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PRIME FACTORS OF AN INTEGER | 37

There are just [xp; ¥] of these n < x, and since [z] > z/2 for z > 1, we get the
result.

It is clear that Theorem 1.24 is essentially best possible in certain extreme
cases (for example, if E = {p,},orif x = pfand y = a — 1).

When E = P (the set of all primes), we can take v = log, x. ThenA = O (1),
and we have the following corollary of Theorems 1.21 and 1.24:

COROLLARY 1.25. If x> ¢ and 0 <y < (log x) (log2)™' — 1, then
277" 2x < S(x,y: P, Q) < ¢ 27 x (log x) (log, x)/?.

Corollary 1.25 should be compared with the Erdos-Sarkozy result (1.20)
and with the asymptotic formula of Selberg mentioned after Theorem 1.18.
When y < 2 log, x (roughly), more precise estimates for S (x, y; P, Q) can be
obtained from [13] and [14].

In a later paper, we shall show that if p, is the smallest member of E and
e > 0 is fixed, then the precise order of magnitude of S(x, y;E, Q) is’

pi” x exp {(p;—1) E (x)}

when E (x) is sufficiently large and

p1 E(x) <y < (1—¢)(log x) (log py)™" .

This theorem is much more difficult to prove than Theorem 1.21. Its proof
depends on Theorem 1.21 and on an extension of Halasz’s work [4] concerning
the local distribution of Q (n; E). Theorem 1.21 remains our best upper bound

when y is close to (log x) (log p;)~ ! (cf. Theorem 1.18), and it seems to be the
most we can achieve by a fairly simple method.

§2. NOTATION

The symbols a, m, n always represent integers witha > O,m > 0,n > 0. The
letter p always denotes a prime, while v, w, x, y, z, a, B, , €, ¢ are real numbers.
[x] means the largest integer <x. The notation log, x is defined by (1.5), and the
notations 0, Os . ., ¢, c; (0, ¢, ..) are explained after Theorem 1.6. If a
condition such as “x > ¢; (9, €, ...)” is used as a hypothesis, it is to be understood
that ¢; (3, ¢, ...) 1s sufficiently large. We shall occasionally use the notations

<«, > to imply constants which are absolute. (Thus A = O (B) is equivalent to
A « B.)
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Empty sums mean 0, empty products 1, and we define 0° = 1. The notation

xl ...xm/yl ...yn

1s sometimes used instead of

(xl xm) (yl yn)—1 .

Throughout this paper, E denotes a nonempty set of primes, to be regarded
as quite arbitrary unless further assumptions are stated. E (x) is always defined
by (1.2). p, always means the smallest member of E, and if

E—{p} ={p:pecE and p # p,}

is not empty, then p, denotes the smallest member of E — {p,}. When x and v are
positive, the function A = A (x, v; [) is always defined by (1.22).

§3. PROOFS OF THEOREMS 1.6 AND 1.11,
AND RELATED RESULTS

Before proving (1.8), we observe that a similar but weaker inequality has a
very simple proof. For if y > 1, then

logn> ) logp> Y logp>=(ogy Y 1,
p|n

pln, p2y pln,p2y

and hence

om = Y 1+ Y 1<y+(logn)(logy "*.

pln, p<y pin,p=y
The right-hand side is approximately minimized by taking

y = (log n) (log, n)™ 2,
and we obtain

log n logy n
o (n) < 1+ 0 for n>=16(>e. (3.1)
log, n log, n

Another simple proof of (3.1) can be based on Newman’s observation [ 11, p. 652]
that if  (n) = r, thenn > r!. ‘

To get the sharper inequality (1.8), it seems to be necessary to use an
assumption such as (1.7) about the distribution of E. First we need a lemma
relating © (x; E) (defined by (1.4)) and |

0(x;E)= Y logp. (3.2)

p<x, peE
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