = (I/L) + B(1l/B) -
It follows from (1.12) that
y (log; y)/log y = Og (1,15/13).
Also, if x > c,4 (E, €), then

logz<l, —l;+B/l) <, — 15+ (g/2),

It follows from these inequalities and (3.18) thatif x > ¢, (E, g) (sdfﬁ'ciently large)
and (1.12) holds, then

< g(2) + 0g (Ls/15)

< (/L) A+B/L) {l, — 15 + (/2) + I; — (B+e)}
+ O0g (i15/13)

I, (1—¢/21) + Og  (L1/13) < Iy,

log n,

so n, < x. Thus (3.19) holds, and (1.13) follows from (3.17) and (3.18). Q.E.D.
It is interesting to observe that a result somewhat like (1.13) can be deduced
from a much weaker assumption than (1.7):
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THEOREM 3.20. Suppose there exist real numbers & > 0, x, = 2 such that
(3.14) holds. If x = c,4(8) and x, < y < & (log x) (log, x)~ !, then
S(x,y;E,0) » xexp {—8 ! (ylog y + log y + 2)}.

Proof: In the notation of the preceding proof, (3.17) holds, and trivially
logn, <rlogp,. Ify > xo thenp, >r > x,and r = n(p,; E) = pd, so

S lrlogr<d '(y+1)(ogy+y Y
0 ' (ylogy + log y+2). (3.21)

But log y < log, x — log; x, so logn, < log x if x > ¢,4(d). Hence (3.19)
holds, and the result follows from (3.17) and (3.21). Q.E.D.

§4. PROOFS OF THEOREM 1.14 AND RELATED RESULTS

We begin by quoting the following easy result from [13, pp. 689-690]:

LemMMmA 4.1. For x>1 and z > 1,

Y WP <x ] {1+ @E-1p 1},

n<x p<x, pecE

To put this in a more convenient form, we prove

LEMMA 42, If x>1 and w > —2, then (cf (1.2))

[T (4+wp™) < evE®. (4.3)
If 1 <w<x, then [T (+wpY
= exp {w(E (x) — E (w)) + O (w/log (2w))} . (4.4)

Proof :  (4.3) follows immediately from the inequalities

0<1+wp ! <exp(wp ).

To get (4.4), we first write

[T G+wp ™)< I]T @wp™ Y- [ exp(wp?)

p<x, peE pPSsw w<p<x, peE

= exp {w(E (x) — E (W) + m(w) log 2w) — 6 (w)},
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